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Abstract: Drug resistance is one of the most serious phenomena in financial, economic and
medical terms. The present paper proposes and investigates a simple mathematical
fractional-order model for the phenomenon of multi-drug antimicrobial resistance. The
model describes the dynamics of the susceptible and three kinds of infected populations.
The first class of the infected society responds to the first antimicrobial drug but resists
to the second one. The second infected individuals react to the second antimicrobial drug
but resist to the first one. The third class shows resistance to both of the two drugs. We
formulate the model and associate it with some of its properties. The stability conditions
of the multi-drug antimicrobial resistance equilibrium states are derived. We illustrate
the analytical results by some numerical simulations.
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1 Introduction

Recently, some diseases (Measle, Poliomyelitis, Mumps, …), that were thought to have
disappeared, have reappeared [Lewnard and Grad (2018)]. The most common causes are
developing resistance to antimicrobial drugs (AMR) [Nguyen, Contamin, Nguyen et al.
(2018); Gabryszewski, Modchang, Musset et al. (2016); Wilson, Garud, Feder et al.
(2016); Welch, Fricke and McDermott (2007)]. According to the World Health
Organization (WHO), AMR and multi-drug resistance (MDR) are among the top ten
essential threats to human health in 2019 [Li, Plesiat and Nikaido (2015); Paul and
Moye-Rowley (2014); Moreno-Gamez, Hill, Rosenbloom et al. (2018)]. This resistance
resulted from the disuse of antibiotics either by the patients or by the doctors themselves.
Antibiotics are widely used to treat both small infections and fatal human diseases.
Furthermore, they are used extensively for animal farming and agricultural purposes.
Antibiotics have been frequently and successfully used to control both human and animal
epidemic outbreaks. Also, they play an essential role in many medical procedures.
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Unfortunately, the disuse of antimicrobial drugs can transform organisms to other antigenic
agents that resist medication. Even the new one may be more active. This transformation
was evident in appearing of new viral, bacterial, and fungal strains, which is more
virulent and resistant. The reasons for these transformations can be: Firstly, it may occur
naturally during the bacteria replication process. Secondly, the misuse of antibiotics in
both humans and animals accelerates the process. Thirdly, low investments in both
hospital infection control and scientific research for discovering new types of antibiotics.
Fourthly, the absence of decisive governmental regulations on medical facilities in some
regions of the world. Fifthly, pollution has a prominent role in elevating AMR and MDR
development.

AMR and MDR are some of the complicated threats to global health, food security,
economics, and development nowadays. Mathematical models have played an essential
role in improving the perception of several biological phenomena [Elettreby, Ahmed and
Safan (2019); Elettreby and Aly (2015); Nowak and May (2000); Perelson and Nelson
(1998); Roy, Zhang, Ghosh et al. (2018)]. The authors have developed many
mathematical models for exploring several aspects of epidemics [Daley and Gani (2001);
Martcheva (2015)]. Also, Integer order dynamical systems are used to model
optimization of antibiotic use [Massad, Burattini and Coutinho (2008); Sun and Hu
(2018)]. Both AMR and MDR depend on exposure time. Hence, memory effects are
crucial for both phenomena. Consequently, the fractional-order formulation is quite
relevant because it is related to systems with memory [Capponetto, Dongola, Fortuna
et al. (2010); Cao, Datta, Al Basir et al. (2018); Elettreby, Nabil and Al-Raezah (2017);
Elettreby, Al-Raezah and Nabil (2017); Ahmed, Elgazzar and Elsadany (2020)].

Other mathematical topics relevant to AMR and MDR are network theory, game theory,
optimization theory, and seasonality modeling. Here, we present a simple model for
multi-drug antimicrobial resistance. In Section 2, we proposed the model, proved the
existence and uniqueness of the solution of the model. In Section 3, we investigated the
stability of the equilibrium points of the model. Finally, in Section 4, we used the
Adams-type predictor-corrector method for the numerical solution of the model.

2 Two-drug antimicrobial resistance fractional-ordered model

Fractional calculus generalizes the concept of ordinary differentiation and integration to
noninteger order. Fractional calculus is a fertile field for researchers to study very
important real phenomena in many fields like physics, engineering, biology, and so forth
[Ross (1977); Ding and Ye (2009); Hanert, Schumacher and Deleersnijder (2011);
Kleinert and Korbel (2016); Garrappa (2016); Magin (2006); Kilbas, Srivastava and
Trujillo (2006); Magin, Ortigueira, Podlubny et al. (2011); Zhao, Zheng, Zhang et al.
(2016); Arenas, González-Parra and Chen-Charpentier (2016)]. The fractional differential
equations are naturally related to systems with memory. Also, they are closely related to
fractals which are numerous in biological system. The definition of fractional derivative
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involves an integration which is non local operator. The obtained results by studying the
solutions of the fractional differential equations are more general and are as stable as
their integer-order counter-part. So, we consider a two-drug antimicrobial resistance
fractional-order model. Also, studying a dynamical system in the fractional-ordered form
shows a lot of complex behaviors that can not appear in the ordinary form. There are a
lot of approaches to define the fractional differential operator such as Grunwald-Letnikov,
Riemann-Liouville, Caputo, and Hadamard. The Riemann-Liouville and Caputo
approaches are the most widely used in applications [Ding and Ye (2009); Hanert,
Schumacher and Deleersnijder (2011); Zhao, Zheng, Zhang et al. (2016); Diethelm
(2010)]. The Caputo fractional derivative of order α (>0) is denoted by Da

� and it is given
in the following form [El-Sayed (1993, 1998); Podlubny (1999); Diethelm, Ford and
Freed (2002); Ben Adda and Cresson (2005)]:

Da
� f ðtÞ¼In�a ðDn f ðtÞÞ

where n¼dae, t 2 Rþ, D¼ d

dt
and the fractional integral of order α (>0), is defined by using

Gamma function as follows;

