
 
 
 
Computers, Materials & Continua                                CMC, vol.65, no.1, pp.33-51, 2020 

CMC. doi:10.32604/cmc.2020.010893                                                         www.techscience.com/journal/cmc 

 
 

Numerical Control Measures of Stochastic Malaria Epidemic 
Model 

 
Muhammad Rafiq1, Ali Ahmadian2, *, Ali Raza3, Dumitru Baleanu4, Muhammad 

Sarwar Ahsan1 and Mohammad Hasan Abdul Sathar5 
 
 
Abstract: Nonlinear stochastic modeling has significant role in the all discipline of 
sciences. The essential control measuring features of modeling are positivity, 
boundedness and dynamical consistency. Unfortunately, the existing stochastic methods 
in literature do not restore aforesaid control measuring features, particularly for the 
stochastic models. Therefore, these gaps should be occupied up in literature, by 
constructing the control measuring features numerical method. We shall present a 
numerical control measures for stochastic malaria model in this manuscript. The results 
of the stochastic model are discussed in contrast of its equivalent deterministic model. If 
the basic reproduction number is less than one, then the disease will be in control while 
its value greater than one shows the perseverance of disease in the population. The 
standard numerical procedures are conditionally convergent. The propose method is 
competitive and preserve all the control measuring features unconditionally. It has also 
been concluded that the prevalence of malaria in the human population may be controlled 
by reducing the contact rate between mosquitoes and humans. The awareness programs 
run by world health organization in developing countries may overcome the spread of 
malaria disease. 
 
Keywords: Malaria disease model, stochastic modelling, stochastic methods, 
convergence. 

1 Literature survey 

Malaria is a fatal infectious disease and is given a particular place in the previous records 
of human history. Human of the stone age to ancient Chinese are the affectees. In the 20th 
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century, about 300 million people were affected by malaria. It is affecting human living 
in tropical regions sub-Saharan of Africa, Asia and the Amazon baron. Forty per cent of 
the human population in these areas is still under threat due to malaria. Ancient writing’s 
and artefacts have proved the long period of malaria effect. Clay tablets with engravings 
from Mesopotamia are clear evidence of malaria hostility. The historians had declared 
malaria as “king of diseases” in the redic period. In 270 B.C. the norm of malaria was 
widespread and brutal. It was declared as tertian (every 3rd day) and quartan (every 4th 
day) fever along with revelling spleen. The Chinese concerned malaria’s headache, chills 
and fevers as three friends. The Greek poet Homer (750 B.C.) relished the taste of 
malaria fatalism in their lifetimes and had mentioned it in their works and declared it as 
Sarus, “The dog star as desolation”. The arrival of malaria to the Rome in the 1st century 
A.D. proved to be turnery point in the history of Europe. Otieno et al. [Otieno, Koske and 
Mustiso (2016)] have streamlined transmission of malaria from African forests the 
mediterranean, align the nile to fertile crescent of Egypt. Traore et al. [Traore, Sangare 
and Traore (2017)] have presented different kind of mathematical modeling of malaria 
epidemic. The visitors of these areas had described the poor, shabby conditions of these 
people and strongly condemned on the fragility of the population. Population growth in 
China forced people to become settled in semitropical zones which are malaria promoting 
areas. Indus valley is hot and dry, so its habitants migrated towards the wet Ganges where 
they were plagued by malaria and other mosquito and water-borne diseases. European 
travellers, conquistadores and migrants transmitted plasmodium and vivax (malaria 
viruses). African slaves were another source of transmission of malaria (falciparum) to 
the rest of the world. The ships and boats Europeans shifted their slaves to their 
homelands thus carried malaria with them also. The Europeans settlers and native 
Americans and their lineage were more susceptible. Olaniyi et al. [Olaniyi and Obabiyi 
(2013)] have presented deforestation along with met agriculture favoured breeding of 
female mosquito anopheles which in the chief transported of plasmodium. Malaria 
affecting the USA until the early 20th Century. Civil war soldiers were also its sufferers in 
1862. Then it was transmitted to California and further spreader across the continent. 
Huge expenses were done to take measures in order to control the spread of malaria. It 
rained both physical and economic health of the entire region. USA claimed its complete 
wipe out from societies, but again it was noticed during World War II. In pacific 
campaigns more soldiers killed by malaria instead of enemy attack. Agyingi et al. 
[Agyingi, Ngwa and Wiandt (2016)] have given another idea of drug-resistant type of 
malaria was discovered as a big challenge for both biologists and administrators in the 
war of Vietnam. Despite all these efforts, malaria remained to inflict upon us for all 
times, past or present. As an essential pathogen, it was an obstacle to Africa’s 
colonization. It was given the name of killing fever. Whenever the Europeans had tried to 
build their out pasts on the continent, they have repelled time and again by malaria, 
yellow fever and other tropical monsters. By the 18th century, it gained the name of the 
white man’s grave. The most worried were biologists who were effortless in all aspects. 
They were studying human blood cells and found sickled shaped haemoglobin in the 
blood of malaria patients. This disease is caused by single-celled parasitic micro-
organisms belonging to plasmodium group. It is an infectious disease introduced by a 
mosquito bite carrying plasmodium into human blood. Rainy season provides a suitable 
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environment for malaria spread in tropical and semi-tropical zones of the world. 
Plasmodium is injected into human blood through mosquito bite and effects most vital 
body organ the liver. The virus is multiplied, there comes back into the bloodstream and 
destroys red blood cells. The process further leads to a cascade of reactions and 
symptoms start appearing. Symptoms start appearing within two weeks, but in some 
cases the parasite becomes dormant and appear after some time. Its initial symptoms are 
similar to flu, so a blood test is necessary for confirmation. After confirmation through 
blood test proper care and good hygiene around the patient of malaria is to be maintained, 
especially protection of patient from mosquitoes. If someone is travelling into malaria-
prone areas, special instructions should be taken from doctors and must carry mosquito 
repellents and necessary medicine. The standard drugs which are effectively used in 
malarial situations are chloroquine, malarone and mefloquine. Malaria is wholly cured 
able disease by following the set parameters by NGOs and other health organizations. 
The use of insecticide-treated nets (ITNs), indoor residual sprays (IRS) and most 
importantly to uproot entirely the nurseries of mosquito larva. Chemoprevention for the 
most vulnerable population is particularly pregnant women and infants. According to 
analysis, almost nighty-nine countries and territories are where malaria spread is standard 
out of the eighty have been safe sided now through tiring efforts, and nineteen countries 
are in pre-elimination and elimination phase. To get control over the spread of malaria 
disease, it was necessary to get knowledge of mosquito populations and how to control 
them. For this sake scientists, through a series of different experiments, gathered and 
analyzed statistics. Mathematicians made use of these statistics to develop the 
deterministic and stochastic SEIR models which make it convenient to know the 
dynamics and transmission of malaria involving variables in human and mosquito 
populations. Mathematicians believed that the dynamics of disease is governed by a 
threshold parameter 𝑅𝑅0. If 𝑅𝑅0>1, then disease will persist in a population and eventually 
it will be in endemic equilibrium. If 𝑅𝑅0<1, the disease will disappear from population and 
another steady state called disease-free equilibrium (DFE) becomes stable. Mathematical 
modeling helps giving a complete insight into such epidemic diseases. The construction 
of model along with other statistics and possible simulations help in analyzing the 
sensitivity of malaria transmission and to get control over its spread. With the aid of these 
efforts, scientists have become resourceful in devising tools and mechanisms, which have 
helped us implement the outcomes to get a check on malaria transmission properly. These 
models are studied from different angles. These models involve the use of nonlinear 
initial value problems along with differential equations which may or may not be 
according to our expectations. Arif et al. [Arif, Raza, Shatanawi et al. (2019)] have found 
the existing techniques in literature can bring about deceptive chaos and deceitful 
fluctuations for certain passions of the discretization limitations. These facts make them 
less dependent while solving such models and when the question of human health across 
the world is considered more reliable tact is like the making of stochastic epidemic 
models are to be favoured by experts. The environmental fluctuations are strongly 
dependent on the transmission of diseases in population. Therefore, the occurrence of an 
epidemic in a population is a random process. Guo et al. [Guo, Cai, Zhang et al. (2018)] 
have found more realistic strategy to understand environmental stochasticity is stochastic 
epidemic models. Stochastic epidemic models are generally governed by stochastic 
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differential equations (SDEs). These equations are highly non-linear and do not have 
analytic solutions. Allen et al. [Allen, Allen, Arciniega et al. (2008)] have used the 
different numerical methods to handle such problems. Pierret [Pierret (2015)] have 
presented essential control measures of the initial system. Raza et al. [Raza, Arif and 
Rafiq (2019)] have given the idea for construction, implementation and analysis of a 
stochastic nonstandard finite difference (SNSFD) method. The remaining paper is 
organized as follows. In Section 2, we discuss the deterministic malaria model and its 
steady states. In Section 3, we describe the construction of stochastic differential 
equations. In Section 4, we present different numerical methods and compared the results 
with deterministic parts. In this section, we also discuss the convergence of proposed 
method. In Section 6, we shall give conclusions and coming guidelines. 

