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Abstract: Image steganography is a technique that hides secret information into the cover
image to protect information security. The current image steganography is mainly to embed
a smaller secret image in an area such as a texture of a larger-sized cover image, which will
cause the size of the secret image to be much smaller than the cover image. Therefore, the
problem of small steganographic capacity needs to be solved urgently. This paper proposes
a steganography framework that combines image compression. In this framework, the Vec-
tor Quantized Variational AutoEncoder (VQ-VAE) is used to achieve the compression of
the secret image. The compressed and reconstructed image is visually indistinguishable
from the original image and facilitates more embedded data information later. Finally,
the compressed image is transmitted to a SegNet deep neural network that contains a set
of encoders and decoders to achieve image hiding and extraction. Experimental results
show that the steganographic framework guarantees the quality of steganography while
its relative steganographic capacity reaches 1. Besides, Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM) values can reach 42 dB and 0.94, respectively.
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1 Introduction

The rapid development of information technology has made digital multimedia (such as
images, audio, video, etc.) an important carrier for military, commercial, and personal to
obtain and transfer information. Therefore, it is more and more easy to become the target
of third-party eavesdropping and malicious attacks (such as information tampering and
copyright infringement) in the transmission of public channels. For this reason,
steganography was proposed to make up for the shortcomings of traditional encryption
technology that cannot guarantee form security.
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Image steganography aims to hide the secret image into the cover image and extract it when
needed, to cover the secret communication behavior. LSB [Tirkel, Rankin, Van Schyndel
et al. (1993); Yang, Weng, Wang et al. (2008)] is the earliest steganography method
proposed. It replaces the least significant bit of the image element with a message bit,
thereby enabling information steganography. To the influential S-UNIWARD [Holub and
Fridrich (2012)], WOW [Holub and Fridrich (2013)], Hill-CMD [Sedighi, Cogranne and
Fridrich (2015)], MiPOD [Li, Wang, Li et al. (2015)] and other content-adaptive
steganography in recent years, the secrets are artificially designed through embedded
algorithms Information is hidden into the spatial domain or transform domain of the
cover image, and obtains excellent imperceptibility and security. For example, Luo et al.
[Luo, Huang and Huang (2010)] proposed an edge adaptive image steganography
method based on LSB matching. Qin et al. [Qin, Zhang, Cao et al. (2018)] proposed an
adaptive reversible data hiding scheme suitable for encrypted images. This solution can
not only achieve perfect image recovery, but also the embedding capacity is
considerable. But on the one hand, the traditional image steganography algorithm’s
embedded strength and position are often designed in advance and cannot be changed.
On the other hand, when embedding information, the content of the cover image may
not be fully balanced, such as the high and low-frequency component ratio distribution
and the embedded secret image is smaller than the cover image, resulting in
unsatisfactory steganographic capacity.

Because deep learning can better reflect the essential characteristics of data [Schmidhuber
(2014)] and has made a series of breakthrough progress in the areas of image processing,
natural language processing, and speech recognition. Such as Generative Adversarial
Network (GAN) [Goodfellow, Pouget-Abadie, Mirza et al. (2014)] and Convolutional
Neural Network (CNN) [Lecun, Bottou, Bengio et al. (1998)]. In recent years, it has
brought new impetus to the field of image steganography. Volkhonskiy et al.
[Volkhonskiy, Nazarov, Borisenko et al. (2017)] proposed a GAN-based steganographic
enhancement algorithm that uses traditional algorithms to hide secret messages into the
generated image and enhances security. Tang et al. proposed the use of generative
adversarial networks for automatic steganographic distortion learning [Tang, Tan, Li et al.
(2017)] and CNN-based image steganographic adversarial embeddings [Tang, Li, Tan
et al. (2019)]. This method works under the conventional framework of distortion
minimization. Hu et al. [Hu, Wang, Jiang et al. (2018)] proposed the use of a deep
convolutional generation adversarial network (DCGAN) to hidden the image. El-Emam
[El-emam (2008)] and Saleema et al. [Saleema and Amarunnishad (2016)] are dedicated
to using neural networks to optimize embedded images generated by traditional
steganography methods.

