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Abstract: Extracting nonlinear governing equations from noisy data is a central
challenge in the analysis of complicated nonlinear behaviors. Despite researchers
follow the sparse identification nonlinear dynamics algorithm (SINDy) rule to
restore nonlinear equations, there also exist obstacles. One is the excessive depen-
dence on empirical parameters, which increases the difficulty of data pre-proces-
sing. Another one is the coexistence of multiple coefficient vectors, which causes
the optimal solution to be drowned in multiple solutions. The third one is the com-
position of basic function, which is exclusively applicable to specific equations. In
this article, a local sparse screening identification algorithm (LSSI) is proposed to
identify nonlinear systems. First, we present the k-neighbor parameter to replace
all empirical parameters in data filtering. Second, we combine the mean error
screening method with the SINDy algorithm to select the optimal one from multi-
ple solutions. Third, the time variable t is introduced to expand the scope of the
SINDy algorithm. Finally, the LSSI algorithm is applied to recover a classic ODE
and a bi-stable energy harvester system. The results show that the new algorithm
improves the ability of noise immunity and optimal parameters identification pro-
vides a desired foundation for nonlinear analyses.

Keywords: The k-neighbor parameter; sparse identification nonlinear dynamics
algorithm; mean error screening method; the basic function; energy harvester

1 Introduction

For systems analysis, models are generally established using quantitative approaches. However, such
quantitative methods are very effective for linear systems modelling not for nonlinear systems [1–3]. As
most models are nonlinear, researchers have proposed various algorithms to recover nonlinear governing
equations from time series. One of the most exciting modelling approaches is the sparse representation.
Markus et al. [4] used sparse identification of nonlinear dynamics for rapid model recovery. Fahimeh
et al. [5] identified nonlinear dynamical systems using the sparse recovery and dictionary learning. The
continuous optimization of algorithm leads to the parameters of nonlinear system models being
reconstructed using the neural network algorithm [6–8], genetic algorithm [9–12], and particle swarm
algorithm [13–16]. Despite the promising performance of such algorithms, there are still some defects
during the identification procedure. It is difficult for the genetic algorithm to solve the nonlinear
constraint problems, which has a strong connection with initial population and empirical parameters [17].
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Because of the random generation of the population, the results of the particle swarm algorithm deviate from
the optimal solution [18]. Additionally, the neural network algorithm encounters difficulties in dealing with
incomplete data. The most important aspect is that the developed strategy is often affected by the well-known
overfitting problem [19].

Considering the limitations of general algorithms, Steven et al. [20] leveraged the fact that most physical
systems have only a few relevant terms to define the dynamics, which made governing equations sparse in
high-dimensional nonlinear function space, and proposed the sparse identification nonlinear dynamics
algorithm (SINDy). The algorithm uses symbolic regression to determine the dynamics and conservation
laws, and balances the complexity of the model (measured as the number of model terms) with the
coherence of data. Moreover, it is a decision-making process for some empirical parameters based on the
analysis and evaluation of expert knowledge in terms of dealing with noisy data. Simultaneously, as a
result of the interference of nonlinear factors, there are redundant terms in the identified results, so the
optimal solution cannot be automatically determined. According to Steven et al. [20], in successful
examples, the choice of coordinates and initial conditions is somehow fortunate because they enable
sparse representation.

Accordingly, in this article, we propose a local sparse screening identification algorithm (LSSI) that
combines the local linear embedding (LLE) [21–23], the SINDy algorithm [24,25] and the mean error
screening method (MES). The new algorithm replaces all empirical parameters and effectively avoids
redundant terms in multiple identified solutions. In addition, the composition of the basic function is
enhanced, and it is applied to a class of non-autonomous nonlinear systems. First, the LLE algorithm’s k-
neighbor parameter, which evolved from the hierarchical algorithm [26], is substituted for the selection of
all empirical parameters, such as regularization parameters, step size, number of iterations, etc. This
reduces the dependence on external experts and improves the precision of parameter selection.
Meanwhile, the LLE algorithm has an inherent advantage in terms of data dimensionality reduction and
noise filtering, which accordingly enhances noise robustness and accelerates high-dimensional system
recovery from scratch. Second, the MES method automatically screens every possible solution to
determine the optimal solution that improves the calculation efficiency. Third, the basic function
introduces the time variable t to make it more complete and expands the scope of application of the
SINDy algorithm.