Ia f ðtÞ¼
Z t

0

ðt � xÞa�1

�ðaÞ f ðxÞdx

Consider a given community that is invaded by a bacterial infection. Let S be the fraction of
the susceptible population, I1 be the fraction of the infected population which response, only,
to the first antimicrobial drug (Chloramphenicol). I2 be the fraction of the infected
population which response, only, to the second antimicrobial drug (Augmentin), and I12
be the fraction of the infected population which shows resistance to both of the two
drugs, respectively. The response to one drug but not the other is due to acquired
immunity caused by the intensive use of antibiotics. The positive constants μ1, μ2, μ12 are
the natural death rates of the three infected populations, respectively. Let the positive
constants b1, b2, b12 are the encounter rates of the susceptible population S with the
infected populations I1, I2, I12 per unit time. Also, let the positive constants b4, b5 are the
encounter rates of the infected populations I1 with I12 and I2 with I12 per unit time,
respectively. Let r be the growth rate of the susceptible S. We assume that the three types
of infected individuals can recover, but their recovery rates are meager by comparison
with the susceptible individuals so that we will ignore them. Also, the infected
individuals of class three I12 (with two-drug resistant bacteria) can infect both of the
susceptible individuals S, the first I1 and the second I2 classes of the infected individuals
(drug-resistance transmission). Also, we assume that there is a super-infection of I1 and
I2 individuals by I12 individuals but not from I2(1) individuals to I1(2) individuals due to
some acquired immunity. There is a class of infected individuals by bacteria that are
sensitive to both drugs. Here, we concern only on the classes of the infected individuals
that are resistant to antimicrobial drugs. Then, our model takes the following form;
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Da
�SðtÞ¼f1ðS; I1; I2; I12Þ¼rS ð1�SÞ�b1S I1�b2S I2�b12S I12

Da
� I1ðtÞ¼f2ðS; I1; I2; I12Þ¼b1S I1�l1 I1�b4 I1 I12

Da
� I2ðtÞ¼f3ðS; I1; I2; I12Þ¼b2S I2�l2 I2�b5 I2 I12

Da
� I12ðtÞ¼f4ðS; I1; I2; I12Þ¼b12S I12þb4 I1 I12þb5 I2 I12�l12 I12

(1)

with the initial non-negative values;

SðtÞ; I1ðtÞ; I2ðtÞ; I12ðtÞð Þjt¼0¼ðSð0Þ; I1ð0Þ; I2ð0Þ; I12ð0ÞÞ (2)

where α ∈ (0, 1], t ∈ (0, T], S(t), I1(t), I2(t), I12(t) ∈ [0,∞).

2.1 Existence of the unique non-negative solution
Theorem 2.1. The initial value problems (1), (2) has a unique solution.

Proof. System (1) can be written as the following matrix form;

Da
�X ðtÞ¼AX ðtÞþSðtÞBX ðtÞþI1ðtÞCX ðtÞþI2ðtÞDX ðtÞ; X ð0Þ¼X0; (3)

where;

X ðtÞ¼
SðtÞ
I1ðtÞ
I2ðtÞ
I12ðtÞ

2
664

3
775; X0¼

Sð0Þ
I1ð0Þ
I2ð0Þ
I12ð0Þ

2
664

3
775; A¼

r 0 0 0
0 �l1 0 0
0 0 �l2 0
0 0 0 �l12

2
664

3
775

B¼
r 0 0 �b12
0 b1 0 0
0 0 b2 0
0 0 0 b12

2
664

3
775; C¼

�b1 0 0 0
0 0 0 �b4
0 0 0 0
0 0 0 b4

2
664

3
775and D¼

�b2 0 0 0
0 0 0 0
0 0 0 �b5
0 0 0 b5

2
664

3
775

Definition 2.1. Let C* [0,T] be the class of continuous column vector X(t)=(S(t), I1(t), I2(t),
I12(t))

τ where C[0,T] is the class of continuous functions defined on the interval [0,T].

Now, let F(X(t))=A X(t)+S(t) B X(t)+I1(t) C X(t)+I2(t) D X(t) be a continuous function where
X(t) is a continuous column vector. Suppose that X(t) and Y(t) are two distinct continuous
column vectors solutions of the initial value problems (1), (2) such that;

X ðtÞ¼ðSðtÞ; I1ðtÞ; I2ðtÞ; I12ðtÞÞs; Y ðtÞ¼ðSyðtÞ; Iy1ðtÞ; Iy2ðtÞ; Iy12ðtÞÞs:
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Then;

kFðX Þ�FðY Þk ¼ kðAX ðtÞþSðtÞBX ðtÞþI1ðtÞCX ðtÞþI2ðtÞDX ðtÞÞ
�ðAY ðtÞþSyðtÞBY ðtÞþIy1ðtÞCY ðtÞþIy2ðtÞDY ðtÞÞk
�kAðX ðtÞ�Y ðtÞÞkþkSðtÞBðX ðtÞ�Y ðtÞÞkþkðSðtÞ�SyðtÞÞBY ðtÞk
þkI2ðtÞC ðX ðtÞ�Y ðtÞÞkþkðI2ðtÞ�Iy2ðtÞÞCY ðtÞk
þkI12ðtÞDðX ðtÞ�Y ðtÞÞkþkðI12ðtÞ�Iy12ðtÞÞDY ðtÞk:

Since |S(t)−Sy(t)|, |I1(t)−Iy1(t)|, |I2(t)−Iy2(t)|, |I12(t)−Iy12(t)|≤X(t)−Y(t), then, we have;

kFðX Þ�FðY Þk�½kAkþkBk jSðtÞjþkY ðtÞkð ÞþkCkðI1ðtÞþkY ðtÞkÞ
þkDkðjI2ðtÞjþkY ðtÞkÞ�kX ðtÞ�Y ðtÞk:

Let

L=[||A||+||B|| (|S(t)|+||Y(t)||)+||C|| (I1(t)+||Y(t)||)+||D|| (|I2(t)|+||Y(t)||)] ||X(t)-Y(t)||. It is clear that
L>0. Then;

kFðX Þ�FðY Þk�LkX ðtÞ�Y ðtÞk:

So, the continuous function F(X(t)), satisfies the Lipschitz condition and the system (1) has a
unique solution [Wang, Cheng and Zhang (2013)].