Although steganography based on deep learning gets rid of the process of artificial design, it
is still in its infancy. On the research question of continuously improving the three
parameters of security, robustness and steganographic capacity in steganographic
communication systems, the research of steganography based on deep learning still has a
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long way to go. Therefore, we tried a new steganography architecture in the study, in which
VQ-VAE-2 [Oord, Vinyals and Kavukcuoglu (2017); Razavi, Oord and Vinyals (2019)] was
cited. This structure enables each bit of the image to be fully compressed, and each valid
information can be fully retained, and the reconstructed image is good for the Human
Visual System (HVS). Also, the SegNet [Badrinarayanan, Kendall and Cipolla (2015)]
neural network based on the encoder-decoder structure is used to implement the
steganography of the secret image, and finally the CNN is used to implement the secret
image extraction. In this network model, there are three network modules: compression
network, hiding network, and revealed network. The compression network is used to
achieve image compression and maximize the retention of important image content
information. The hiding network hides the secret image to be sent into the cover image
through a series of operations such as convolution. Then, the steganographic image is
sent to the receiver, and the receiver uses the revealed network to extract the secret image.

The organization of the article is as follows: The second part introduces the preliminaries of
image compression and image steganography. The third part describes the proposed
research methods. The fourth part describes the results and analysis of the
implementation. The fifth part is the conclusion.

2 Preliminaries

2.1 VQ-VAE
Vector quantization (VQ) is a method of signal compression. The basic idea is: form a vector
of several scalar data groups and then give the overall quantization in the vector space, to
achieve compressed data without losing important information. VQ has high compression
rate and good visual quality in image processing. However, research on image
steganography not only requires high security, but also needs to achieve the effect of
confusing human vision in image reconstruction. Oord et al. [Oord, Vinyals and
Kavukcuoglu (2017)] proposed the VQ-VAE model, which uses discrete latent variables.
Inspired by vector quantization, training is performed in a new way and avoids posterior
collapse. The discrete latent variable VAE model is not only similar to the continuous
latent variable VAE model, but also has the flexibility of discrete distribution. In VQ-
VAE, the posterior and prior distributions are classified, and samples extracted from these
distributions can be indexed by embedding. These embeds are then used as input to the
decoder network. Its structure is shown in Fig. 1.

First, the original image X passes through the CNN in the Encoder to obtain a continuous
encoding vector Ze(X) of size L×W×D.

Z¼encoderðX Þ (1)

Here X̂¼DecoderðZqðX ÞÞ is a vector of size D. In addition, VQ-VAE also maintains an
Embedding Space (that is, a coding table), which is recorded as
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E¼½e1; e2;…; eX � (2)

Each ei here is a vector of sizeD. Then, VQ-VAEmaps Z to one of these X vectors by nearest
neighbor search

Z ! ex; k¼ argmin
j

Z � ej
�� ��

2
(3)

We can record the encoding table vector corresponding to Z as ebottom (the final encoding
result). Finally, input Zq(X) into a Decoder to build the original image X̂¼DecoderðZqðX ÞÞ.
In brief, the entire process in Fig. 1 mainly implements four processes: color image
information is converted into three-dimensional data; three-dimensional data is
converted into two-dimensional data; two-dimensional data is converted into three-
dimensional data, and three-dimensional data is converted into color images. Of these
four processes, the first two processes implement compression, and the last two parts
implement reconstruction.

2.2 Image steganography based on deep neural network
Compared with traditional artificially designed steganography algorithms, the deep
learning-based steganography method can automatically hide and extract image
information. No manual intervention is required during the process. By adjusting
parameter information to extract different information features and the strength of
information embedding, the efficiency of image steganography is greatly improved.

Steganography based on deep neural networks generally uses neural networks to find
embedded location information suitable for images. For example, a deep steganography
framework proposed by Baluja [Baluja (2017)] can be used to embed the entire secret
image into the cover image. The implementation process is shown in Fig. 2. There are
three parts in this network framework: Prep Network, Hiding Network, and Reveal
Network. The Prep Network normalizes the secret image and extracts important features