The rest of the paper is organized as follows. Section 2 introduces the theory of the LSSI algorithm.
Some important applications and comparisons between different approaches are presented in Section 3.
The algorithm is applied to the data-driven modelling process of a classic ODE and a membrane type
electromagnetic vibration energy harvester (EVEH), which shows promising results with respect to
system identification, even starting from a strongly nonlinear and noisy reference dataset. The conclusions
are drawn in Section 4.

2 The LSSI Algorithm

The aim of this algorithm is to solve the optimal sparse coefficients, subsequently governing equations
are recovered. Fig. 1 demonstrates the LSSI algorithm, which contains three steps: data filtering, the SINDy
algorithm and the MES method.

2.1 Data Filtering
The training dataset commonly includes random noise. The quality of noise filtering strongly depends on

the setting of empirical parameters in testing process, such as regularization parameters, step size, number of
iterations, etc. [27]. It means that any inappropriate choice of empirical parameter might finally lessen the
robustness and performance of identification. The k-neighbor parameter in testing process is used as a
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substitute for all empirical parameters that are tough to choose, due to they strongly rely upon the analysis
and evaluation of expert knowledge. The training dataset filtering process is divided into three steps.

(1) Find the neighbors for each sample point

In this study, the Euclidean distance measurement is used:

dðX ;YÞ¼ X�Yk k¼
Xn
i¼1

ðXi�YiÞ2
" #1=2

: (1)

(2) Calculate the reconstruction weight matrix wij

min eiðW Þ¼
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Xi�
XK
j¼1

wijY j

�����
�����
2

2
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XK
j¼1

XK
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with the constraint condition

s:t

Pn
j¼1

wij¼1;

wij¼0;Xj=2NðXiÞ; j¼1; 2; � � � ;K;

8<
: (3)

where NðXiÞ represents the neighbor points. When Xj is located in the range of NðXiÞ, wij¼1; otherwise,
wij¼0. Eq. (2) is calculated using the Lagrange coefficient.

Obtain the initial variable: the measurement data x

(1) Find the neighbor parameter K for each sample point

(3) Calculate the reconstruction weights matrix ijw

(2) Calculate Linear reconstruction of data X

1. Acquire clean time series

2. Construct basic function ( (t),t)X

3. Solve sparse coefficients with sparse regression

Choose the optimal solution using the MES method

Determine the optimal governing equation

Ξ

Θ

Figure 1: LSSI algorithm
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Using the transition matrix Zi¼ððXi�XjÞTðXi�XjÞÞjl 2 RK�K ; ðj; l¼1; 2; � � � ;KÞ, Eq. (2) changes to

min eiðW Þ¼
Xn
i¼1

Xi�
XK
j¼1

wijY j

�����
�����
2

2

¼
Xn
i¼1

wT
i Z iwi: (4)

Next, the weight matrix is

@L

@wi
¼2Ziwiþ� � 1n¼0 ) wi¼ Z�1

i � 1K
1TKZ

�1
i 1K

: (5)

(3) Linear reconstruction of data using the k-neighbor parameter

Substituting Xi for the k-neighbor linear regression
PK
j¼1

wijX j of sample point Xi yields

�Xi¼
XK
j¼1

wijX j ) �X¼ �X1 �X2 � � � �Xn

� �
; (6)

where �X is the filtered training sample, �Xiði 2 ð1; nÞÞ is a column vector of �X .

2.2 The SINDy Algorithm
In 2016, Steven et al. [20] proposed the SINDy algorithm to identify nonlinear governing equations.