2 Deterministic malaria model 
In this part, we have considered the deterministic malaria model. For any time 𝑡𝑡 , the 
specification of variables are 𝑆𝑆(𝑡𝑡) characterizes the susceptible humans, 𝐸𝐸(𝑡𝑡) characterizes 
the exposed humans, 𝐼𝐼(𝑡𝑡) characterizes the infected humans and 𝑅𝑅(𝑡𝑡)  characterizes the 
removed humans. The transmission of malaria model as shown in Fig. 1. 

 
Figure 1: Movement map of malaria disease in population 

The model transmission rates are labelled as 𝛬𝛬 (denote the recruitment rate of susceptible 
humans), 𝛽𝛽 (denote the infectious rate of humans), 𝛼𝛼1(denote the rate of exposed humans 
who are infectious), 𝛼𝛼2 (denote removal rate of humans), 𝜇𝜇 (denotes the natural death rate 
of humans) and 𝛿𝛿 (denotes the induce death rate of humans). The ordinary differential 
equations of model as follows: 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

=∧ −𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡).               (1) 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

=  𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡) − (𝛼𝛼1 + 𝜇𝜇)𝐸𝐸(𝑡𝑡).               (2) 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

=  𝛼𝛼1𝐸𝐸(𝑡𝑡) − (𝛼𝛼2 + 𝜇𝜇 + 𝛿𝛿)𝐼𝐼(𝑡𝑡).               (3) 
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

=  𝛼𝛼2𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡).                 (4) 

where, the region for Eqs. (1) to (4) is 𝛺𝛺 = �(𝑆𝑆,𝐸𝐸, 𝐼𝐼,𝑅𝑅): 𝑆𝑆 + 𝐸𝐸 + 𝐼𝐼 + 𝑅𝑅 ≤ ∧
𝜇𝜇

, 𝑆𝑆 ≥ 0,𝐸𝐸 ≥

0, 𝐼𝐼 ≥ 0,𝑅𝑅 ≥ 0�. Here, the region 𝛺𝛺 is called positive invariant. So, the solution of the 
Eqs. (1) to (4) lies in this region 𝛺𝛺. 
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2.1 Equilibria of malaria model 
There are two equilibria of the Eqs. (1) to (4) as follows: 

DFE is 𝐷𝐷 = �∧
𝜇𝜇

, 0,0,0�. 

EE is 𝐸𝐸 = (𝑆𝑆1,𝐸𝐸1, 𝐼𝐼1,𝑅𝑅1). 

 𝑆𝑆1 = (𝛼𝛼1+𝜇𝜇)(𝛼𝛼2+𝜇𝜇+𝛿𝛿)
𝛼𝛼1𝛽𝛽

,𝐸𝐸1 = ∧𝛼𝛼1−𝜇𝜇(𝛼𝛼1+𝜇𝜇)(𝛼𝛼2+𝜇𝜇+𝛿𝛿)
𝛼𝛼1𝛽𝛽(𝛼𝛼1+𝜇𝜇) , 𝐼𝐼1 = ∧𝛼𝛼1−𝜇𝜇(𝛼𝛼1+𝜇𝜇)(𝛼𝛼2+𝜇𝜇+𝛿𝛿)

𝛽𝛽(𝛼𝛼1+𝜇𝜇)(𝛼𝛼2+𝜇𝜇+𝛿𝛿)
, 

 𝑅𝑅1 = 𝛼𝛼2
𝜇𝜇

(∧𝛼𝛼1−𝜇𝜇(𝛼𝛼1+𝜇𝜇)(𝛼𝛼2+𝜇𝜇+𝛿𝛿)
𝛽𝛽(𝛼𝛼1+𝜇𝜇)(𝛼𝛼2+𝜇𝜇+𝛿𝛿) ), 𝑅𝑅0 = 𝛽𝛽∧𝛼𝛼1

𝜇𝜇(𝛼𝛼1+𝜇𝜇)(𝛼𝛼2+𝜇𝜇+𝛿𝛿). 

where 𝑅𝑅0  is called basic reproduction number and this number has an active role in 
disease dynamics. If 𝑅𝑅0 < 1  means this approach helps to control the disease in the 
human population. If 𝑅𝑅0 > 1 means the disease is endemic in the human population. 

3 Stochastic malaria model 
Let 𝑀𝑀 = [𝑆𝑆, 𝐸𝐸, 𝐼𝐼 ,𝑅𝑅]𝑇𝑇. On the way to arrange the stochastic differential equations (SDEs) 
from the Eqs. (1) to (4). We estimate the expectations 𝐸𝐸∗[𝑀𝑀𝑖𝑖] and 𝐸𝐸∗[𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖

𝑇𝑇]. 

Table 1: Possibilities in malaria model 

Transition Probabilities 
 𝑀𝑀1 = [1,0,0,0]𝑇𝑇  𝑃𝑃1 =∧ ∆𝑡𝑡. 
 𝑀𝑀2 = [−1,1,0,0]𝑇𝑇  𝑃𝑃2 = 𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡)∆𝑡𝑡. 
 𝑀𝑀3 = [−1,0,0,0]𝑇𝑇  𝑃𝑃3 = 𝜇𝜇𝜇𝜇(𝑡𝑡)∆𝑡𝑡. 
 𝑀𝑀4 = [0,−1,1,0]𝑇𝑇  𝑃𝑃4 = 𝛼𝛼1𝐸𝐸(𝑡𝑡)∆𝑡𝑡. 
 𝑀𝑀5 = [0,−1,0,0]𝑇𝑇  𝑃𝑃5 = 𝜇𝜇𝜇𝜇(𝑡𝑡)∆𝑡𝑡. 
 𝑀𝑀6 = [0,0,−1,1]𝑇𝑇  𝑃𝑃6 = 𝛼𝛼2𝐼𝐼(𝑡𝑡)∆𝑡𝑡. 
 𝑀𝑀7 = [0,0,−1,0]𝑇𝑇  𝑃𝑃7 = (𝜇𝜇 + 𝛿𝛿)𝐼𝐼(𝑡𝑡)∆𝑡𝑡. 
 𝑀𝑀8 = [0,0,0,−1]𝑇𝑇  𝑃𝑃8 = 𝜇𝜇𝜇𝜇(𝑡𝑡)∆𝑡𝑡. 

𝐸𝐸∗[𝑀𝑀𝑖𝑖] = ∑ 𝑃𝑃𝑖𝑖8
𝑖𝑖=1 𝑀𝑀𝑖𝑖. 

Expectation =𝐸𝐸∗[𝑀𝑀𝑖𝑖] =

⎣
⎢
⎢
⎡ ∧ −𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡)
𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡) − (𝛼𝛼1 + 𝜇𝜇)𝐸𝐸(𝑡𝑡)
𝛼𝛼1𝐸𝐸(𝑡𝑡) − (𝛼𝛼2 + 𝜇𝜇 + 𝛿𝛿)𝐼𝐼(𝑡𝑡)

𝛼𝛼2𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡) ⎦
⎥
⎥
⎤
∆𝑡𝑡. 