Figure 1: VQ-VAE strcuture
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at the same time. The Hiding Network encodes a secret image and a cover image having the
same size to obtain a Container image. At the same time, the model also trains a Reveal
Network to extract the secret image. In addition, Wu et al. [Wu, Yang and Li (2018)]
proposed a large image steganography method based on convolutional neural networks.
This method includes a set of encoders and decoders, and uses HighWay Network
[Srivastava, Greff and Schmidhuber (2015)], ResNet [He, Zhang, Ren et al. (2016)] and
ResNet [Xie, Girshick, Dollar et al. (2016)] to form the core part of its steganographic
network structure. Duan et al. [Duan, Jia, Li et al. (2019)] proposed a reversible image
information hiding based on U-Net [Ronneberger, Fischer and Brox (2015)] deep neural
network, which finally made the steganographic capacity 1. Liu et al. [Liu and Lee
(2019)] proposed an improved reversible image steganography method based on pixel
value ordering (PVO) to increase the steganographic capacity. Sort by considering three
consecutive or adjacent pixels as a group, where the maximum and minimum values are
used for the difference calculation, and the number of differences is recorded. This
method effectively increases the steganographic capacity. Yedroudj et al. [Yedroudj,
Comby and Chaumont (2019)] proposed a steganography method for 3-player games,
which mainly includes three sub-networks. Adversarial learning between three different
networks, experiments show that this method has a significant improvement in improving
steganography quality. Yang et al. [Yang, Ruan, Huang et al. (2019)] proposed a
framework for generating steganography. It has three sub-modules: a generator with a U-
Net architecture, a double tangent function that does not require pre-training, and a
steganographic analyzer based on a convolutional neural network and multiple high-pass
filters as discriminators. This method also has a significant improvement in
steganography quality.

2.3 SegNet image segmentation network
SegNet [Badrinarayanan, Kendall and Cipolla (2015)] is a Fully Convolutional Neural
Network, which was first used in the field of image segmentation. The main structures
include encoder, decoder, and a pixel-level classification layer. The encoder is used to

Figure 2: Deep steganography network structure
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generate low-resolution features, and the decoder role is to map this coarse feature to the
pixel-level classification across the entire input image-level resolution feature map. The
most iconic point of SegNet is that the decoder samples its low-resolution input feature
map. In a word, it uses a pooled index to achieve nonlinear Upsampling. The pooled
index is corresponding to the decoder. The encoder performs the calculation of the
maximum pooling operation. This eliminates the need to learn upsampling. The feature
map after Upsampling is sparse, so a convolution operation is then performed using a
trainable convolution kernel to generate a dense feature map. As shown in Fig. 3, the left
side is a convolution extraction feature, which increases the receptive field by pooling,
and the picture becomes smaller, which is the encoding process. On the right are
deconvolution and Upsampling. The features of the image classification are reproduced
by deconvolution, and the Upsampling is restored to the original size of the image,
which is a decoding process. Finally, the maximum value of different classifications is
output by Softmax, and then, the segmentation map is obtained. SegNet uses max-
pooling to remember the position of the maximum value when downsampling, and it can
quickly expand the size during upsampling, which means that upsampling does not
involve deconvolution, which greatly speeds up training time.

2.4 Steganalysis
The research of steganography and steganalysis has been promoting and drawing on each
other in confrontation. Steganalysis is the reverse detection method of steganography. It
belongs to the category of pattern recognition. Its main purpose is to judge whether the
secret information is contained in the statistical characteristics of the carrier, to estimate
the length of the embedded secret information, and to identify steganography tools,
estimate the steganographic key, and finally extract the secret information [Nissar and
Mir (2010)]. The key point of blocking hidden communication is to determine whether
the carrier contains hidden information. The general steganalysis process is generally
divided into two stages: feature construction and classifier training. Since the
steganographic embedding operation modifies high-frequency signals, in the feature

Figure 3: SegNet structure
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construction phase, a high-pass filter is usually used to calculate the residual image, and
various statistical models are used to extract the steganographic analysis features. Early
common image steganalysis methods include SPAM [Pevny, Bas and Fridrich (2010)],
SRM [Fridrich and Kodovsky (2012)], tSRM [Tang, Li, Luo et al. (2014)], and DCTR
[Holub and Fridrich (2015)]. Good feature representation plays a crucial role in the
detection accuracy of steganalysis. Therefore, the current research on the general
steganalysis method mainly focuses on the design and extraction of features. Similarly,
the steganalysis method based on deep learning is an important development direction in
the future. A method for steganographic analysis of large-scale JPEG images using a
hybrid deep learning framework as proposed in Zeng et al. [Zeng, Tan, Li et al. (2018)].
Xu et al. [Xu, Wu and Shi (2016)] proposed convolutional neural networks for
steganographic analysis.