That is

_xðtÞ ¼f ðxðtÞÞ; (7)

In this work, we extend the sparse learning framework discussed the nonlinear non-autonomous system.
Substituting �X into Eq. (7), we consider dynamics driven by a differential equation with external incentives,

_�XðtÞ¼f ð�XðtÞÞ; (8)

where the vector �XðtÞ 2 Rn denotes the state of the system at time t, _�XðtÞ is the derivative of �XðtÞ and the
function f ð�XðtÞÞ represents the dynamic constraints that define the equations of motion of the system, such as
the momentum theorem.

Most physical systems have only a few nonlinear terms in their dynamics, which makes the right-hand
side f ð�XðtÞÞ in Eq. (7) sparse in high-dimensional nonlinear function space. To search those remaining terms,
we collect the time series �XðtÞ from the system structure and measures the derivative _�XðtÞ from �XðtÞ. The
dataset is sampled at several times t1; t2; � � � ; tm and the two matrices can be created in Eqs. (9) and (10),

�XðtÞ ¼
�xT ðt1Þ
�xT ðt2Þ

..

.

�xTðtmÞ

2
6664

3
7775¼

�x1ðt1Þ �x2ðt1Þ � � � �xnðt1Þ
�x1ðt2Þ �x2ðt2Þ � � � �xnðt2Þ

..

. ..
. . .

. ..
.

�x1ðtmÞ �x2ðtmÞ � � � �xnðtmÞ

2
6664

3
7775

����������������������!state

# time; (9)

_�XðtÞ ¼

_�x
T ðt1Þ
_�x
T ðt2Þ
..
.

_�x
TðtmÞ

2
6664

3
7775¼

_�x1ðt1Þ _�x2ðt1Þ � � � _�xnðt1Þ
_�x1ðt2Þ _�x2ðt2Þ � � � _�xnðt2Þ
..
. ..

. . .
. ..

.

_�x1ðtmÞ _�x2ðtmÞ � � � _�xnðtmÞ

2
6664

3
7775

����������������������!state

# time: (10)

Depending on the above analysis, the sparse regression problem is
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_�XðtÞ ¼ Θð�XðtÞ;tÞ��; (11)

Θð�XðtÞ;tÞ¼
j j j j j j j j
1 �X �Xp2 � � � �Xpn sinðtÞ cosðtÞ � � � sinðxtÞ cosðxtÞ
j j j j j j j j

2
4

3
5; (12)

where Θð�XðtÞ;tÞ is the potential function of the columns �XðtÞ. It can be observed through simulation or
measurement data according to the given initial conditions. Since the research object is a non-autonomous
system, the improved basis function is shown in Eq. (12), which commonly consists of constants,
polynomials, and trigonometric functions. sinðxtÞ and cosðxtÞ denote the external incentive, where x is the
excitation frequency. Each column of Θð�XðtÞ;tÞ is a candidate function for f ð�XðtÞÞ. The higher
polynomials are denoted as �X p2 , � � �, �Xpj , where �Xpj denotes the jth nonlinearities in the state �XðtÞ, that is

�Xpj¼
�xj1ðt1Þ �xj2ðt1Þ � � � �xj�1
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�xj1ðt2Þ �xj2ðt2Þ � � � �xj�1
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..
. ..

. . .
. ..

. . .
. ..

.
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2
6664

3
7775: (13)

The sparse regression problem is set up to determine the sparse coefficients �Ξ¼ �n1
�n2 . . . �nn

� �
, as

described in Eq. (11). It starts with a least-squares solution for �Ξ and then filters all coefficients that are
smaller than the cut off values. That is, �Ξ becomes the minimizer of

~�Ξ¼ arg min
~�Ξ2R

_�XðtÞ � Θð�XðtÞ;tÞ�Ξ
��� ���: (14)

In general, the solution ~�Ξ of Eq. (14) includes multiple solutions, as shown in Tab. 2, particularly for
complex nonlinear systems. Consequently, the following MES method is used to determine the optimal one.

2.3 The MES Method
To solve that problem, the MES method is introduced to automatically select the optimal one among the

identified results, which determines the minimum mean error using Pareto front analysis,

MES¼ 1

M

X
_�XðtÞ�Θð�XðtÞ;tÞ~�Ξ

� �2
; (15)

where M is the number of the solution. The principle of MES method is that the minimum mean error
corresponds to the optimal solution.