3 Stability analysis of the equilibria of the model

Model (1) is a nonlinear and has no time-dependent explicit solution. Therefore, we study the
model for a long time run. On putting the derivatives in the left-hand side of (1) equal zero;

Da
�SðtÞ¼Da

� I1ðtÞ¼Da
� I2ðtÞ¼Da

� I12ðtÞ¼0 (4)

to evaluate the equilibrium points of system (1). Solving the resulting nonlinear algebraic
system with respect to the equilibrium state variables ~S;~I1;~I2;~I12. Then, we get the
equilibrium points;

E1¼ 0; 0; 0; 0ð Þ; E2¼ 1; 0; 0; 0ð Þ; E3¼ð�S;�I1; 0; 0Þ; E4¼ð��S; 0;�I2; 0Þ
E5¼ð���S; 0; 0;�I12Þ; E6¼ðS; I1; 0; I12Þ; E7¼ð~S; 0;~I2;~I12Þ; E8¼ðŜ; Î1; Î2; Î12Þ

where;

�S¼ l1
b1

;�I1¼ r

b1
1� l1

b1

� �
; ��S¼ l2

b2
;�I2¼ r

b2
1� l2

b2

� �
;
���S¼ l12

b12
;�I12¼ r

b12
1� l12

b12

� �

S¼1� b1l12�b12l1
rb4

; I1¼
l12�b12S

b4
; I12¼

b1S�l1
b4
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~S¼1� b2l12�b12l2
rb5

;~I2¼ l12�b12 ~S

b5
;~I12¼ b2 ~S�l2

b5
and;

Ŝ¼ l1b5�l2b4
b1b5�b2b4

; Î1¼ rb5 ð1�ŜÞ�b12b5 Î12�l12b2þb12b2 Ŝ

b1b5�b2b4

Î2¼�rb4 ð1�ŜÞ�b12b4 Î12�l12b1þb12b1 Ŝ

b1b5�b2b4
; Î12¼ l1b2�l2b1

b1b5�b2b4

Since, the stability of the integer order system implies the stability of its corresponding
fractional-order; we will consider the local stability of the system (1).

The local stability analysis of these equilibria is established by studying the following
Jacobian matrix of system (1) at these equilibria;

J¼
rð1�2SÞ�b1I1�b2I2�b12I12 �b1S �b2S �b12S

b1I1 b1S�l1�b4I12 0 �b4I1
b2I2 0 b2S�l2�b5I12 �b5I2
b12I12 b4I12 b5I12 b12Sþb4I1þb5I2�l12

0
BBB@

1
CCCA

A sufficient condition to say that an equilibrium point is a locally asymptotically stable is
that all eigenvalues λ satisfy |arg(λ)|>α π/2 [Matignon (1996)]. For α=1 this stability
condition will be the Routh-Hutwitz conditions. Otherwise, these conditions are sufficient
but not necessary. This condition implies that the characteristic polynomial of that point
should satisfy Routh-Hurwitz conditions [Ahmed, El-Sayed and El-Saka (2006)]. For
n=4, if H1, H2, H3 and H4 are the Routh-Hutwitz determinants, then the conditions
jH1j>0, jH2j>0, jH3j>0 and a4>0 are the sufficient conditions that |arg(λ)|>α π/2 is valid
for all α∈[0,1).
Proposition 3.1. Model (1) has a boundary trivial unstable equilibrium E1.

Proposition 3.2. If b1<μ1, b2<μ2 and b12<μ12, then the full healthy second equilibrium point
E2 is locally asymptotically stable whenever it exists.

Proof. Similarly, the Jacobian matrix computed at the boundary equilibrium E2 (fully
healthy case) is;

J2¼
�r �b1 �b2 �b12
0 b1�l1 0 0
0 0 b2�l2 0
0 0 0 b12�l12

0
BB@

1
CCA
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It has the eigenvalues −r<0, b1−μ1, b2−μ2 and b23−μ12. Then, the full healthy equilibrium
state E2 is stable if b1<μ1, b2<μ2 and b12<μ12.

This means that the encounter rates should be less than the death rates. Biologically, it means
that susceptible individuals should avoid the infected ones. Since we concerned with the
multi-drug resistance, so, we will ignore the study of the equilibrium points that do not
have a multi-drug resistance (i.e., I12=0).

Proposition 3.3. The multi-drug resistance equilibrium state E5 is locally asymptotically

stable if
l12
b12

<min 1;
l1þb4
b1

;
l2þb5
b2

� �
.

Proof. Since
���S;�I12 2 ð0; 1Þ, then the conditions of the existence of E5 are;

0<l12<b12 and 0<r ðb12�l12Þ<b212
The local stability analysis of the multi-drug resistance fifth equilibrium state can establish
by studying the following Jacobian matrix of system (1) at E5;

J5¼

�r
���S �b1

���S �b2
���S �b12

���S

0 b1
���S�l1�b4�I12 0 0

0 0 b2
���S�l2�b5�I12 0

b12�I12 b4�I12 b5�I12 0

0
BBBBB@

1
CCCCCA

Since,
���S¼ l12

b12
, �I12¼ r

b12
1� l12

b12

� �
, we get the following characteristic equation;

ðb1���S�l1�b4�I12�mÞðb2���S�l2�b5�I12�mÞðm2þr
���Smþb12�I12l12Þ¼0;

where m is the eigenvalues of the Jacobian matrix J5. So, the eigenvalues are

m1¼b1
���S�l1�b4�I12, m2¼b2

���S�l2�b5�I12 and the other two values m3, 4 are the solutions

of the equation m2þr
���Smþb12�I12l12¼0. This equation has two negative real parts. Then,

multi-drug resistance fifth equilibrium state E5 is stable if b1
���S<l1�b4�I12 and

b2
���S<l2�b5�I12. Using the values of

���S, �I12 and the conditions of the existence of the
equilibrium point E5, we get the following conditions;

0<
l12
b12

<1;
l12
b12

<
l1 þ b4

b1
and

l12
b12

<
l2þb5
b2

which is equivalent to the condition;

l12
b12

<minð1; l1þb4
b1

;
l2þb5
b2

Þ
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Note that, the condition of the existence of the equilibrium point E5 is the condition of the
instability of the full healthy state E2.