3 The proposed image steganography method

In this section, we will describe and explain each component of the proposed steganography
framework in detail.

3.1 Process description
As shown in Fig. 4, the steganography method proposed in this paper mainly includes three
stages:

� The image preprocessing phase. Before the sender sends the secret image S to the
receiver, the original image O is obtained by the compression module to obtain a
secret image S that needs to be hidden.

Figure 4: Steganography overview diagram
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� Steganography phase of secret image. The sender takes the secret image S and a cover
image C obtained in the previous step as inputs to the hidden network, and conceals
the secret image S into the cover image C through operations such as convolution, and
finally generate a generated image G very similar to the cover image C.

� The extraction stage of the secret image. The generated image G obtained in the previous
step is input to the extraction network, and finally the required revealed image R is
obtained.

Also, in our image steganography framework, the hiding network and the revealed network
are trained models in advance and to ensure that the difference between the Cover image and
the Generated image, and the Secret image and the Revealed image are minimized, these
two subnetworks are Simultaneous training by adjusting hyperparameters.

3.2 Image compression
The image compression module used in this article is the VQ-VAE-2 [Razavi, Oord and
Vinyals (2019)] model. Compared to the first-generation VQ-VAE model, the original
VQ-VAE encoding has only one layer, and VQ-VAE-2 introduced the Hierarchical
coding process. As shown in Fig. 5, the encoding of the model is divided into two levels:
Top Level and Bottom Level. The Bottom Level has a large potential space of 64×64
(Global feature). This layer encodes the captured image’s local information such as
texture information. Quantize to get the quantized dictionary vector

etop  QuantizeðEtopðxÞÞ (4)

Using this dictionary as a condition, together with the input x, compute the quantized form
of the underlying latent space. The potential space of the Top Level is small, 32×32 (Local
feature), which represents the global information such as object shape and geometry.

Figure 5: VQ-VAE-2 strcuture
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Finally, the upper and lower quantized dictionary vectors etop and ebottom are
simultaneously input to the decoder, the previous loss function is calculated, and the
encoding and decoding network and dictionary weights are updated. Its loss function is
shown in the following formula.

LðX ;DðeÞÞ¼ X�DðeÞk k22þ sg½EðX Þ��ek k22þb sg½e��EðX Þk k22 (5)

where X is the input image,D is the decoder, E is the encoder, and sgmeans that the gradient
is not calculated and the error is not passed to this corresponding variable. β represents a
hyperparameter. The loss function is divided into three parts: X�DðeÞk k22 is the
reconstruction error, sg½EðX Þ��ek k22 calculates the distance between the latent vector and
the dictionary vector obtained by the encoder, and uses itas the auxiliary error term. The
encoder and decoder are not updated. b sg½e��EðX Þk k22 calculate the distance between the
latent vector and the dictionary vector.

For the Bottom Level and Top Level layers, one obtains global features and the other obtains
local features. Among them, there are residual links. This layered structure enables the
encoder to extract more image features. Thereby reducing errors during reconstruction.

3.3 Hiding network structure
In our proposed steganography method, a SegNet network based on the encoder-decoder
network structure is also used to implement steganography of secret images. As shown in
Fig. 6. At the left end of the figure, first input two images of size m×n (m=n), and
generate a 6-channel feature tensor (RGB images) or 2-channel feature tensor (Grayscale
images) by concatenation convolution operation. Each encoder generates a series of
feature maps through a set of convolutions (convolution kernel size is 4×4), followed by

Figure 6: Image hiding network based on SegNet. The left half of the SegNet structure is
the encoding stage, in which the operations of convolution and max-pooling are mainly
performed, and the max-pooling index value is saved. The right half is the decoding
stage. In this stage, the max-pooling index value saved in the encoding stage is used to
perform the upsampling and convolution operations. Using the max-pooling index in the
decoding process can improve the distribution of the boundaries and reduce the
parameters of network training. Finally, softmax is used to classify the pixels
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batches normalization, ReLU activation function, and max-pooling layer (2×2, stride=2). The
original SegNet network uses the same convolution, which achieves the same size as the
original image after the volume and operation. Max-pooling layer is used to achieving
spatial invariance on small space movements, and there is a larger receptive field in feature
mapping. But the use of Max-pooling causes a loss in resolution. This loss has a negative
impact on the boundary definition, so the encoder network must focus on capturing and
saving the boundary information before performing downsampling. And the 2×2 pooling
window can be implemented with 2 bit, which makes the efficiency higher.