3 Application

The LSSI algorithm reduces the reliance on the selection of empirical parameters, automatically
determines the optimal solution and expands the scope of adaptation. We verify the superiority of this
new algorithm by modelling a classic ODE and a bi-stable EVEH.

3.1 Recovery of a Classic ODE Based on Numerical Simulation Data
The data we obtain from the physical experiments generally contains noise. Therefore, noise contained

in a dataset should be considered to simulate a real-sense environment
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Gd¼gþdC0ed;

C0¼ gk k2
edk k2

;

8<
: (16)

where g is the original data, Gd is noisy data, d is the disturbance value, ed represents n random values
(n 2 ð0; 1Þ), and C0 is a constant noise term.

The LSSI algorithm is expanded to consider a general model

€xþ x2
0xþ eðða1x2þa2x

3Þ þ _xðb1þb2x
2ÞÞ ¼ eF0cosð�0tÞ; (17)

which is available for a series of nonlinear systems [28,29]. Eq. (17) is a weakly nonlinear system with
e � 1; contrarily, it is a strongly nonlinear system. Additionally, we also assume C1¼x0, C2¼b1, C3¼a1,
C4¼a2, C5¼b2 and C6¼F0.

The equation is given parameter values, as shown in Tab. 1. We set x0 ¼ 2, _x0 ¼ 0, d ¼ 0:001, and e ¼ 1
as the initial values to numerically obtain the training dataset from Eq. (17), which includes a sequence of
time states x and derivatives _x, where _x is computed using cubic spline interpolation. The basic function is

ΘðxðtÞ;tÞ¼
j j j j j j j

xðtÞ _xðtÞ xðtÞ2 xðtÞ_xðtÞ � � � _xðtÞ3 sinðtÞ � � � cosð3tÞ
j j j j j j j

2
4

3
5; (18)

which determines the equation by calculating the related sparse coefficients ~�Ξ¼ �n1
�n2 . . . �nn

� �
.

Subsequently, we test the training dataset depending on the given parameter values. Fig. 2 demonstrates
the procedure for successful identification from a given simulation dataset. Remarkably, it represents our
innovation computing architecture that combines data filtering (LLE), sparse regression (SINDy) and
optimal solution selection (MES).

Table 1: Parameter values in Eq. (17)

x0 b1 b2 a1 a2 F0 �0

1 –1 2 –2 4 5 2

Table 2: Multiple solutions of the SINDy algorithm

~�Ξ 1 x _x x2 x_x _x2 x3 x2 _x x_x2 _x3 cosð2tÞ
S2 –0.3779 0 1.1573 2.0821 0 0 –4.0703 –2.0978 0 0 3.4616

S3 –0.4550 0 1.1756 2.1504 0 0 –3.9797 –2.0112 0 0 3.2750
..
. ..

.

S5 2.5650 –6.5075 0 1.0892 0 0 –4.2380 –1.4701 0 0 14.5353

S6 0 –1.0147 0.9929 2.0138 0 0 –4.0020 –1.9885 0 0 5.0195

S7 0 –0.9523 0.9952 2.0155 0 0 –4.0097 –1.9918 0 0 4.9543
..
. ..

.

S19 0 –1.0978 0.9966 2.0313 0 0 –3.9207 –1.9974 0 0 4.9891
..
. ..

.

Si i ¼ 1; 2; � � � ;nsð Þ denotes the solution of the identified results and ns is the solution number.
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3.1.1 Replace Empirical Parameters Using a k-Neighbor
To demonstrate the effect of empirical parameters in filtering process, different step sizes are considered

as a practical example, which directly affects the precision of governing equations. As shown in Fig. 3,
contrary to our initial speculation, the larger the step size we increase, the more accurate the identification
results are. Consequently, we replace empirical parameters to lessen uncertainty in data filtering.