Var=∑ 𝑃𝑃𝑖𝑖8
𝑖𝑖=1 𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖

𝑇𝑇 

=

⎣
⎢
⎢
⎡
∧ +𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡) + 𝜇𝜇𝑆𝑆(𝑡𝑡) −𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡) 𝟎𝟎 𝟎𝟎

−𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡) 𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡) + 𝛼𝛼1𝐸𝐸(𝑡𝑡) + 𝜇𝜇 𝐸𝐸(𝑡𝑡) −𝛼𝛼1𝐸𝐸(𝑡𝑡) 𝟎𝟎
𝟎𝟎 −𝛼𝛼1𝐸𝐸(𝑡𝑡) 𝛼𝛼1𝐸𝐸(𝑡𝑡) + 𝛼𝛼2 𝐼𝐼(𝑡𝑡) + ( 𝜇𝜇 + 𝛿𝛿)𝐼𝐼(𝑡𝑡) −𝛼𝛼2 𝐼𝐼(𝑡𝑡)
𝟎𝟎 𝟎𝟎 −𝛼𝛼2 𝐼𝐼(𝑡𝑡) 𝛼𝛼2 𝐼𝐼(𝑡𝑡) +  𝜇𝜇𝑅𝑅(𝑡𝑡)⎦

⎥
⎥
⎤
∆𝑡𝑡. 
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If we define drift = 𝒳𝒳(𝑀𝑀(𝑡𝑡), 𝑡𝑡) = 𝐸𝐸∗[𝑀𝑀𝑖𝑖]
∆𝑡𝑡

 and diffusion= 𝒴𝒴(𝑀𝑀(𝑡𝑡), 𝑡𝑡) = �𝐸𝐸∗[𝑀𝑀𝑖𝑖𝑀𝑀𝑖𝑖
𝑇𝑇]

∆𝑡𝑡
, then 

𝑑𝑑𝑑𝑑(𝑡𝑡) = 𝒳𝒳(𝑀𝑀(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝒴𝒴(𝑀𝑀(𝑡𝑡), 𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡).              (5) 
with 𝑀𝑀(0) = 𝑀𝑀𝑜𝑜 = [0.4,0.3, 0.2, 0.1]𝑇𝑇  , 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 and 𝐵𝐵(𝑡𝑡) is the Brownian motion. 

3.1 Euler maruyama method 
Rahman et al. [Rahman, Osman and Adu (2017)] have given the parameters values for 
the numerical result of Eq. (5) reported in Tab. 2. 

Table 2: Values of parameters 

 
Parameters 

Values 
DFE EE 

𝜇𝜇 0.5 0.5 
𝛼𝛼1 0.3 0.3 

𝛼𝛼2 0.35 0.35 
𝛬𝛬 0.5 0.5 
𝛽𝛽 1.001 3.001 
𝛿𝛿 0.010 0.010 
𝜎𝜎1 0.09 0.09 
𝜎𝜎2 0.08 0.08 
𝜎𝜎3 0.07 0.07 
𝜎𝜎4 0.05 0.05 

The Euler Maruyama method of Eq. (5) as follows:  
 𝑀𝑀𝑛𝑛+1 = 𝑀𝑀𝑛𝑛 +𝒳𝒳(𝑀𝑀𝑛𝑛, 𝑡𝑡)𝛥𝛥𝛥𝛥 + 𝒴𝒴(𝑀𝑀𝑛𝑛, 𝑡𝑡)∆𝐵𝐵𝑛𝑛.              (6) 
But, the time step size is denoted by ‘𝛥𝛥𝛥𝛥’ and ∆𝐵𝐵𝑛𝑛~𝑁𝑁[𝒳𝒳(𝑀𝑀, 𝑡𝑡),𝒴𝒴(𝑀𝑀, 𝑡𝑡)]. The disease-free 
equilibria (DFE) is 𝐷𝐷 = (1, 0, 0, 0) if the basic reproduction number 𝑅𝑅0 = 0.4365 < 1. 
The endemic equilibria (EE) is  𝐸𝐸 =  (0.7642, 0.1474, 0.05141, 0.03599)  if 𝑅𝑅0 =
1.3086 > 1. Allen et al. [Allen and Burgin (2000)] have also found that the mean of 
stochastic outputs is approximately equal to the deterministic results as presented in Fig. 2. 
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(c)                    (d) 

Figure 2: (a) Converges behavior of compartment at h=0.1 (b) Diverges behavior of 
compartment at h=1 (c) First run for exposed humans at h=0.001 (d) Second run for 
exposed humans at h=1 

4 Non-parametric perturbation of model 
Rafiq et al. [Rafiq, Raza, Iqbal et al. (2019)] have presented the idea to introduced the 
non-parametric perturbation term. See Eqs. (1) to (4) as follows: 
 𝑑𝑑𝑑𝑑(𝑡𝑡) = �∧ −𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡)�𝑑𝑑𝑑𝑑 + 𝜎𝜎1𝑑𝑑𝐵𝐵1(𝑡𝑡)𝑆𝑆(𝑡𝑡).             (7) 
 𝑑𝑑𝑑𝑑(𝑡𝑡) = �𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡) − (𝛼𝛼1 + 𝜇𝜇)𝐸𝐸(𝑡𝑡)�𝑑𝑑𝑑𝑑 + 𝜎𝜎2𝑑𝑑𝐵𝐵2(𝑡𝑡)𝐸𝐸(𝑡𝑡).             (8) 
 𝑑𝑑𝑑𝑑(𝑡𝑡) = (𝛼𝛼1𝐸𝐸(𝑡𝑡) − (𝛼𝛼2 + 𝜇𝜇 + 𝛿𝛿)𝐼𝐼(𝑡𝑡))𝑑𝑑𝑑𝑑 + 𝜎𝜎3𝑑𝑑𝐵𝐵3(𝑡𝑡)𝐼𝐼(𝑡𝑡).             (9) 
 𝑑𝑑𝑑𝑑(𝑡𝑡) = �𝛼𝛼2𝐼𝐼(𝑡𝑡) − 𝜇𝜇𝜇𝜇(𝑡𝑡)�𝑑𝑑𝑑𝑑 + 𝜎𝜎4𝑑𝑑𝐵𝐵4(𝑡𝑡)𝑅𝑅(𝑡𝑡).            (10) 
where 𝜎𝜎1,𝜎𝜎2,𝜎𝜎3 and 𝜎𝜎4 are stochastic perturbations of each state variable and 𝐵𝐵𝑚𝑚(𝑡𝑡), (𝑚𝑚 =
1, 2, 3, 4) is the autonomous Brownian motions. Due to the non-differentiability term of 
Brownian motions, these equations do not have the exact solutions. 

4.1 Stochastic Euler method 
The Eqs. (7) to (10) in this method as follows: 
 𝑆𝑆𝑛𝑛+1(𝑡𝑡) = 𝑆𝑆𝑛𝑛(𝑡𝑡) + ℎ[∧ −𝛽𝛽𝑆𝑆𝑛𝑛(𝑡𝑡)𝐼𝐼𝑛𝑛(𝑡𝑡) − 𝜇𝜇𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝜎𝜎1∆𝐵𝐵1𝑆𝑆𝑛𝑛(𝑡𝑡)].         (11) 
 𝐸𝐸𝑛𝑛+1(𝑡𝑡) = 𝐸𝐸𝑛𝑛(𝑡𝑡) + ℎ[𝛽𝛽𝑆𝑆𝑛𝑛(𝑡𝑡)𝐼𝐼𝑛𝑛(𝑡𝑡) − (𝛼𝛼1 + 𝜇𝜇)𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝜎𝜎2∆𝐵𝐵2𝐸𝐸𝑛𝑛(𝑡𝑡)].         (12) 
 𝐼𝐼𝑛𝑛+1(𝑡𝑡) = 𝐼𝐼𝑛𝑛(𝑡𝑡) + ℎ[𝛼𝛼1𝐸𝐸𝑛𝑛(𝑡𝑡) − (𝛼𝛼2 + 𝜇𝜇 + 𝛿𝛿)𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝜎𝜎3∆𝐵𝐵3𝐼𝐼𝑛𝑛(𝑡𝑡)].         (13) 
 𝑅𝑅𝑛𝑛+1(𝑡𝑡) = 𝑅𝑅𝑛𝑛(𝑡𝑡) + ℎ[𝛼𝛼2𝐼𝐼𝑛𝑛(𝑡𝑡) − 𝜇𝜇𝑅𝑅𝑛𝑛(𝑡𝑡) + 𝜎𝜎4∆𝐵𝐵4𝑅𝑅𝑛𝑛(𝑡𝑡)]           (14) 
We simulate the results and the constants values presented in Tab. 2, by using the 
MATLAB program and ∆𝐵𝐵𝑛𝑛~𝑁𝑁(0,1), 𝑛𝑛 = 1, 2, 3, 4. 
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(a)      (b) 

 

(c)                                                        (d) 