This means that after some time the population will turn to only susceptible and multi-drug
resistance. There will not be any individuals that can response to the existence drugs. This is
a very dangerous case.

Proposition 3.4. The multi-drug resistance equilibrium state E6 is locally asymptotically

stable if S¼1� b1l12�b12l1
rb4

<
b4l2�b5l1
b4b2�b5b1

.

Proof. Since S; I1; I12 2 ð0; 1Þ, then the conditions of the existence of E6 are;

0 < b1l12�b12l1 < rb4;
l12�b4
b12

< S <
l12
b12

and
l1
b1

< S <
l1þb4
b1

The local stability analysis of the multi-drug resistance sixth equilibrium state can
established by studying the following Jacobian matrix of system (1) at E6;

J6¼
�rS �b1S �b2S �b12S
b1 I1 0 0 �b4 I1
0 0 b2S � l2�b5 I12 0
b12 I12 b4 I12 b5 I12 0

0
BB@

1
CCA

which has the characteristic equation ð�� b2Sþl2þb5I12Þð�3þa1�2þa2�þa3Þ¼0;where
λ is the eigenvalues of the Jacobian matrix J6 and a1¼rSð> 0Þ,
a2¼Sðb21I1þb212I12Þþb24I1I12ð> 0Þ and a3¼rb24SI1I12ð> 0Þ. So, the eigenvalues are
�1¼b2S � l2�b5I12, and the other three values λ2, 3, 4 are the solutions of the
characteristic equation λ3+a1 λ2+a2 λ+a3=0. The Routh-Hurwitz matrices of the above
characteristic equation are;

H1¼ a1½ �;H2¼ a1 1
a3 a2

� �
;H3¼

a1 1 0
a3 a2 a1
0 0 a3

2
4

3
5

According to Proposition. 1 Ahmed et al. [Ahmed, El-Sayed and El-Saka (2006)] the
condition |arg(λ)|>α π/2 is satisfied for λ2, 3, 4 since a1>0, a1 a2>a3, a3>0 and D(P)>0,
where D(P)=18 a1 a2 a3+(a1 a2)

2−4 a3 (a1)
3−4 (a2)

3−27 (a3)
2. Then, the condition of the

stability of the multi-drug resistance sixth equilibrium state E6 is
�1 ¼ b2S � l2�b5I12 < 0;

S <
b4l2�b5l1
b4b2�b5b1

, l1
l2

<
b4
b5

<
l1�b1
l2�b2
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Note that, the condition of the existence of the equilibrium point E6 is the condition of the
instability of the multi-drug equilibrium state E5.

Similarly, the conditions of the existence of multi-drug resistance equilibrium point E7 are;

0 < b2l12�b12l2 < rb5;
l12�b5
b12

< ~S <
l12
b12

and
l2
b2

< ~S <
l2þb5
b2

Proposition 3.5. The multi-drug resistance equilibrium state E7 is locally asymptotically

stable if S ¼ 1� b2l12�b12l2
rb5

<
b5l1�b4l2
b5b1�b4b2

.

Proposition 3.6. The coexistence multi-drug resistance equilibrium state E8 is locally
asymptotically stable whenever it exists.

Proof. Since Ŝ; Î1; Î2; Î12 2 ð0; 1Þ, then the conditions of the existence of E8 are;

0<l1b5�l2b4<b1b5�b2b4; 0<l1b2�l2b1<b1b5�b2b4

0,ðrb5�l12b2Þðb1b5�b2b4Þ�ðrb5�b12b2Þðl1b5�l2b4Þ�b12b5 ðl1b2�l2b1Þ
,ðb1b5�b2b4Þ2

0,�ðrb4�l12b1Þðb1b5�b2b4Þþðrb4�b12b1Þðl1b5�l2b4Þþb12b4 ðl1b2�l2b1Þ
, ðb1b5�b2b4Þ2

The local stability analysis of the multi-drug resistance eight equilibrium state can establish
by studying the following Jacobian matrix of system (1) at E8;

J8¼
�r Ŝ �b1 Ŝ �b2 Ŝ �b12 Ŝ
b1 Î1 0 0 �b4 Î1
b2 Î2 0 0 �b5 Î2
b12 Î12 b4 Î12 b5 Î12 0

0
BB@

1
CCA

which has the characteristic equation λ4+a1 λ
3+a2 λ

2+a3 λ+a4=0, where λ is the eigenvalues
of the Jacobian matrix J8 and;

• a1¼rŜ>0,

• a2¼Ŝðb21 Î1þb22 Î2þb212Î12Þþðb24Î1þb25Î2Þ>0,

• a3¼rðb24 Î1þb25 Î2ÞŜÎ12>0,

• a4¼ðb21b25�b1b2b4b5þb22b
2
4ÞŜÎ1Î2Î12>ðb1b5�b2b4Þ2ŜÎ1 Î2Î12>0:
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The Routh-Hurwitz matrices of the above characteristic equation are;

H1¼ a1½ �;H2¼ a1 1
a3 a2

� �
;H3¼

a1 1 0
a3 a2 a1
0 a4 a3

2
4

3
5;H4¼

a1 1 0 0
a3 a2 a1 1
0 a4 a3 a2
0 0 0 a4

2
664

3
775

Since n=4, then the conditions jH1j¼a1¼rŜ > 0, jH2j¼a1a2�a3¼rŜ2

ðb21Î1þb22Î2þb212Î12Þ > 0, a4>0 and jH3j¼a3ða1a2�a3Þ � a21a4¼r2ðb21b24 Î21þb22b
2
5Î

2
2

þðb24Î21þb25Î
2
2 Þb212Î12þb1b2b4b5 Î1Î2ÞŜ3Î12 > 0 are sufficient conditions that |arg(λ)|>α π/2

is valid for all α∈[0,1). Then, the multi-drug resistance eighth equilibrium state E8 is
stable whenever it exists. Note that, the condition of the existence of the equilibrium
point E8 is the condition of the instability of all the previous multi-drug equilibrium
states. Also, that the conditions in Propositions (2)−(4) implies the existence of MDR. In
general any stable equilibrium with I12>0 will imply MDR.