The value of K relates to the global reconstruction error eðKÞ. Figs. 4a and 4b indicate the obtained
global k-neighbor. The error tolerance is limited to obtain a local k-neighbor, which is extracted from the
global k-neighbor, as shown in Fig. 4c. The principle is that the minimum residual variance leads to the
optimal values, where Kxopt ¼ 7 and K _xopt ¼ 8. Subsequently, data filtering can be completed with Kxopt

and K _xopt according to Eq. (6). Fig. 5 denotes the effect of the setting parameters on the identification
precision of Eq. (17). In the noise level d ¼ 0:001 and nonlinear disturbance e ¼ 1 case of, the SINDy
algorithm fluctuates significantly, while the LSSI algorithm remains relatively stable. It is seen that the
LSSI algorithm has high precision and gets rid of the dependence on traditional empirical parameters.

Figure 2: Strategy for the identification of Eq. (17) using the LSSI algorithm. (a) Noise level. (b) Noise-free
time series curve. (c) The form of an ODE. The training dataset consists of (a) and (b). First, apply the
hierarchical method to calculate the k-neighbor, as shown in Fig. 4, to complete the data filtering process.
Second, determine the optimal solution S6 from multiple solutions in Tab. 2. Finally, synthesize active
terms in S6, the optimal solution, into an ODE. The results are showed in Fig. 7

Figure 3: Identification results under different step sizes Dt in the filtering process. Each parameter Ci

corresponds to the error in Eq. (17)
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3.1.2 Identify the Optimal Solution Using MES Method
In the SINDy algorithm, we obtain the sparse coefficients with multiple solutions. If the goal is to find

the optimal solution that reliably represents the data among the large number of possibilities offered in the
function, screening of ~�Ξ needs to be enforced and the process will be discussed below.

Multiple solutions with some redundant terms exist in Eq. (11), as shown in Tab. 2. A different solution Si
leads to a different model structure of the system. However as the model rises, sparse vectors ~�Ξ consequently

Figure 4: (a) and (b) Global reconstruction errors eðKÞ of x and _x for the k-neighbor, respectively. (c)
Residual variance distribution of the optimal solutions Kxopt and K _xopt. The shaded area represents the
error tolerance, where the setting range considers sample numbers and nonlinear orders. According to the
local k-neighbor, we obtain each residual variance value of Kxopt and K _xopt

Figure 5: Calculation error under different parameters for the SINDy and LSSI algorithms. It describes the
relationship between the error and each parameter value in Eq. (17)
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produce mean errors. Hence, the MES method is applied to select the optimal one in the mean error span, and it
provides the minimum mean error that corresponds to the optimal solution S6 in Fig. 6.

Comparison of the two algorithms denotes the LSSI algorithm whose advantage is demonstrated by its
high computational precision in Tab. 3. The proposed algorithm with such sturdy noise resistance can
determine the coefficients to be within 1% of the true values. We extract from Eq. (17) the time history
curve that varies in the range of 5–12, as shown in Fig. 7. The local enlargement plot of the curve inside a
period indicates that the LSSI algorithm is close to the original data, which similarly proves its high precision.

3.1.3 Analyse Noise Level and Nonlinear Perturbation
Considering the noise level d and perturbation strength e, the standard for judging the visual quality is

presented by the mean error, as shown in Fig. 8a. Clearly, the mean error increases with the growth of d and
e. In Fig. 8b, when the nonlinear perturbation e ¼ 1, noise level of different orders of magnitude is applied
to the training samples, that is 0.001, 0.01, 0.1. In particular, the mean error of the SINDy algorithm will
reach approximately 20% at d ¼ 0:1. The training samples are seriously polluted by noise, which makes it
difficult to recover governing equations in testing process. However, in the mentioned above case, the LSSI
algorithm has the potential to suppress noise and keeps the error precision around 12%. Note that it is more
suitable for noisy data model recovery. Tab. 4 shows the influence of different nonlinear perturbations on

Table 3: Errors comparison between the SINDy and LSSI algorithms

Terms Original coefficient Identified results Errors (%)

SINDy [20] LSSI SINDy [20] LSSI

x0 1 1.0031 1.0073 0.3100 0.7300

b1 –1 –0.9840 –0.9929 1.6000 0.7100

a1 –2 –2.0247 –2.0155 1.2350 0.7750

a2 4 3.9997 4.0020 0.0075 0.0500

b2 2 1.9843 1.9885 0.7850 0.5750

F0 5 4.9189 5.0195 1.6220 0.3900

mename 0.9266 0.5383
Tab. 1 Section 3 p. 6 in [x0], [b1], [a1], [a2], [b2], [F0].