The decoder uses the max index stored in the corresponding encoder feature map to
upsample the input feature map. The sparse feature maps generated are followed by a
series of trainable convolution kernels to output dense feature maps, followed by batches
normalization for normalization regularization reduces overfitting, and the decoder
corresponding to the input generates a multi-channel feature map. In this process, the size
of the convolution kernel does not change. The high-dimensional feature representation
output by the decoder is sent to a trainable soft-max multi-classifier, which classifies each
pixel individually. The network structure is described in Tab. 1.

Since the network is based on the structure of the encoder-decoder, the container image of
the intermediate representation is required to be as similar as possible to the cover image,
and can be expressed by the following formula.

LðC; S;G;RÞ¼ C�Sk kþb G�Rk k (6)

Table 1: Brief description of hiding network structure

Layer Input size Channel Operation Output size

Concatente 256×256 6 Concatente Layer 128×128

Layer 1 128×128 64 Conv+BN+ReLU+Pooling 32×32

Layer 2 32×32 256 Conv+BN+ReLU+Pooling 8×8

Layer 3 8×8 512 Conv+BN+ReLU+Pooling 2×2

Layer 4 2×2 512 Conv+BN+ReLU+Pooling 4×4

Layer 5 4×4 512 Upsampling+Conv+BN+ReLU 16×16

Layer 6 16×16 1024 Upsampling+Conv+BN+ReLU 64×64

Layer 7 64×64 256 Upsampling+Conv+BN+ReLU 256×256

Layer 8 256×256 64 Upsampling+Conv+BN+ReLU
+Softmax

256×256

Layer 9 256×256 3 Output 256×256
Conv means convolution and BN means batch normalization.
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where C, S, G, R respectively represent cover image, secret image, generated image, and
revealed image. β is a hyper-parameter used to measure reconstruction errors. C�Sk k
does not apply to the weight of the extraction network that accepts the Container image
and extracts the Secret image, that is, its weight is not shared with the extraction
network. All networks accept the error signal b G�Rk k, so that the two networks will
continuously adjust the error loss of the secret image and the cover image through
training to ensure that the Secret image can be completely encoded into the Cover image.

In addition, the cross-entropy cost function is mainly used:

L¼�
XM

c¼1
yc logðpcÞ (7)

where M is the number of samples.

3.4 Revealed network structure
The Secret image extraction process refers to the network model of Duan et al. [Duan, Jia, Li
et al. (2019)], as shown in Fig. 7. In this network structure, the Secret image is accurately
extracted by 6 convolutional layers. In CNN, the Dropout operation is used. The activation
functions and the pooling layer enhances the nonlinear learning ability of the network. The
purpose of CNN is to use nonlinear features to learn the fitting parameters. Learn the
weighting parameters in each layer of the network to accommodate the mapping between
input and output 3×3. In this network, the filter size of each convolutional layer is
designed to be 3×3, and each convolution layer is followed by a ReLU activation
function and a batch normalization operation. In the left and right blocks of the network,
the feature vectors of 64 components are mapped to the required number of categories
using a convolution of 3×3, and the Secret image and the Covert image are calculated
using the Sigmoid activation function. In the process of extracting the secret image, to

Figure 7: Image revealed network structure
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keep the size of the image unchanged, we set Stride to 1 and Padding to 1. The network
structure is described in Tab. 2.

4 Experiment

4.1 Experimental environment and dataset
In the third section, we make a theoretical description of the proposed steganography
method. In this section, we perform experimental simulations for further performance
evaluation. The experimental environment is Python 3.6 programming languages and the
Pytorch framework under the Ubuntu operating system. The experimental device has
dual NVIDIA 1080 Ti GPU and 16 GB RAM, 1 TB HDD and 256 GB SSD.

In the selection of the data set, we selected 45,000 images from the ImageNet dataset as the
training set and 5000 images as the test set.