Figure 3: (a) Converges behavior of compartment at h=0.1 (b) Diverges behavior of 
compartment when h=2 (c) Exposed humans at EE Point for h=0.1 (d) Diverges behavior 
of exposed humans when h=1 

4.2 Stochastic Runge Kutta method 
The Eqs. (7) to (10) in this method as follows: 
First stage 
𝐾𝐾1 = ℎ[∧ −𝛽𝛽𝑆𝑆𝑛𝑛(𝑡𝑡)𝐼𝐼𝑛𝑛(𝑡𝑡) − 𝜇𝜇𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝜎𝜎1∆𝐵𝐵1𝑆𝑆𝑛𝑛(𝑡𝑡)]. 
𝑀𝑀1 = ℎ[𝛽𝛽𝑆𝑆𝑛𝑛(𝑡𝑡)𝐼𝐼𝑛𝑛(𝑡𝑡) − (𝛼𝛼1 + 𝜇𝜇)𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝜎𝜎2∆𝐵𝐵2𝐸𝐸𝑛𝑛(𝑡𝑡)]. 
𝑁𝑁1 = ℎ[𝛼𝛼1𝐸𝐸𝑛𝑛(𝑡𝑡) − (𝛼𝛼2 + 𝜇𝜇 + 𝛿𝛿)𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝜎𝜎3∆𝐵𝐵3𝐼𝐼𝑛𝑛(𝑡𝑡)]. 
𝐿𝐿1 = ℎ[𝛼𝛼2𝐼𝐼𝑛𝑛(𝑡𝑡) −  𝜇𝜇𝑅𝑅𝑛𝑛(𝑡𝑡) + 𝜎𝜎4∆𝐵𝐵4𝑅𝑅𝑛𝑛(𝑡𝑡)]. 
Second stage 

𝐾𝐾2 = ℎ[∧ −𝛽𝛽 �𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐾𝐾1
2
� �𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁1

2
� − 𝜇𝜇 �𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐾𝐾1

2
� + 𝜎𝜎1∆𝐵𝐵1(𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐾𝐾1

2
)]. 

𝑀𝑀2 = ℎ �𝛽𝛽 �𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐾𝐾1
2
� �𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁1

2
� − (𝛼𝛼1 + 𝜇𝜇� (𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝑀𝑀1

2
)+𝜎𝜎2∆𝐵𝐵2(𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝑀𝑀1

2
)]. 

𝑁𝑁2 = ℎ[𝛼𝛼1(𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝑀𝑀1
2

) − (𝛼𝛼2 + 𝜇𝜇 + 𝛿𝛿)(𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁1
2

) + 𝜎𝜎3∆𝐵𝐵3(𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁1
2

)]. 

𝐿𝐿2 = ℎ[𝛼𝛼2(𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁1
2

) −  𝜇𝜇(𝑅𝑅𝑛𝑛(𝑡𝑡) + 𝐿𝐿1
2

) + 𝜎𝜎4∆𝐵𝐵4(𝑅𝑅𝑛𝑛(𝑡𝑡) + 𝐿𝐿1
2

)]. 
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Third stage 

𝐾𝐾3 = ℎ[∧ −𝛽𝛽 �𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐾𝐾2
2
� (𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁2

2
) − 𝜇𝜇(𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐾𝐾2

2
) + 𝜎𝜎1∆𝐵𝐵1(𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐾𝐾2

2
)]. 

𝑀𝑀3 = ℎ �𝛽𝛽 �𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐾𝐾2
2
� �𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁2

2
� − (𝛼𝛼1 + 𝜇𝜇� (𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝑀𝑀2

2
)+𝜎𝜎2∆𝐵𝐵2(𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝑀𝑀2

2
)]. 

𝑁𝑁3 = ℎ[𝛼𝛼1(𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝑀𝑀2
2

) − (𝛼𝛼2 + 𝜇𝜇 + 𝛿𝛿)(𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁2
2

) + 𝜎𝜎3∆𝐵𝐵3(𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁2
2

)]. 

𝐿𝐿3 = ℎ[𝛼𝛼2(𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁2
2

) −  𝜇𝜇(𝑅𝑅𝑛𝑛(𝑡𝑡) + 𝐿𝐿2
2

) + 𝜎𝜎4∆𝐵𝐵4(𝑅𝑅𝑛𝑛(𝑡𝑡) + 𝐿𝐿2
2

)]. 

Fourth stage 
𝐾𝐾4 = ℎ[∧ −𝛽𝛽(𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐾𝐾3)(𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁3) − 𝜇𝜇(𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐾𝐾3) + +𝜎𝜎1∆𝐵𝐵1(𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐾𝐾3)]. 
𝑀𝑀4 = ℎ[𝛽𝛽(𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐾𝐾3)(𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁3) − (𝛼𝛼1 + 𝜇𝜇)(𝐸𝐸𝑛𝑛(𝑡𝑡) +𝑀𝑀3)+𝜎𝜎2∆𝐵𝐵2(𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝑀𝑀3)]. 
𝑁𝑁4 = ℎ[𝛼𝛼1(𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝑀𝑀3)− (𝛼𝛼2 + 𝜇𝜇 + 𝛿𝛿)(𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁3) + 𝜎𝜎3∆𝐵𝐵3(𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁3)]. 
𝐿𝐿4 = ℎ[𝛼𝛼2(𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑁𝑁3) −  𝜇𝜇(𝑅𝑅𝑛𝑛(𝑡𝑡) + 𝐿𝐿3) + 𝜎𝜎4∆𝐵𝐵4(𝑅𝑅𝑛𝑛(𝑡𝑡) + 𝐿𝐿3)]. 
Final stage 

 

𝑆𝑆𝑛𝑛+1(𝑡𝑡) = 𝑆𝑆𝑛𝑛(𝑡𝑡) + 1
6

[𝐾𝐾1 + 2𝐾𝐾2 + 2𝐾𝐾3 + 𝐾𝐾4]   

𝐸𝐸𝑛𝑛+1(𝑡𝑡) = 𝐸𝐸𝑛𝑛(𝑡𝑡) + 1
6

[𝑀𝑀1 + 2𝑀𝑀2 + 2𝑀𝑀3 + 𝑀𝑀4]

𝐼𝐼𝑛𝑛+1(𝑡𝑡) = 𝐼𝐼𝑛𝑛(𝑡𝑡) + 1
6

[𝑁𝑁1 + 2𝑁𝑁2 + 2𝑁𝑁3 + 𝑁𝑁4]    

𝑅𝑅𝑛𝑛+1(𝑡𝑡) = 𝑅𝑅𝑛𝑛(𝑡𝑡) + 1
6

[𝐿𝐿1 + 2𝐿𝐿2 + 2𝐿𝐿3 + 𝐿𝐿4]    ⎭
⎪
⎬

⎪
⎫

           (15) 

We simulate the results and the constants values presented in Tab. 2, by using the 
MATLAB program and ∆𝐵𝐵𝑛𝑛~𝑁𝑁(0,1), 𝑛𝑛 = 1, 2, 3, 4. 
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(c)                  (d) 

Figure 4: (a) Converges behavior of compartment when h=0.1 (b) Diverges behavior of 
compartment when h=2 (c) Exposed humans when h=0.1 (d) Diverges behavior of 
exposed humans when h=2 

4.3 Stochastic NSFD method 
Using finite difference approximations for continuous derivatives and non-local 
approximations of state variables, we rewrite the Eqs. (11) to (14) as follows: 
 Sn+1(t) = Sn(t) + h ∧ −hβSn+1(t)In(t)− hµSn+1(t) + hσ1∆B1Sn(t). 
En+1(t) = En(t) + hβSn(t)In(t)− h(α1 + µ)En+1(t) + hσ2∆B2En(t). 
 In+1(t) = In(t) + hα1En(t) − h(α2 + µ + δ)In+1(t) + hσ3∆B3In(t). 
 Rn+1(t) = Rn(t) + hα2In(t) − hµRn+1(t) + hσ4∆B4Rn(t). 
Then by finding the equations in form of 𝑆𝑆𝑛𝑛+1(𝑡𝑡), 𝐸𝐸𝑛𝑛+1(𝑡𝑡), 𝐼𝐼𝑛𝑛+1(𝑡𝑡) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑅𝑅𝑛𝑛+1(𝑡𝑡) as 
follows: 