4 Numerical results

In this paper, we used the Adams-type predictor-corrector method for the numerical solution of
our fractional-order system [Diethelm and Ford (2002)]. First, we will give the Adams-type
predictor-corrector method for solving general initial value problem with Caputo derivative;

Da
� yðtÞ¼f ðt; yðtÞÞ

with the initial condition y(0)=y0 and t ∈ (0,T]. We assumed a set of points {tj, yj}, where yj=y

(tj), are the points used for our approximation and tj=j h, j=0, 1,….., N (integer), h¼ T

N
: The

general formula for Adams-type predictor-corrector method is;

ynþ1¼
Xdae�1

k¼0

tknþ1
k!

yðkÞ0 þ ha

�ðaþ2Þ
Xn
j¼0

rj;nþ1 f ðtj; yjÞþ ha

�ðaþ2Þ rnþ1;nþ1 f ðtnþ1; y
P
nþ1Þ

where;

rj;nþ1¼
naþ1�ðn� aÞðnþ1Þa; if j¼0
ðn� jþ2Þaþ1þðn� jÞaþ1�2ðn� jþ1Þaþ1; if 1� j�n
1; if j¼nþ1

8<
:

and;

yPnþ1¼
Xdae�1

k¼0

tknþ1
k!

yðkÞ0 þ 1

�ðaÞ
Xn
j¼0

qj;nþ1 f ðtj; yjÞ;
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qj;nþ1¼
ha

a
ðnþ1� jÞa�ðn� jÞað Þ:

Applying the above algorithm for the system (1), we have the following;

Snþ1¼ S0þ ha

�ðaþ2Þ
Xn
j¼0

r1; j;nþ1 ðrSj ð1� SjÞ � b1Sj I1; j�b2Sj I2; j�b12Sj I12; jÞ

þ ha

�ðaþ2Þ r1;nþ1;nþ1 ðrS
P
nþ1 ð1� SPnþ1Þ � b1S

P
nþ1 I

P
1;nþ1 � b2S

P
nþ1 I

P
2;nþ1

�b12S
P
nþ1 I12;nþ1Þ

I1;nþ1¼I1;0þ ha

�ðaþ2Þ
Xn
j¼0

r2; j;nþ1 ðb1Sj I1; j�l1 I1; j�b4 I1; j I12; jÞ

þ ha

�ðaþ2Þ r2;nþ1;nþ1 ðb1S
P
nþ1 I

P
1;nþ1 � l1 I

P
1;nþ1 � b4 I

P
1;nþ1 I

P
12;nþ1Þ

I2;nþ1¼I2;0þ ha

�ðaþ2Þ
Xn
j¼0

r3; j;nþ1 ðb2Sj I2; j�l2 I2; j�b5 I2; j I12; jÞ

þ ha

�ðaþ2Þ r3;nþ1;nþ1 ðb2S
P
nþ1 I

P
2;nþ1 � l2 I

P
2;nþ1 � b5 I

P
2;nþ1 I

P
12;nþ1Þ

I12;nþ1¼I12;0þ ha

�ðaþ2Þ
Xn
j¼0

r4; j;nþ1 ðb12Sj I12; jþb4 I1; j I12; jþb5 I2; j I12; j�l12 I12; jÞ

þ ha

�ðaþ2Þ r4;nþ1;nþ1 ðb12S
P
nþ1 I

P
12;nþ1þb4 I

P
1;nþ1 I

P
12;nþ1þb5 I

P
2;nþ1 I

P
12;nþ1�l12 I

P
12;nþ1Þ

where;

SPnþ1¼S0þ 1

�ðaÞ
Xn
j¼0

r1; j;nþ1 ðrSj ð1� SjÞ � b1Sj I1; j�b2Sj I2; j�b12Sj I12; jÞ

IP1;nþ1¼I1;0þ 1

�ðaÞ
Xn
j¼0

r2; j;nþ1 ðb1Sj I1; j�l1 I1; j�b4 I1; j I12; jÞ

IP2;nþ1¼I2;0þ 1

�ðaÞ
Xn
j¼0

r3; j;nþ1 ðb2Sj I2; j�l2 I2; j�b5 I2; j I12; jÞ

IP12;nþ1¼I12;0þ 1

�ðaÞ
Xn
j¼0

r4; j;nþ1 ðb12Sj I12; jþb4 I1; j I12; jþb5 I2; j I12; j�l12 I12; jÞ
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Therefore, for i=1, 2, 3, 4,

ri; j;nþ1¼
naþ1�ðn� aÞðnþ1Þa ; if j¼0
ðn� jþ2Þaþ1þðn� jÞaþ1�2ðn� jþ1Þaþ1 ; if 1� j�n
1 ; if j¼nþ1

8<
:

and;

qi; j;nþ1¼
ha

a
ððnþ1� jÞa�ðn� jÞaÞ:

Numerical simulations for the model (1) have been carried out, where it is revealed that the
solutions do not depend on the initial conditions. So, we will use the initial point (0.4, 0.3,
0.1, 0.2) and the parameter values r=0.1, b1=0.1, b2=0.11, b12=0.09, b4=0.08, b5=0.1,
μ1=0.11, μ2=0.12, and μ12=0.1 for the following figures. Also, we will plot the time t
versus the susceptible S, and the three kinds of the infected individuals I1, I2, I12 to check
the qualitative behavior of the system.