4.2 Experimental results of image compression and reconstruction
We use the VQ-VAE-2 network to achieve image compression and reconstruction.
According to VQ-VAE, the original picture is first compressed into a discrete coding
space, so that the amount of information will be reduced accordingly, and the decoder
can reconstruct the picture from this space. The compressed image mainly uses the
pixelCNN algorithm. Therefore, the reconstructed image after sampling can still maintain
good quality. VQ-VAE-2 is an improvement on the basis of VQ-VAE. In simple terms, it
is to divide the encoding and decoding of the original layer into two layers, one is Top
Level and the other is Bottom Level. In our experiments, the original VQ-VAE-2
network structure and its parameters were used. We used the 256×256 ImageNet dataset
for training. The training process will automatically compress it to the bottom quantized
latent layer of 64×64 (Shrink 4 times) and the top quantized latent layer of 32×32
(Shrink 8 times). Fig. 8 is the process of image reconstruction through the VQ-VAE-2
network. The 0.25 of the hyperparameter β is the optimal value that we continuously
adjust. In addition, we set the batch size of the network to 64 and the number of trainings

Table 2: Brief description of revealed network structure

Layer Input size Channel Operation Output size

Layer 1 256×256 3 Conv+ReLU+BN 256×256

Layer 2 256×256 64 Conv+ReLU+BN 256×256

Layer 3 256×256 128 Conv+ReLU+BN 256×256

Layer 4 256×256 256 Conv+ReLU+BN 256×256

Layer 5 256×256 128 Conv+ReLU+BN 256×256

Layer 6 256×256 64 Conv+ReLU+BN 256×256

Layer 7 256×256 3 Sigmoid 256×256
Conv means convolution and BN means batch normalization.
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to 30,000. The effect of the final compression and reconstruction is shown in Fig. 9. The first
and second rows represent the original image and the reconstructed image, respectively. Tab. 3
is a brief description of the structure of VQ-VAE-2.

4.3 Subjective steganographic results
We stew the compressed and reconstructed image as a secret image. We set the parameters of
the hidden network as follows: the batch size is 8, the learning rate is set to 0.001, and the
hyperparameter β is set to 0.75. In addition, the Adam optimization algorithm is used to
automatically adjust the learning rate so that the network parameters can be smoothly
learned. Fig. 10 shows the effect after training is stable. The first to fourth lines in the
figure respectively represent the cover image, the generated image, the secret image, and
the revealed image. Through the gradual and stable training of the neural network, we
can intuitively find that the final result is good for the HVS, and people can’t see the
difference visually. Also, we performed some other experimental analyses of its hidden

Figure 8: Image reconstruction process. This image is an image reconstructed from two
latent layers of VQ-VAE-2. The first image is a reconstructed image of the Top Level
layer, the second image is a reconstructed image containing the Top Level and Bottom
Level, and the third image is the original image. It can be seen from the image that for
each latent layer, additional details are added during the reconstruction process

Table 3: VQ-VAE-2 network structure

Input size Operation Filter Size Output Size

Encoder 256×256 Conv1+ReLU+Residual1 3×3 64×64

64×64 Conv2+ReLU+Residual2 3×3 32×32

Decoder 32×32 Residual1+Residual2+ReLU+Cat
+Conv1

4×4 256×256

Residual refers to the residual module used in the network, Conv refers to the convolution operation, and Cat refers to the
concatenation. Padding is set to 1, Stride is set to 2.
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effects. Fig. 11 shows four sets of data extracted for analysis, and an intuitive display of the
errors between the cover image and the generated image, the secret image and the
steganographic image. Considered the samples under more common sence, we randomly
downloaded some texture images and noise images from the Internet for experiments.
The experimental results are shown in Fig. 12.

As shown in Fig. 13. We performed a histogram analysis of the data. Looking at the
histogram of the two sets of extracted data, the carrier image and the generated image,
the secret image and the extracted image changed little on the three-channel
decomposition maps of R, G, and B. The changes of each channel were basically Be
consistent, not miscellaneous. It is verified that the modified model follows the principle
of complementary pixels when embedding secret information instead of random

Figure 9: VQ-VAE-2 compression reconstruction image

Figure 10: Intuitive diagram after network training is stable
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out-of-order embedding. In addition, we also analyzed its PSNR value, SSIM value and
steganographic capacity parameters, see Sections 4.5, 4.6 and 4.7 in detail.

4.4 Calculation of the revealed rate, the cover changing rate, and the payload capacity
Revealed Rate: this refers to the probability that a secret image can be correctly extracted.

Cover Changing Rate: this refers to the change rate between the cover image and the
generated image.

Payload Capacity: this refers to the number of bits of information contained in each pixel.