Figure 6: (a) Mean error distribution vs. the solutions in multiple solutions screening graph. (b) Close-up
view of the mean error at crucial solutions
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Eq. (17) under the same noise level. The new algorithm is approximately controlled within 1%, even with the
strong perturbation e ¼ 1, so it is applicable to both strongly and weakly nonlinear systems.

3.2 Recovery of a Bi-Stable EVEH Based on Experimental Data
For the experimental dataset, we consider a bi-stable harvester. The model of this component is shown in

Fig. 9. The working principle is that the concentric permanent magnet driven by the membrane vibrates
forwards and backwards in the cavity wall, which changes the magnetic flux of the coil windings with an
iron core around the front and back end covers to generate inductive electromotive force. The distance
between the magnet and core influences the equilibrium position of the system. When the iron core is
adjusted within a certain range, the EVEH performs in the bi-stable oscillation stage.

3.2.1 Theoretical Analysis of the EVEH
Given the physical parameters in Tab. 5, a theoretical equation can be established. In detail, governing

equations describe the forced lateral axisymmetric vibration of a circular membrane with a centre magnet.
Assuming that the rigid magnet sustains a front-back symmetric transverse vibration, an axial force is
exerted as the boundary condition. Regarding the eigenfunction and the boundary conditions, the
differential eigenvalue equations can be obtained. Discretising the partial differential equations obtains the
ODEs. If no air resistance or random noise effects occur in the EVEH, the equation is given by [30].

Figure 7: Contrast of the time history curve at �0 ¼ 2 with an acceleration level of F0 ¼ 5 for the two
algorithms

Figure 8: (a) Variation trend of the mean error under different disturbance d and nonlinear strength e for the
SINDy and LSSI algorithms. (b) Relationship between the mean error and noise level at e ¼ 1
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Table 4: Errors of the LSSI algorithm under different nonlinear perturbations

Terms Original coefficient Identified results Errors (%)

e ¼ 0:3 e ¼ 1 e ¼ 0:3 e ¼ 1

x0 1 0.9955 1.0073 0.4500 0.7300

b1 –1 –1.0027 –0.9929 0.2700 0.7100

a1 –2 –2.0003 –2.0155 0.0150 0.7750

a2 4 4.0063 4.0020 0.1575 0.0500

b2 2 2.0063 1.9885 0.3150 0.5750

F0 5 4.9934 5.0195 0.1320 0.3900

meLSSI 0. 2233 0.5383
Tab. 1 Section 3 p. 6 in [x0], [b1], [a1], [a2], [b2], [F0].

Figure 9: Structure of a membrane type bi-stable EVEH. (a) Structural profile. (b) Structural assembly
drawing

Table 5: Physical parameters of the EVEH [30]

Parameters Values

Radius of center magnet 7.5 mm

Radius of membrane 60 mm

Thickness of membrane 0.05 mm

Mass of center magnet 10.6 × 10–3 kg

Density of membrane 1420 kg/m3

Elasticity modulus 90 MPa

Poisson’s ratio 0.3

Tension of membrane 1 N/m

Linear stiffness coefficient 2.700 N/mm

Nonlinear stiffness coefficient 8.432 × 10–3 N/mm3

Damping ratio 0.011

Resonant frequency (x1) 2.92 Hz

CMES, 2020, vol.124, no.2 775



€qþB _qþDqþHq3¼Fcosð�tÞ; (19)

where B is the damping coefficient; D and H represent the squared term of the linear frequency and the cubic
term coefficient, respectively; and F cosð�tÞ is the external excitation, where � and F are the frequency and
acceleration.

The detailed theoretical analysis of Eq. (19) is derived from [30]. We quote the theoretical results to be
compared with experimental measurements and the LSSI algorithm. The following sections describe
the procedure.