 𝑆𝑆𝑛𝑛+1(𝑡𝑡) = 𝑆𝑆𝑛𝑛(𝑡𝑡)+∧ℎ+ℎ𝜎𝜎1𝑆𝑆(𝑡𝑡)∆𝐵𝐵1
(1+ℎ𝛽𝛽𝐼𝐼𝑛𝑛(𝑡𝑡)+ℎ𝜇𝜇) .              (16) 

 𝐸𝐸𝑛𝑛+1(𝑡𝑡) = 𝐸𝐸𝑛𝑛(𝑡𝑡)+ℎ𝛽𝛽𝑆𝑆𝑛𝑛(𝑡𝑡)𝐼𝐼𝑛𝑛(𝑡𝑡)+ℎ𝜎𝜎2𝐸𝐸(𝑡𝑡)∆𝐵𝐵2
1+ℎ(𝛼𝛼1+𝜇𝜇)

.            (17) 

 𝐼𝐼𝑛𝑛+1(𝑡𝑡) = 𝐼𝐼𝑛𝑛(𝑡𝑡)+ℎ𝛼𝛼1𝐸𝐸𝑛𝑛(𝑡𝑡)+ℎ𝜎𝜎3𝐼𝐼(𝑡𝑡)∆𝐵𝐵3
1+ℎ(𝛼𝛼2+𝜇𝜇+𝛿𝛿) .             (18) 

 𝑅𝑅𝑛𝑛+1(𝑡𝑡) =  𝑅𝑅
𝑛𝑛(𝑡𝑡)+ℎ𝛼𝛼2𝐼𝐼𝑛𝑛(𝑡𝑡)+ℎ𝜎𝜎4𝑅𝑅(𝑡𝑡)∆𝐵𝐵4

1+ℎ𝜇𝜇
.             (19) 

We simulate the results and the constants values presented in Tab. 2, by using the 
MATLAB program and ∆𝐵𝐵𝑛𝑛~𝑁𝑁(0, 1), 𝑛𝑛 = 1, 2, 3, 4. 

4.4 Convergence analysis 
For this we shall satisfy the following theorems as follows: 
Theorem: For any given initial value (𝑆𝑆𝑛𝑛 (0), 𝐸𝐸𝑛𝑛 (0), 𝐼𝐼𝑛𝑛 (0), 𝑅𝑅𝑛𝑛 (0))∈𝑅𝑅+4 , Eqs. (16) to (19) 
has a unique positive solution (𝑆𝑆𝑛𝑛(𝑡𝑡), 𝐸𝐸𝑛𝑛(𝑡𝑡), 𝐼𝐼𝑛𝑛(𝑡𝑡) , 𝑅𝑅𝑛𝑛(𝑡𝑡)) ∈ 𝑅𝑅+4  on n≥0, nearly sure. 
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Theorem: The region 𝛺𝛺 = �(𝑆𝑆𝑛𝑛(𝑡𝑡),𝐸𝐸𝑛𝑛(𝑡𝑡) , 𝐼𝐼𝑛𝑛(𝑡𝑡) , 𝑅𝑅𝑛𝑛(𝑡𝑡)) ∈  𝑅𝑅+4 : 𝑆𝑆𝑛𝑛(𝑡𝑡) ≥ 0,𝐸𝐸𝑛𝑛(𝑡𝑡) ≥

0, 𝐼𝐼𝑛𝑛(𝑡𝑡) ≥ 0,𝑅𝑅𝑛𝑛(𝑡𝑡) ≥ 0, 𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑅𝑅𝑛𝑛(𝑡𝑡) ≤ ∧
𝜇𝜇
�  for all 𝑛𝑛 ≥ 0  is a 

optimistic invariant set for Eqs. (16) to (19). 
Proof: The Eqs. (16) to (19) as follows: 
 𝑆𝑆𝑛𝑛+1(𝑡𝑡) = 𝑆𝑆𝑛𝑛(𝑡𝑡) + ℎ ∧ −ℎ𝛽𝛽𝑆𝑆𝑛𝑛+1(𝑡𝑡)𝐼𝐼𝑛𝑛(𝑡𝑡) − ℎ𝜇𝜇𝑆𝑆𝑛𝑛+1(𝑡𝑡) + ℎ𝜎𝜎1∆𝐵𝐵1𝑆𝑆𝑛𝑛(𝑡𝑡). 
 𝐸𝐸𝑛𝑛+1(𝑡𝑡) = 𝐸𝐸𝑛𝑛(𝑡𝑡) + ℎ𝛽𝛽𝑆𝑆𝑛𝑛(𝑡𝑡)𝐼𝐼𝑛𝑛(𝑡𝑡) − ℎ(𝛼𝛼1 + 𝜇𝜇)𝐸𝐸𝑛𝑛+1(𝑡𝑡) + ℎ𝜎𝜎2∆𝐵𝐵2𝐸𝐸𝑛𝑛(𝑡𝑡). 
 𝐼𝐼𝑛𝑛+1(𝑡𝑡) = 𝐼𝐼𝑛𝑛(𝑡𝑡) + ℎ𝛼𝛼1𝐸𝐸𝑛𝑛(𝑡𝑡) − ℎ(𝛼𝛼2 + 𝜇𝜇 + 𝛿𝛿)𝐼𝐼𝑛𝑛+1(𝑡𝑡) + ℎ𝜎𝜎3∆𝐵𝐵3𝐼𝐼𝑛𝑛(𝑡𝑡). 
 𝑅𝑅𝑛𝑛+1(𝑡𝑡) = 𝑅𝑅𝑛𝑛(𝑡𝑡) + ℎ𝛼𝛼2𝐼𝐼𝑛𝑛(𝑡𝑡) − ℎ𝜇𝜇𝑅𝑅𝑛𝑛+1(𝑡𝑡) + ℎ𝜎𝜎4∆𝐵𝐵4𝑅𝑅𝑛𝑛(𝑡𝑡). 

 𝑆𝑆
𝑛𝑛+1(𝑡𝑡)−𝑆𝑆𝑛𝑛(𝑡𝑡)

ℎ
+ 𝐸𝐸𝑛𝑛+1(𝑡𝑡)−𝐸𝐸𝑛𝑛(𝑡𝑡)

ℎ
+ 𝐼𝐼𝑛𝑛+1(𝑡𝑡)−𝐼𝐼𝑛𝑛(𝑡𝑡)

ℎ
+ 𝑅𝑅𝑛𝑛+1(𝑡𝑡)−𝑅𝑅𝑛𝑛(𝑡𝑡)

ℎ
=∧ −𝛽𝛽𝑆𝑆𝑛𝑛+1(𝑡𝑡)𝐼𝐼𝑛𝑛(𝑡𝑡) −

𝜇𝜇𝑆𝑆𝑛𝑛+1(𝑡𝑡) + 𝜎𝜎1∆𝐵𝐵1𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝛽𝛽𝑆𝑆𝑛𝑛(𝑡𝑡)𝐼𝐼𝑛𝑛(𝑡𝑡) − (𝛼𝛼1 + 𝜇𝜇)𝐸𝐸𝑛𝑛+1(𝑡𝑡) + 𝜎𝜎2∆𝐵𝐵2𝐸𝐸𝑛𝑛(𝑡𝑡) +
𝛼𝛼1𝐸𝐸𝑛𝑛(𝑡𝑡) − (𝛼𝛼2 + 𝜇𝜇 + 𝛿𝛿)𝐼𝐼𝑛𝑛+1(𝑡𝑡) + 𝜎𝜎3∆𝐵𝐵3𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝛼𝛼2𝐼𝐼𝑛𝑛(𝑡𝑡) − 𝜇𝜇𝑅𝑅𝑛𝑛+1(𝑡𝑡) + 𝜎𝜎4∆𝐵𝐵4𝑅𝑅𝑛𝑛(𝑡𝑡) 

 �𝑆𝑆
𝑛𝑛+1(𝑡𝑡)+𝐸𝐸𝑛𝑛+1(𝑡𝑡)+𝐼𝐼𝑛𝑛+1(𝑡𝑡)+𝑅𝑅𝑛𝑛+1(𝑡𝑡)�−(𝑆𝑆𝑛𝑛(𝑡𝑡)+𝐸𝐸𝑛𝑛(𝑡𝑡)+𝐼𝐼𝑛𝑛(𝑡𝑡)+𝑅𝑅𝑛𝑛(𝑡𝑡))