Revealed Rate¼1�
PN

i¼1
PM

j¼1 Si;j�Ri;j

�� ��
N�M (8)

Cover Changing Rate¼
PN

i¼1
PM

j¼1 Ci;j�Gi;j

�� ��
N�M (9)

Figure 11: Sample from full-image hiding system. The error results of the last two columns
of the figure are obtained by subtracting each corresponding pixel value between the two
images. This will slightly detect if it contains secret information
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Payload capacity¼Revealed Rate�8�3 ðbppÞ (10)

Here, S, G, C, R respectively represent Secret image, Genreated image, Cover Image, and
Revealed image. “8, 3” represents 8 bits and 3 channels each. We perform a brief
calculation on the four groups of images in Fig. 11, and the calculation results are shown
in Tab. 3. Fig. 14 is the calculation of the payload capacity of the compressed and
uncompressed images by formula (10).

From Tab. 4, it can be seen that, while our method has good hiding ability and extraction
ability, the quality of the generated image also performs well. For example, the value of
the cover image change rate in the second column of the table remains below 1%.

4.5 Stegangraphic results peak signal noise ratio analysis (PSNR)
PSNR provides an objective standard for measuring image distortion or noise level. It is often
used for objective evaluation of image degradation before and after compression in areas such
as image compression. The evaluation result is expressed in dB (decibel). The larger the PSNR
value between the two images, the more there is no degradation. When the degradation degree
is large, the PSNR value tends to 0 dB. PSNR is an index used to measure image quality,
such as in the fields of image compression and super-resolution reconstruction of images.

Here two main values are defined. One is the mean squared MSE and the other is the peak
signal to noise ratio (PSNR). The formula is as follows.

MSE¼ 1

MN

XM�1

i¼0

XN�1

j¼0
jjCði; jÞ�Sði; jÞjj2 (11)

Figure 12: Graph of random test results. In the figure, the first column is the original image,
the second column is the secret image obtained by compression, the third column is the cover
image, the fourth column is the generated image, and the fifth column is the revealed image
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Among them, C and S represent the host image and the secret image, respectively, and their
sizes are set to. MSE indicates the mean variance of the host image compared with the
steganographic image.

PSNR¼10 log10ð
MAX 2

I

MSE
Þ (12)

where MAXI represents the maximum pixel value of the image. In other words, MAXI is
equal to 2b-1 and b represents the number of bits per pixel. For grayscale images, the

Figure 13: Sample effect histogram after training stabilization
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maximum pixel value is 255. For RGB images, for RGB images (each pixel has three color
parameters of R, G, and B), the PSNR is defined in a similar manner. Tab. 5 is the PSNR
value calculated by our method.

4.6 Steganographic results structural similarity index analysis (SSIM)
The SSIM value is a new index for measuring the similarity of two images. The larger the
value, the better. The maximum value is 1, which is often used in image processing.
Structural similarity theory believes that natural image signals are highly structured, that
is, there is a strong correlation between pixels, especially the closest pixels in the
airspace. This correlation contains important information about the structure of objects in
the visual scene. The structural similarity index defines the structural information from

Table 4: Calculate the above three values

Number Revealed Rate (%) Cover Changing Rate (%) Payload Capacity (bpp)

1 99.5% 0.99% 23.76 bpp

2 99.4% 0.96% 23.86 bpp

3 98.3% 0.78% 23.60 bpp

4 97.0% 0.88% 23.28 bpp
This representation is calculated for formulas 8, 9, and 10. It can be found from the results that our method has achieved
satisfactory results on all three values.

Figure 14: Payload analysis. In this experiment, a set of pictures were randomly selected.
The picture on the left is uncompressed and the picture on the right is compressed. It can be
proved through experiments that after the compressed image is hidden, the payload value
will be higher
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the perspective of image composition as independent of brightness and contrast, reflects the
properties of the object structure in the scene, and models distortion as a combination of
three different factors: brightness, contrast, and structure. The mean is used as an
estimate of brightness, the standard deviation is used as an estimate of contrast, and the
covariance is used as a measure of structural similarity.

SSIMðC; SÞ¼ ð2lClSþC1Þð2rCrSþC2Þ
ðl2Cþl2SþC1Þðr2Cþr2SþC2Þ (13)

where C1 and C2 are two variables to stabilize the division with weak denominator.
Moreover, μ and σ present the average and covariance of the variables. Tab. 6 is the
SSIM value calculated by our method.