In Fig. 1, we vary the value of the fractional-order α to test its impact on the behavior of the
individuals. The figure shows that all curves of the three kinds of the infected individuals
tend to zero as t increases and the susceptible goes to one, whenever the stability
conditions of the equilibrium point E2 are satisfied. This means the extinction of them
and the system approaches a healthy state. We observed that increasing the parameter α
increases the rate to reach to the steady state.
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Figure 1: The figure shows the curves of the susceptible S(t) and the other three represent
the three kinds of the infected I1(t), I2(t) and I12(t) at r=0.1, b1=0.1, b2=0.11, b12=0.09,
b4=0.08, b5=0.1, μ1=0.11, μ2=0.12, μ12=0.1. (a) a=0.2. (b) a=0.4. (c) a=0.6. (d) a=0.9
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In Figs. 2(a)–2(d), we used the parameter value b12=0.19 to satisfies the stability conditions of the
equilibrium point E5. The figures show that the two kinds of infected I1 and I2 tend to zero as the

time increases. The susceptible S and the MDR I12 approach to
���S¼0:52632 and �I2 ¼ 0:24931,

respectively. After some time, the system approaches the multi-drug resistance state.

In Figs. 3(a)–3(d) shows that the infected I2 tends to zero as the time increases. The susceptible
S, the infected I1 and the MDR I12 approach to ðS; I1; 0; I12Þ¼ð0:4656; 0:6680; 0; 0:1572Þ.
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Figure 2: The figure shows the stability of E5. (a) a=0.2. (b) a=0.4. (c) a=0.6. (d) a=0.9
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Figure 3: The figure shows the stability of E6. (a) a=0.2. (b) a=0.4. (c) a=0.6. (d) a=0.9
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This means that after some time the individual that responses to the second drug will disappear.
Also, this is a problem because the second antibiotic becomes non-effective.

In Figs. 4(a)–4(d) shows that the infected I1 tends to zero as the time increases. The
susceptible S, the infected I2 and the MDR I12 approach to
ðS; 0; I2; I12Þ¼ð0:7857; 0; 0:3061; 0:0306Þ. This means that after some time the individual
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Figure 4: The figure shows the stability of E7. (a) a=0.2. (b) a=0.4. (c) a=0.6. (d) a=0.9
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Figure 5: The figure shows the stability of E8. (a) a=0.2. (b) a=0.4. (c) a=0.6. (d) a=0.9
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that responses to the first drug will disappear. Also, this is a problem because the first
antibiotic becomes non-effective.

In Figs. 5(a)–5(d), the susceptible S, the infected I1, the infected I2 and the MDR I12
approach to ðŜ; Î1; Î2; Î12Þ¼ð0:8977; 0:1143; 0:1298; 0:2386Þ.
In Figs. 1–5 we noted that increasing the fractional-ordered parameter α increases the rate to
reach to the steady state.

5 Summary and conclusion

There is increasing evidence showing that antimicrobial usage provides a powerful selective
force that promotes the emergence of resistance in both humans and animals. The
emergence, persistence, and spread of resistant bacteria are of great concern since they
may lead to an overall increase in disease transmission, morbidity, mortality and
sometimes to economic losses to both humans and animal production industry where
tonnes of antimicrobial agents are consumed yearly.

The current paper has introduced a fractional-order model for multi-drug antimicrobial
resistance. The main idea is to describes and studies the effect of the emergence of
antimicrobial drug resistance on the existing antibiotics. The steady states of the model
are obtained. There are seven boundary steady states and a unique interior steady state.
The conditions of local stability of these states have been proved. We have made some
numerical simulations to confirm our theoretical results.

Our model proved some important results, mathematically. Firstly, we proved the coexistence
of drug sensitive and drug resisting strains, which is an observed phenomena. Secondly, the
healthy state persists if the encounter rates are less than the death rates. Medically, it means
that susceptible individuals should avoid infected ones, or the infected individuals should be
isolated. Thirdly, we calculate the conditions that prevent individuals who, only, responds to
the first antimicrobial drug I1, and those, only, respond to the second antimicrobial drug
from fading. These cases are very dangerous as the disappearance of these individuals
makes the current drugs out of effect, and these are major economical and medical losses.
Fifthly, we found the stability conditions of the coexistence state which is less dangerous
than the others. Finally, we test the effect of the parameter fractional-order α on the system.

Funding Statement: The authors extend their appreciation to the Deanship of Scientific
Research at King Khalid University for funding this work through Larg Research Group
Project under grant number (R.G.P.1/198/41).

Author’s Contributions: The authors contributed equally and significantly in writing this
paper. All authors read and approved the final manuscript.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

Fractional-Order Model for Multi-Drug Antimicrobial Resistance 679



References
Ahmed, E.; Elgazzar, A.; Elsadany, A. (2020): Simple mathematical models of
antimicrobial resistance. Journal of Fractional calculus and Applications, vol. 11, pp. 22-25.

Ahmed, E.; El-Sayed, A.; El-Saka, H. A. (2006): On some routh-hurwitz conditions for
fractional order differential equations and their applications in Lorenz, Rössler, Chua and
Chen systems. Physics Letters A, vol. 358, no. 1, pp. 1-4. DOI 10.1016/j.
physleta.2006.04.087.

Arenas, A. J.; González-Parra, G.; Chen-Charpentier, B. M. (2016): Construction of
nonstandard finite difference schemes for the SI and SIR epidemic models of fractional
order. Mathematics and Computers in Simulation, vol. 121, pp. 48-63. DOI 10.1016/j.
matcom.2015.09.001.

Ben Adda, F.; Cresson, J. (2005): Fractional differential equations and the Schrodinger
equation. Applied Mathematics and Computation, vol. 161, no. 1, pp. 323-345. DOI
10.1016/j.amc.2003.12.031.