ℎ
=∧ −𝜇𝜇(𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐸𝐸𝑛𝑛(𝑡𝑡) +

𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑅𝑅𝑛𝑛(𝑡𝑡)) + 𝜎𝜎1∆𝐵𝐵1𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝜎𝜎2∆𝐵𝐵2𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝜎𝜎3∆𝐵𝐵3𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝜎𝜎4∆𝐵𝐵4𝑅𝑅𝑛𝑛(𝑡𝑡)  
 (𝑆𝑆𝑛𝑛+1(𝑡𝑡) + 𝐸𝐸𝑛𝑛+1(𝑡𝑡) + 𝐼𝐼𝑛𝑛+1(𝑡𝑡) + 𝑅𝑅𝑛𝑛+1(𝑡𝑡)) − (𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑅𝑅𝑛𝑛(𝑡𝑡)) = ℎ ∧
−ℎ𝜇𝜇(𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝐸𝐸𝑛𝑛(𝑡𝑡) + 𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝑅𝑅𝑛𝑛(𝑡𝑡)) + ℎ[𝜎𝜎1∆𝐵𝐵1𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝜎𝜎2∆𝐵𝐵2𝐸𝐸𝑛𝑛(𝑡𝑡) +
𝜎𝜎3∆𝐵𝐵3𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝜎𝜎4∆𝐵𝐵4𝑅𝑅𝑛𝑛(𝑡𝑡)]. 
 (𝑆𝑆𝑛𝑛+1(𝑡𝑡) + 𝐸𝐸𝑛𝑛+1(𝑡𝑡) + 𝐼𝐼𝑛𝑛+1(𝑡𝑡) + 𝑅𝑅𝑛𝑛+1(𝑡𝑡)) ≤ ∧

𝜇𝜇
+ ℎ[𝜎𝜎1∆𝐵𝐵1𝑆𝑆𝑛𝑛(𝑡𝑡) + 𝜎𝜎2∆𝐵𝐵2𝐸𝐸𝑛𝑛(𝑡𝑡) +

𝜎𝜎3∆𝐵𝐵3𝐼𝐼𝑛𝑛(𝑡𝑡) + 𝜎𝜎4∆𝐵𝐵4𝑅𝑅𝑛𝑛(𝑡𝑡)]. 
nearly sure. 
Theorem: The discrete Eqs. (16) to (19) has the same equilibria as continuous Eqs. (7) to 
(10) for all 𝑛𝑛 ≥ 0. 
Proof: The two states of model as follows: 

DFE is 𝐷𝐷 = �∧
𝜇𝜇

, 0,0,0�. 

EE is 𝐸𝐸 = (𝑆𝑆1𝑛𝑛,𝐸𝐸1𝑛𝑛, 𝐼𝐼1𝑛𝑛,𝑅𝑅1𝑛𝑛). 

 𝑆𝑆1𝑛𝑛 = (𝛼𝛼1+𝜇𝜇−𝜎𝜎2∆𝐵𝐵2)(𝛼𝛼2+𝜇𝜇+𝛿𝛿−𝜎𝜎3∆𝐵𝐵3)
𝛼𝛼1𝛽𝛽

,𝐸𝐸1𝑛𝑛 = ∧𝛼𝛼1+(𝜎𝜎3∆𝐵𝐵3−𝜇𝜇)(𝛼𝛼1+𝜇𝜇−𝜎𝜎2∆𝐵𝐵2)(𝛼𝛼2+𝜇𝜇+𝛿𝛿−𝜎𝜎3∆𝐵𝐵3)
𝛼𝛼1𝛽𝛽(𝛼𝛼1+𝜇𝜇−𝜎𝜎2∆𝐵𝐵2) ,  

 𝐼𝐼1𝑛𝑛 = ∧𝛼𝛼1+(𝜎𝜎3∆𝐵𝐵2−𝜇𝜇)(𝛼𝛼1+𝜇𝜇−𝜎𝜎2∆𝐵𝐵2)(𝛼𝛼2+𝜇𝜇+𝛿𝛿−𝜎𝜎3∆𝐵𝐵3)
𝛽𝛽(𝛼𝛼1+𝜇𝜇−𝜎𝜎2∆𝐵𝐵2)(𝛼𝛼2+𝜇𝜇+𝛿𝛿−𝜎𝜎3∆𝐵𝐵3)

, 

 𝑅𝑅1𝑛𝑛 = 𝛼𝛼2
(𝜇𝜇−𝜎𝜎4∆𝐵𝐵4)

(∧𝛼𝛼1+(𝜎𝜎3∆𝐵𝐵2−𝜇𝜇)(𝛼𝛼1+𝜇𝜇−𝜎𝜎2∆𝐵𝐵2)(𝛼𝛼2+𝜇𝜇+𝛿𝛿−𝜎𝜎3∆𝐵𝐵3)
𝛽𝛽(𝛼𝛼1+𝜇𝜇−𝜎𝜎2∆𝐵𝐵2)(𝛼𝛼2+𝜇𝜇+𝛿𝛿−𝜎𝜎3∆𝐵𝐵3)

). 

Theorem: Eigen values of Eqs. (16) to (19) for both equilibria of model should lie unit 
radius of circle for all 𝑛𝑛 ≥ 0. 
Proof: We consider the Eqs. (16) to (19) as: 

𝐹𝐹 = 𝑆𝑆(𝑡𝑡)+ℎ∧+ℎ𝜎𝜎1𝑆𝑆(𝑡𝑡)∆𝐵𝐵1
1+ℎ𝛽𝛽𝛽𝛽(𝑡𝑡)+ℎ𝜇𝜇

, 𝐺𝐺 = 𝐸𝐸(𝑡𝑡)+ℎ𝛽𝛽𝛽𝛽(𝑡𝑡)𝐼𝐼(𝑡𝑡)+ℎ𝜎𝜎2𝐸𝐸(𝑡𝑡)∆𝐵𝐵2
1+ℎ𝛼𝛼1+ℎ𝜇𝜇

, 𝐻𝐻 = 𝐼𝐼(𝑡𝑡)+ℎ𝛼𝛼1𝐸𝐸(𝑡𝑡)+ℎ𝜎𝜎3𝐼𝐼(𝑡𝑡)∆𝐵𝐵3
1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)

, 

𝐾𝐾 = 𝑅𝑅+ℎ𝛼𝛼2𝐼𝐼(𝑡𝑡)+ℎ𝜎𝜎4𝑅𝑅∆𝐵𝐵4
1+ℎ𝜇𝜇

. 
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 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1+ℎ𝜎𝜎1∆𝐵𝐵1
1+ℎ𝛽𝛽𝛽𝛽(𝑡𝑡)+ℎ𝜇𝜇

 , 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −(𝑆𝑆(𝑡𝑡)+ℎ∧+ℎ𝜎𝜎1𝑆𝑆(𝑡𝑡(∆𝐵𝐵1)ℎ𝛽𝛽
(1+ℎ𝛽𝛽𝛽𝛽(𝑡𝑡)+ℎ𝜇𝜇)2

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0. 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ℎ𝛽𝛽𝛽𝛽(𝑡𝑡)
1+ℎ𝛼𝛼1+ℎ𝜇𝜇

  ,   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1+ℎ𝜎𝜎2∆𝐵𝐵2
1+ℎ𝛼𝛼1+ℎ𝜇𝜇

, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ℎ𝛽𝛽𝛽𝛽(𝑡𝑡)
1+ℎ𝛼𝛼1+ℎ𝜇𝜇

   , 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0. 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= ℎ𝛼𝛼1
1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽) 

𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼

= ℎ𝜎𝜎3∆𝐵𝐵3
1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)

 ,   𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0. 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0, 𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼

= ℎ𝛼𝛼2
1+ℎ𝜇𝜇

 , 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 1+ℎ𝜎𝜎4∆𝐵𝐵4
1+ℎ𝜇𝜇

. 

𝐽𝐽 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑡𝑡)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑡𝑡)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼(𝑡𝑡)
𝜕𝜕𝜕𝜕
𝜕𝜕𝐼𝐼(𝑡𝑡)

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑡𝑡)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕(𝑡𝑡)⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1+ℎ𝜎𝜎1∆𝐵𝐵1
1+ℎ𝛽𝛽𝛽𝛽+ℎ𝜇𝜇

0 − (𝑆𝑆+ℎ∧+ℎ𝜎𝜎1𝑆𝑆∆𝐵𝐵1)ℎ𝛽𝛽
(1+ℎ𝛽𝛽𝛽𝛽+ℎ𝜇𝜇)2

0
ℎ𝛽𝛽𝐼𝐼

1+ℎ𝛼𝛼1+ℎ𝜇𝜇
1+ℎ𝜎𝜎2∆𝐵𝐵2
1+ℎ𝛼𝛼1+ℎ𝜇𝜇

ℎ𝛽𝛽𝛽𝛽
1+ℎ𝛼𝛼1+ℎ𝜇𝜇

0

0 ℎ𝛼𝛼1
1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)

ℎ𝜎𝜎3∆𝐵𝐵3
1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)

0

0 0 ℎ𝛼𝛼2
1+ℎ𝜇𝜇

1+ℎ𝜎𝜎4∆𝐵𝐵4
1+ℎ𝜇𝜇 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

. 