It is worth mentioning that we also calculated the PSNR and SSIM values for the results of
these unnatural images such as noise images and texture images, and the results are
consistent with the calculated values generated by the normal natural images described above.

Table 5: PSNR value

Category PSNR value

Bird (Fig. 11) PSNR=47.1319

Man (Fig. 11) PSNR=43.4185

Fruits (Fig. 11) PSNR=46.3026

Cup (Fig. 11) PSNR=44.0718

Image Net PSNR (Average)=42.2739
The calculated value in the last row of the table is the result obtained by randomly
sampling 100 images in the experiment and averaging.

Table 6: SSIM value

Category PSNR value

Bird (Fig. 11) SSIM=0.9778

Man (Fig.11) SSIM=0.9531

Fruits (Fig. 11) SSIM=0.9875

Cup (Fig. 11) SSIM=0.9783

Image Net SSIM (Average)=0.9438
The calculated value in the last row of the table is the result obtained by randomly
sampling 100 images in the experiment and averaging.
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Table 7: Steganographic capacity comparison result

Method Absolute capacity
(bytes/image)

Image size Relative capacity
(bytes/image)

Tang, Li, Tan et al. (2019) ≥37.5 64×64 9.16e-3

Zhou, Cao and Sun (2016) 3.72 ≥512×512 1.42e-5

Zhou, Sun, Harit et al. (2015) 1.125 512×512 4.29e-6

Zheng, Liang, Ling et al. (2017) 2.25 512×512 8.58e-6

Xu, Mao, Jin et al. (2014) 64×64 800×800 6.40e-3

Wu and Wang (2014) 1535-4300 1024×1024 1.46e-3

4.10e-3

Liu and Lee (2019) ≈32620 512×512 1.24e-1

Ours 256×256 256×256 1
This value is obtained by the relative capacity calculation formula. Since this method can achieve steganography of a fullsize
image, the value can reach 1.

Figure 15: ROC curve. The left is our proposed method, and the right is LSB-based image
steganography. The test data of these two graphs are the same and are compressed by the
VQ-VAE-2 network. According to the figure, we can see that our proposed method has
better resistance to steganographic analysis. The data source comes from ImageNet
(which includes both steganographic and original images)
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4.7 Capacity analysis
The steganographic method using the deep network-based information steganography
method is higher than the traditional artificially designed embedded algorithm. Tab. 7 is a
comparison of the steganography capacity of some current mainstream steganography
methods and our proposed method. The formula is as follows.

Relative capacity¼ Absolute capacity

The size of the image
(14)

4.8 Statistical analysis
StegExpose [Boehm (2014)] is a steganalysis tool for detecting LSB (least significant bit)
steganography in lossless images such as PNG and BMP. This article was tested with
StegExpose. Four detection methods are included in the tool: sample pair analysis
[Dumitrescu, Wu and Wang (2003)], RS analysis [Fridrich, Goljan and Du (2002)], chi-
square attack [Westfeld and Pfitzmann (2000)] and primary sets [Dumitrescu, Wu and
Memon (2002)]. The detection threshold is its hyperparameter, which is used to balance
the true positive rate and false positive rate of StegExpose results. Fig. 15 is an ROC
curve. Among them, “True positive” represents an embedded image that is correctly
identified as having hidden data inside, and “False positive” represents a clean graphic that
is incorrectly classified as an embedded image. The graph is drawn with a green polyline,
indicating that StegExpose can only be a little better than random guessing (red lines). In
other words, the proposed steganography method can better resist StegExpose attacks.

5 Conclusion and future work

On the one hand, with the continuous penetration and influence of deep learning on various
aspects, and on the other hand, based on traditional artificially designed image
steganography algorithms, compared with the research of deep learning in this field has
certain advantages. Therefore, we propose a method of image steganography based on
deep neural networks in the research. First, the image is compressed and reconstructed,
retaining important image information, and the visual quality is high. Later, based on the
deep neural network for image steganography and extraction, it was proved by
experiments that our proposed method can effectively improve the steganographic
capacity, while its PSNR and SSIM values can reach 42 dB and above 0.94, respectively.
All aspects of the parameters have a better performance. At present, our research is
limited to hiding one image into another image and does not achieve the hiding of
multiple images.

The next work will consider hiding two images into one image, so as to achieve more
efficient image steganography.
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