3.2.2 Experimental Analysis of the EVEH
The layout of the testing system is shown in Fig. 10. The EVEH is implemented using a Shaker (APS

400) that drives a signal generator (Agilent 33250A) with different frequencies and amplitudes. During the
experiments, a data acquisition device (B & K3039) is used to record the vibration acceleration, displacement
response and voltage outputs. Based on the displacement response, we apply the LSSI algorithm to recover
governing equations. The main process is shown in Fig. 11.

In the experimental test, the partial displacement signal which contains noise level is extracted from the
time series curve according to the sampling frequency. By analyzing and observing the frequency, the
experimental measurement produces a resonant frequency with a value that reaches approximately 3.41
Hz. Fig. 11a shows the displacement signal with burrs smoothed to obtain the noise-free time series

Figure 10: Experimental device schematic

Figure 11: Steps in the LSSI algorithm for experimental data identification. (a) Time series curve. (b) The
form of an ODE. First, data is collected as the time series curve from EVEH. Second, the noise-free data
sample at an acceleration level of 0.98 m/s2 is obtained by filtering the displacement signal, which is
extracted from sweep signals. Third, the basis function is constructed from input sample data to solve �Ξ.
Finally, the MES method selects the optimal solution S17 in Tab. 6. Active terms in S17 are synthesised
into an ODE
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during the data filtering process. Based on noise-free training dataset, the LSSI algorithm to recover
governing equations, that is, the active terms (the optimal solution) are synthesizes into an ODE, as
shown in Fig. 11b.

During the equation reconstruction process, the sparse coefficients ~�Ξ with multiple solutions exist in the
EVEH system, as shown in Tab. 6. Subsequently, the MES method is applied to select the optimal solution.
According to the principle of the minimum mean error, S17 is the optimal one, as shown in Fig. 12.
Generalising the LSSI algorithm makes it possible to recover governing equations with different order
nonlinearities. The resonant frequency is obtained from the identified results in Tab. 7, which is compared
with theory and experiment in the following sections.

3.2.3 Comparative Analysis in Theory, Experiment and LSSI Identification
For governing equations with different order nonlinearities, the identified resonant frequency fluctuates

in the range of 3–3.5 Hz, as shown in Fig. 13. It demonstrates that the equation with 9th-order nonlinear
components is close to the original system, which can be regarded as the research foundation for future
nonlinear analysis.

The discrepancy of the initial theoretical model in Eq. (19) originates from an insufficient consideration
of complicated nonlinear factors in the membrane vibration, in addition to unavoidable measurement errors.
According to Williams et al. [31,32], the energy harvester may be further constrained by unwanted damping
owing to undesirable effects, such as air resistance. It is note that the deviations are hardness to be effectively
exhibited in theoretical modelling process. Hence, data-driven modelling has become an inevitable choice to
establish and improve governing equations of nonlinear vibration systems both numerically and
experimentally.

Table 6: Multiple solutions of the experimental dataset

~�Ξ 1 x _x x3 x2 _x cosð21:4tÞ
S1 –0.7702 –1.069 × 103 –15.8780 9.6068 × 107 5.8747 × 107 1.0458
..
. ..

.

S17 0 411.4801 –6.4302 –9.0418 × 107 –9.3898 × 106 0.3983
..
. ..

.

S95 0 524.2199 3.6873 –3.6366 × 108 –9.0408 × 106 0.2940
Si i ¼ 1; 2; � � � ; nsð Þ denotes the solution of the identified results and ns is the solution number.

Figure 12: (a) Distribution plot of multiple solutions screening. (b) Close-up view of the mean error at
crucial solutions

CMES, 2020, vol.124, no.2 777



Meanwhile, any infinite-dimensional continuous system expressed as partial differential equations can
be discretized and expressed as a finite-dimensional matrix equation. Such a finite-dimensional system can
often be expressed as a SDOF system using orthogonal transformations. Thus, the main concerned SDOF
system in this article provides a good start point to the data-driven modelling process, based on which
future research on more complicated systems can be built upon.