Linearization of equilibria 𝐷𝐷 = (𝑆𝑆,𝐸𝐸, 𝐼𝐼,𝑅𝑅) = �∧
𝜇𝜇

, 0, 0, 0� and 𝑅𝑅𝑜𝑜 < 1. 

𝐽𝐽 �
∧
𝜇𝜇

, 0,0,0�

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 + ℎ𝜎𝜎1∆𝐵𝐵1

1 + ℎ𝜇𝜇
0 −

�∧𝜇𝜇 + ℎ ∧ +ℎ𝜎𝜎1∆𝐵𝐵1�ℎ𝛽𝛽

(1 + ℎ𝜇𝜇)2 0

0
1 + ℎ𝜎𝜎2∆𝐵𝐵2

1 + ℎ𝛼𝛼1 + ℎ𝜇𝜇

ℎ𝛽𝛽 ∧𝜇𝜇
1 + ℎ𝛼𝛼1 + ℎ𝜇𝜇

0

0
ℎ𝛼𝛼1

1 + ℎ(𝛼𝛼2 + 𝜇𝜇 + 𝛽𝛽)
ℎ𝜎𝜎3∆𝐵𝐵3

1 + ℎ(𝛼𝛼2 + 𝜇𝜇 + 𝛽𝛽) 0

0 0
ℎ𝛼𝛼2

1 + ℎ𝜇𝜇
1 + ℎ𝜎𝜎4∆𝐵𝐵4

1 + ℎ𝜇𝜇 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

These are the eigen values as follows: 

 𝜆𝜆1 = 1+ℎ𝜎𝜎1∆𝐵𝐵1
1+ℎ𝜇𝜇

< 1, 𝜆𝜆2 = 1+ℎ𝜎𝜎4∆𝐵𝐵4
1+ℎ𝜇𝜇

< 1 if 𝑅𝑅𝑜𝑜 < 1. 

  = �
1+ℎ𝜎𝜎2∆𝐵𝐵2
1+ℎ𝛼𝛼1+ℎ𝜇𝜇

ℎ𝛼𝛼1𝛽𝛽∧𝜇𝜇

1+ℎ𝛼𝛼1+ℎ𝜇𝜇
ℎ𝛼𝛼1

1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)
ℎ𝜎𝜎3∆𝐵𝐵3

1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)

�. 

 A is represented as trace of 𝐽𝐽. 
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 B is represented as modulus of 𝐽𝐽. 

 𝐴𝐴 = 1+ℎ𝜎𝜎2∆𝐵𝐵2
1+ℎ𝛼𝛼1+ℎ𝜇𝜇

+ ℎ𝜎𝜎3∆𝐵𝐵3
1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽). 

 𝐵𝐵 = (1+ℎ𝜎𝜎2∆𝐵𝐵2)(ℎ𝜎𝜎3∆𝐵𝐵3)
(1+ℎ𝛼𝛼1+ℎ𝜇𝜇)�1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)�

−
ℎ2𝛼𝛼1𝛽𝛽∧𝜇𝜇

(1+ℎ𝛼𝛼1+ℎ𝜇𝜇)�1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)�
. 

Lemma: Brauer et al. [Brauer and Chavez (2001)] have presented result, for given 𝑅𝑅𝑜𝑜 < 1 
and equation 𝜆𝜆2–𝑇𝑇1𝜆𝜆 + 𝑇𝑇2 = 0 , |𝜆𝜆𝑖𝑖| < 1, 𝑖𝑖 = 1, 2 , which satisfy the below mentioned 
conditions then equilibria is stable. 
 (i) 1 + 𝑇𝑇1 + 𝑇𝑇2 > 0 
 (ii) 1− 𝑇𝑇1 + 𝑇𝑇2 > 0 
 (iii) 𝑇𝑇2 < 1 
Proof: 
(i). 1 + 𝑇𝑇1 + 𝑇𝑇2 > 0 
 ∵ 1 > 0 ,𝑇𝑇1 > 0 ,𝑇𝑇𝑇𝑇 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑇𝑇2 > 0. 

 ⇒ (1+ℎ𝜎𝜎2∆𝐵𝐵2)(ℎ𝜎𝜎3∆𝐵𝐵3)
(1+ℎ𝛼𝛼1+ℎ𝜇𝜇)�1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)�

−
ℎ2𝛼𝛼1

𝛼𝛼1𝛽𝛽∧
𝜇𝜇

(1+ℎ𝛼𝛼1+ℎ𝜇𝜇)�1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)�
> 0. 

 ⇒ (1 + ℎ𝜎𝜎2∆𝐵𝐵2)(ℎ𝜎𝜎3∆𝐵𝐵3) − ℎ2 𝛼𝛼1𝛽𝛽∧
𝜇𝜇

> 0. 

 ⇒ ℎ𝜎𝜎3∆𝐵𝐵3 + ℎ2𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3 > ℎ2 𝛼𝛼1𝛽𝛽∧
𝜇𝜇

. 

 ⇒ ℎ2 �𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3 −
𝛼𝛼1𝛽𝛽∧
𝜇𝜇
�+  ℎ𝜎𝜎3∆𝐵𝐵3 > 0. 

 ⇒    ℎ2(𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3 −
𝛼𝛼1𝛽𝛽∧
𝜇𝜇

) + ℎ𝜎𝜎3∆𝐵𝐵3 > 0. 

 ⇒    ℎ2 + 𝜎𝜎3∆𝐵𝐵3
(𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−

𝛼𝛼1𝛽𝛽∧
𝜇𝜇 )

ℎ > 0. 

 ⇒    (ℎ)2 + 2(ℎ)( 𝜎𝜎3∆𝐵𝐵3
2(𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−

𝛼𝛼1𝛽𝛽∧
𝜇𝜇 )

) + ( 𝜎𝜎3∆𝐵𝐵3
2(𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−

𝛼𝛼1𝛽𝛽∧
𝜇𝜇 )

)2 > ( 𝜎𝜎3∆𝐵𝐵3
2(𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−

𝛼𝛼1𝛽𝛽∧
𝜇𝜇

)2. 

 ⇒ ( 𝜎𝜎3∆𝐵𝐵3
2(𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−

𝛼𝛼1𝛽𝛽∧
𝜇𝜇 )

+ ℎ)2 > ( 𝜎𝜎3∆𝐵𝐵3
2(𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−

𝛼𝛼1𝛽𝛽∧
𝜇𝜇 )

)2. 

 ⇒ 𝜎𝜎3∆𝐵𝐵3
2(𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−

𝛼𝛼1𝛽𝛽∧
𝜇𝜇 )

+ ℎ > 𝜎𝜎3∆𝐵𝐵3
2(𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−

𝛼𝛼1𝛽𝛽∧
𝜇𝜇 )

. 

 ⇒ ℎ >  𝜎𝜎3∆𝐵𝐵3
2(𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−

𝛼𝛼1𝛽𝛽∧
𝜇𝜇 )

− 𝜎𝜎3∆𝐵𝐵3
2(𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−

𝛼𝛼1𝛽𝛽∧
𝜇𝜇 )

. 

 ⇒ ℎ > 0. As, time step is always positive. 
(ii). 1 − 𝑇𝑇1 + 𝑇𝑇2 > 0 

 ⇒ 1 − 1+ℎ𝜎𝜎2∆𝐵𝐵2
1+ℎ𝛼𝛼1+ℎ𝜇𝜇

− ℎ𝜎𝜎3∆𝐵𝐵3
1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽) +

(1+ℎ𝜎𝜎2∆𝐵𝐵2)(ℎ𝜎𝜎3∆𝐵𝐵3)−ℎ2𝛼𝛼1𝛽𝛽∧𝜇𝜇
(1+ℎ𝛼𝛼1+ℎ𝜇𝜇)�1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)�

> 0. 
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 ⇒ [1 + ℎ(𝛼𝛼1 + 𝜇𝜇)[1 + ℎ(𝛼𝛼2 + 𝜇𝜇 + 𝛽𝛽)]− (1 + ℎ𝜎𝜎2∆𝐵𝐵2) −  ℎ𝜎𝜎3∆𝐵𝐵3 + (1 +
ℎ𝜎𝜎2∆𝐵𝐵2)(ℎ𝜎𝜎3∆𝐵𝐵3)− ℎ2 𝛼𝛼1𝛽𝛽∧

𝜇𝜇
> 0. 