Cao, X.; Datta, A.; Al Basir, F.; Roy, P. (2018): Fractional-order model of the disease
psoriasis: a control based mathematical approach. Journal of Systems Science and
Complexity, vol. 29, pp. 1565-1584. DOI 10.1007/s11424-016-5198-x.

Capponetto, R.; Dongola, G.; Fortuna, L.; Petras, I. (2010): Fractional order systems:
modelling and control applications. Nonlinear Science, Series A, vol. 72. World Scientific
Publisher Co., Pte., Ltd.

Daley, D. J.; Gani, J. (2001): Epidemic modelling: an introduction, vol. 15. Cambridge
University Press.

Diethelm, K. (2010): The Analysis of Fractional Differential Equations: An Application-
Oriented Exposition Using Differential Operators of Caputo Type. Springer-Verlag Berlin
Heidelberg.

Diethelm, K.; Ford, N. (2002): Analysis of fractional differential equations. Journal of
Mathematical Analysis and Applications, vol. 265, no. 2, pp. 229-248. DOI 10.1006/
jmaa.2000.7194.

Diethelm, K.; Ford, N.; Freed, A. (2002): A predictor-corrector approach for the numerical
solution of fractional differential equations. NonlinearDynamics, vol. 29, no. 1-4, pp. 3-22.

Ding, Y.; Ye, H. (2009): A fractional-order differential equation model of HIV infection of
CD4+ T-cells. Mathematical and Computer Modelling, vol. 50, no. 3-4, pp. 386-392. DOI
10.1016/j.mcm.2009.04.019.

Elettreby, M. F.; Ahmed, E.; Safan, M. (2019): A simple mathematical model for
Guillain-Barré syndrome. Advances in Difference Equations, vol. 2019, no. 1, pp. 1-18.
DOI 10.1186/s13662-019-2146-9.

Elettreby, M.; Al-Raezah, A.; Nabil, T. (2017): Fractional-order model of two-prey one-
predator system. Mathematical Problems in Engineering, vol. 2017, no. 3, pp. 1-12. DOI
10.1155/2017/6714538.

680 CMES, vol.124, no.2, pp.665-682, 2020

http://dx.doi.org/10.1016/j.physleta.2006.04.087
http://dx.doi.org/10.1016/j.physleta.2006.04.087
http://dx.doi.org/10.1016/j.matcom.2015.09.001
http://dx.doi.org/10.1016/j.matcom.2015.09.001
http://dx.doi.org/10.1016/j.amc.2003.12.031
http://dx.doi.org/10.1007/s11424-016-5198-x
http://dx.doi.org/10.1006/jmaa.2000.7194
http://dx.doi.org/10.1006/jmaa.2000.7194
http://dx.doi.org/10.1016/j.mcm.2009.04.019
http://dx.doi.org/10.1186/s13662-019-2146-9
http://dx.doi.org/10.1155/2017/6714538


Elettreby, M.; Aly, S. (2015): Optimal control of a two teams prey-predator interaction
model. Miskolc Mathematical Notes, vol. 16, no. 2, pp. 793-803. DOI 10.18514/
MMN.2015.1079.

Elettreby, M.; Nabil, T.; Al-Raezah, A. (2017): Dynamical analysis of a prey-predator
fractional mode. Journal of Fractional Calculus and Applications, vol. 8, no. 2, pp. 237-245.

El-Sayed, A. (1993): Linear differential equations of fractional orders. Applied Mathematics
and Computation, vol. 55, no. 1, pp. 1-12. DOI 10.1016/0096-3003(93)90002-V.

El-Sayed, A. (1998): Nonlinear functional-differential equations of arbitrary orders.
Nonlinear Analysis: Theory, Methods & Applications, vol. 33, no. 2, pp. 181-186. DOI
10.1016/S0362-546X(97)00525-7.

Gabryszewski, S.; Modchang, C.; Musset, L.; Chookajorn, T.; Fidock, D. (2016):
Combinatorial genetic modeling of pfcrt-mediated drug resistance evolution in
plasmodium falciparum. Molecular Biology and Evolution, vol. 33, no. 6, pp. 1554-1570.
DOI 10.1093/molbev/msw037.

Garrappa, R. (2016): Grünwald-letnikov operators for fractional relaxation in Havriliak-
Negami models. Communications in Nonlinear Science and Numerical Simulation, vol.
38, pp. 178-191. DOI 10.1016/j.cnsns.2016.02.015.

Hanert, E.; Schumacher, E.; Deleersnijder, E. (2011): Front dynamics in fractional-order
epidemic models. Journal of Theoretical Biology, vol. 279, no. 1, pp. 9-16. DOI 10.1016/j.
jtbi.2011.03.012.

Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J. (2006): Theory and Applications of
Fractional Differential Equations. Vol. 204, Elsevier Science.

Kleinert, H.; Korbel, J. (2016): Option pricing beyond Black-Scholes based on double-
fractional diffusion. Physica A: Statistical Mechanics and its Applications, vol. 449, pp.
200-214. DOI 10.1016/j.physa.2015.12.125.

Lewnard, J.; Grad, Y. (2018): Vaccine waning and mumps re-emergence in the United
States. Science Translational Medicine, vol. 10, no. 433, pp. 1-10. DOI 10.1126/
scitranslmed.aao5945.

Li, X.; Plesiat, P.; Nikaido, H. (2015): The challenge of efflux-mediated antibiotic
resistance in gram-negative bacteria. Clinical Microbiology Reviews, vol. 28, no. 2, pp.
337-418. DOI 10.1128/CMR.00117-14.

Magin, R. L. (2006): Fractional Calculus in Bioengineering, vol. 2. Begell House
Publishers, Danbury, USA.

Magin, R.; Ortigueira, M. D.; Podlubny, I.; Trujillo, J. (2011): On the fractional signals
and systems. Signal Processing, vol. 91, no. 3, pp. 350-371. DOI 10.1016/j.
sigpro.2010.08.003.