4 Conclusions

The LSSI algorithm displays high precision in recovering governing equations from experimental and
numerical data. For the new algorithm, the k-neighbor parameter is substituted for all empirical parameters in
data filtering to reduce the reliance on ‘fortunate choice’. It also applies the MES method to solve the multi-
solution problem in the sparse recovery procedure. The basic function has been enhanced to extend the scope
of the SINDy algorithm. The innovations have shown promising results in terms of noise immunity and
hidden nonlinear factor mining starting from a strongly nonlinear and noisy reference dataset.

Figure 13: Resonant frequency comparison with the experimental measurement ðxe ¼ 3:41 HzÞ, theoretical
calculation ðx1 ¼ 2:92 HzÞ, and identified results ðxiði ¼ 3; 5; 7; 9ÞÞ. i denotes the order of the nonlinear term

Table 7: Multiple solutions of the experimental dataset

Terms Order

O3 O5 O7 O9

1 0 0 0 0

x 411.4801 355.3357 374.7547 467.8553

_x –6.4302 –11.9491 –3.0734 –7.6849

x3 –9.0418 × 107 –4.0039 × 108 –9.5907 × 108 –1.2216 × 109

x2 _x –9.3898 × 106 2.4695 × 107 –1.524 × 107 6.7945 × 107

x5 0 6.5564 × 1013 4.0994 × 1014 7.5252 × 1014

x4 _x 0 –1.2787 × 1012 2.5527 × 1013 –6.7882 × 1013

x7 0 0 –3.4641 × 1019 –1.5368 × 1020

x6 _x 0 0 –4.5204 × 1018 1.9544 × 1019

x9 0 0 0 1.0016 × 1025

x8 _x 0 0 0 –1.6465 × 1024

cosð21:4tÞ 0.3983 0.1126 0.2289 0.1571
Oi i ¼ 3; 5; 7; 9ð Þ represents the highest order of nonlinear terms.
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The efficiency of the LSSI algorithm is verified in two stages. First, the identified equations are compared
with the original SINDy algorithm in a classic ODE. Second, the theoretical model of an EVEH system is
considered and then compensated necessary nonlinear components to the mechanical model to simulate the
experimental dataset. The results show that there are promising potential applications in data-driven
modelling process that arises across the physical, engineering, and biological sciences.

However, other multiscale systems or high-dimensional datasets that involve more complicated nonlinear
terms may be encountered in practice. Therefore, how to ensure the physical meaning of nonlinear terms in the
identification process is considered as an open question, which will be explored in future work.
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Appendix A

Nomenclature

�XðtÞ Noisy data

f ð�XðtÞÞ Nonlinear system

Θð�XðtÞ;tÞ Basic function

�Xpjðj ¼ 2; 3; � � �Þ Higher polynomials

�Ξ Coefficient terms

�niði ¼ 1; 2; � � �Þ Nonlinear coefficients

Dt Step size

wij (or wil) Weight matrix

eiðW Þ The minimum reconstruction errors

dðX ;YÞ Euclidean distance

Zi Transition matrix

K The number of neighbors

e Nonlinear strength

x0 Natural frequency

aiði ¼ 1; 2Þ Nonlinear terms coefficients

bjðj ¼ 1; 2Þ Damping coefficients

�0 External excitation frequency

F0 External excitation amplitude

Ctðt ¼ 1; � � � ; 6Þ Nonlinear system terms

menameðname ¼ LSSI ; SINDyÞ Mean error

g Original data

Gd Noisy data

d Disturbance value

ed ðn 2 ð0;1ÞÞ Random values

C0 Constant noise term

e Residual variance

eðKÞ Local minimum values

W Squared term of frequency

xe Experimentally identified resonant frequency

(Continued)
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(continued).

x1 Theoretically calculated resonance frequency

xi i ¼ 3; 5; 7; 9ð Þ Identified resonance frequency

Siði ¼ 1; � � � ;nÞ The solution of the identified results

Oiði ¼ 3; 5; 7; 9Þ The highest order of nonlinear terms
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