Martcheva, M. (2015): An Introduction to Mathematical Epidemiology, Texts in Applied
Mathematics, vol. 61. Springer US.

Fractional-Order Model for Multi-Drug Antimicrobial Resistance 681

http://dx.doi.org/10.18514/MMN.2015.1079
http://dx.doi.org/10.18514/MMN.2015.1079
http://dx.doi.org/10.1016/0096-3003(93)90002-V
http://dx.doi.org/10.1016/S0362-546X(97)00525-7
http://dx.doi.org/10.1093/molbev/msw037
http://dx.doi.org/10.1016/j.cnsns.2016.02.015
http://dx.doi.org/10.1016/j.jtbi.2011.03.012
http://dx.doi.org/10.1016/j.jtbi.2011.03.012
http://dx.doi.org/10.1016/j.physa.2015.12.125
http://dx.doi.org/10.1126/scitranslmed.aao5945
http://dx.doi.org/10.1126/scitranslmed.aao5945
http://dx.doi.org/10.1128/CMR.00117-14
http://dx.doi.org/10.1016/j.sigpro.2010.08.003
http://dx.doi.org/10.1016/j.sigpro.2010.08.003


Massad, E.; Burattini, M.; Coutinho, F. (2008): An optimization model for antibiotic use.
Applied Mathematics and Computations, vol. 201, no. 1-2, pp. 161-167. DOI 10.1016/j.
amc.2007.12.007.

Matignon, D. (1996): Stability results for fractional differential equations with applications to
control processing. Computational Engineering in Systems Applications, vol. 2, pp. 963–968.

Moreno-Gamez, S.; Hill, A.; Rosenbloom, D.; Petrov, D.; Nowak, M. et al. (2018):
Imperfect drug penetration leads to spatial monotherapy and rapid evolution of multidrug
resistance. Proceedings of the National Academy of Science in USA, vol. 112, no. 22, pp.
2874-2883. DOI 10.1073/pnas.1424184112.

Nguyen, Q.; Contamin, L.; Nguyen, T.; Bauls, A. (2018): Insights into the processes that
drive the evolution of drug resistance in mycobacterium tuberculosis. Evolutionary
Applications, vol. 11, no. 9, pp. 1498-1511. DOI 10.1111/eva.12654.

Nowak, M.; May, R. (2000): Virus Dynamics. Oxford: Oxford University Press.

Paul, S.; Moye-Rowley, W. (2014): Multidrug resistance in fungi: regulation of transporter-
encoding gene expression. Front Physiology, vol. 5, no. 1, pp. 143-166. DOI 10.3389/
fphys.2014.00143.

Perelson, A.; Nelson, P. (1998): Mathematical analysis of HIV-1 dynamics in vivo. SIAM
Reviews, vol. 41, no. 2, pp. 3-44. DOI 10.1137/S0036144598335107.

Podlubny, I. (1999): Fractional Differential Equations. San Diego, Calif, USA: Academic
Press.

Ross, B. (1977): The development of fractional calculus 1695-1900. Historia Mathematica,
vol. 4, no. 1, pp. 75-89. DOI 10.1016/0315-0860(77)90039-8.

Roy, P.; Zhang, Y.; Ghosh, P.; Pal, J.; Al Basir, F. (2018): Role of antibiotic therapy in
bacterial disease: a mathematical study. International Journal of Biomathematics, vol. 11,
no. 3, pp. 1850038. DOI 10.1142/S1793524518500389.

Sun, X.; Hu, B. (2018): Mathematical modeling and computational prediction of cancer
drug resistance. Briefings in Bioinformatics, vol. 19, no. 6, pp. 1382-1399. DOI 10.1093/
bib/bbx065.

Wang, L.; Cheng, T.; Zhang, Q. (2013): Successive approximation to solutions of stochastic
differential equations with jumps in local non-lipschitz conditions. Applied Mathematics
and Computation, vol. 225, no. 1, pp. 142-150. DOI 10.1016/j.amc.2013.09.026.

Welch, T.; Fricke, W.; McDermott, P. (2007): Multiple antimicrobial resistance in plague:
an emerging public health risk. PLoS One, vol. 2, no. 3, pp. 1-6. DOI 10.1371/journal.
pone.0000309.

Wilson, B.; Garud, N.; Feder, A.; Assaf, Z.; Pennings, P. (2016): The population genetics
of drug resistance evolution in natural populations of viral, bacterial and eukaryotic
pathogens. Molecular Ecology, vol. 25, no. 1, pp. 42-66. DOI 10.1111/mec.13474.

Zhao, J.; Zheng, L.; Zhang, X.; Liu, F. (2016): Unsteady natural convection boundary
layer heat transfer of fractional maxwell viscoelastic fluid over a vertical plate.
International Journal of Heat and Mass Transfer, vol. 97, pp. 760-766.

682 CMES, vol.124, no.2, pp.665-682, 2020

http://dx.doi.org/10.1016/j.amc.2007.12.007
http://dx.doi.org/10.1016/j.amc.2007.12.007
http://dx.doi.org/10.1073/pnas.1424184112
http://dx.doi.org/10.1111/eva.12654
http://dx.doi.org/10.3389/fphys.2014.00143
http://dx.doi.org/10.3389/fphys.2014.00143
http://dx.doi.org/10.1137/S0036144598335107
http://dx.doi.org/10.1016/0315-0860(77)90039-8
http://dx.doi.org/10.1142/S1793524518500389
http://dx.doi.org/10.1093/bib/bbx065
http://dx.doi.org/10.1093/bib/bbx065
http://dx.doi.org/10.1016/j.amc.2013.09.026
http://dx.doi.org/10.1371/journal.pone.0000309
http://dx.doi.org/10.1371/journal.pone.0000309
http://dx.doi.org/10.1111/mec.13474

	Fractional-Order Model for Multi-Drug Antimicrobial Resistance
	Introduction
	Two-drug antimicrobial resistance fractional-ordered model
	Stability analysis of the equilibria of the model
	Numerical results
	Summary and conclusion
	References