 ⇒ 1 + ℎ(𝛼𝛼2 + 𝜇𝜇 + 𝛽𝛽) + ℎ(𝛼𝛼1 + 𝜇𝜇) + ℎ2(𝛼𝛼1 + 𝜇𝜇)(𝛼𝛼2 + 𝜇𝜇 + 𝛽𝛽) − 1 −  ℎ𝜎𝜎2∆𝐵𝐵2 −
 ℎ𝜎𝜎3∆𝐵𝐵3 + ℎ𝜎𝜎3∆𝐵𝐵3 + ℎ2𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3 − ℎ2 𝛼𝛼1𝛽𝛽∧

𝜇𝜇
> 0. 

 ⇒ ℎ2[(𝛼𝛼1 + 𝜇𝜇) (𝛼𝛼2 + 𝜇𝜇 + 𝛽𝛽) + 𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3 −
𝛼𝛼1𝛽𝛽∧
𝜇𝜇

] + ℎ[2𝜇𝜇 + 𝛼𝛼1 + 𝛼𝛼2 + 𝛽𝛽 −
𝜎𝜎2∆𝐵𝐵2] > 0. 

 ⇒ ℎ2 + ℎ[2𝜇𝜇+𝛼𝛼1+𝛼𝛼2+𝛽𝛽−𝜎𝜎2∆𝐵𝐵2]

[(𝛼𝛼1+𝜇𝜇) (𝛼𝛼2+𝜇𝜇+𝛽𝛽)+𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−
𝛼𝛼1𝛽𝛽∧
𝜇𝜇 ]

> 0. 

⇒ (ℎ)2 + 2(ℎ)� [2𝜇𝜇+𝛼𝛼1+𝛼𝛼2+𝛽𝛽−𝜎𝜎2∆𝐵𝐵2]

2[(𝛼𝛼1+𝜇𝜇) (𝛼𝛼2+𝜇𝜇+𝛽𝛽)+𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−
𝛼𝛼1𝛽𝛽∧
𝜇𝜇 ]

�+

� [2𝜇𝜇+𝛼𝛼1+𝛼𝛼2+𝛽𝛽−𝜎𝜎2∆𝐵𝐵2]

2[(𝛼𝛼1+𝜇𝜇) (𝛼𝛼2+𝜇𝜇+𝛽𝛽)+𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−
𝛼𝛼1𝛽𝛽∧
𝜇𝜇 ]

�
2

> � [2𝜇𝜇+𝛼𝛼1+𝛼𝛼2+𝛽𝛽−𝜎𝜎2∆𝐵𝐵2]

2[(𝛼𝛼1+𝜇𝜇) (𝛼𝛼2+𝜇𝜇+𝛽𝛽)+𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−
𝛼𝛼1𝛽𝛽∧
𝜇𝜇 ]

�
2

. 

 ⇒ �ℎ + [2𝜇𝜇+𝛼𝛼1+𝛼𝛼2+𝛽𝛽−𝜎𝜎2∆𝐵𝐵2]

2[(𝛼𝛼1+𝜇𝜇) (𝛼𝛼2+𝜇𝜇+𝛽𝛽)+𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−
𝛼𝛼1𝛽𝛽∧
𝜇𝜇 ]

�
2

> � [2𝜇𝜇+𝛼𝛼1+𝛼𝛼2+𝛽𝛽−𝜎𝜎2∆𝐵𝐵2]

2[(𝛼𝛼1+𝜇𝜇) (𝛼𝛼2+𝜇𝜇+𝛽𝛽)+𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−
𝛼𝛼1𝛽𝛽∧
𝜇𝜇 ]

�
2

. 

 ⇒ ℎ + [2𝜇𝜇+𝛼𝛼1+𝛼𝛼2+𝛽𝛽−𝜎𝜎2∆𝐵𝐵2]

2[(𝛼𝛼1+𝜇𝜇) (𝛼𝛼2+𝜇𝜇+𝛽𝛽)+𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−
𝛼𝛼1𝛽𝛽∧
𝜇𝜇 ]

> [2𝜇𝜇+𝛼𝛼1+𝛼𝛼2+𝛽𝛽−𝜎𝜎2∆𝐵𝐵2]

2[(𝛼𝛼1+𝜇𝜇) (𝛼𝛼2+𝜇𝜇+𝛽𝛽)+𝜎𝜎2𝜎𝜎3∆𝐵𝐵2∆𝐵𝐵3−
𝛼𝛼1𝛽𝛽∧
𝜇𝜇 ]

. 

 ⇒ ℎ > 0. As, time step is always positive. 
(iii). T2 < 1 

 ⇒ [1+hσ2∆B2][hσ3∆B3]
[1+h(α1+µ)][1+h(α2+µ+β)]

−
h2α1β∧µ

[1+h(α1+µ)][1+h(α2+µ+β)] < 1. 

 ⇒ [(1 + hσ2∆B2)(hσ3∆B3)− h2 α1β∧
µ

] < [1 + h(α1 + µ)][1 + h(α2 + µ + β)]. 

 ⇒ hσ3∆B3 + h2σ2σ3 ∆B2∆B3 − h2 α1β∧
µ

< 1 + h(α1 + α2 + 2µ + β) + h2(α1 +
µ)(α2 + µ + β). 

 ⇒ h2 �α1β∧
µ

+ (α1 + µ)(α2 + µ + β)−σ2σ3 ∆B2∆B3�+ h[α1 + α2 + 2µ + β −
σ3 ∆B3] + 1 > 0. 

 ⇒ h2 + h[α1+α2+2µ+β−σ3 ∆B3]

�α1β∧µ +(α1+µ)(α2+µ+β)−σ2σ3 ∆B2∆B3�
+ 1

�α1β∧µ +(α1+µ)(α2+µ+β)−σ2σ3 ∆B2∆B3�
> 0. 

 ⇒ (h)2 + 2(h)� [α1+α2+2µ+β−σ3∆B3]

2�α1β∧µ +(α1+µ)(α2+µ+β)−σ2σ3 ∆B2∆B3�
�+

( [α1+α2+2µ+β−σ3∆B3]

2�α1β∧µ +(α1+µ)(α2+µ+β)−σ2σ3 ∆B2∆B3�
)2 + 1

�α1β∧µ +(α1+µ)(α2+µ+β)−σ2σ3 ∆B2∆B3�
>

( [α1+α2+2µ+β−σ3∆B3]

2�α1β∧µ +(α1+µ)(α2+µ+β)−σ2σ3 ∆B2∆B3�
)2. 
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 ⇒ � [α1+α2+2µ+β−σ3∆B3]

2�α1β∧µ +(α1+µ)(α2+µ+β)−σ2σ3 ∆B2∆B3�
+ h�

2

+ 1

�α1β∧µ +(α1+µ)(α2+µ+β)−σ2σ3  ∆B2∆B3�
>

� [α1+α2+2µ+β−σ3 ∆B3]

2�α1β∧µ +(α1+µ)(α2+µ+β)−σ2σ3  ∆B2∆B3�
�
2

.  

Which is always true if 𝑅𝑅𝑜𝑜 < 1.So, the proposed technique is linearizable D. 
Linearization of equilibria 𝐸𝐸 = (𝑆𝑆1,𝐸𝐸1, 𝐼𝐼1,𝑅𝑅1) and 𝑅𝑅𝑜𝑜 > 1. 

 𝐽𝐽(𝐸𝐸) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
1+ℎ𝜎𝜎1∆𝐵𝐵1
1+ℎ𝛽𝛽𝐼𝐼1+ℎ𝜇𝜇

0 − (𝑆𝑆1+ℎ∧+ℎ𝜎𝜎1𝑆𝑆1∆𝐵𝐵1)ℎ𝛽𝛽
(1+ℎ𝛽𝛽𝐼𝐼1+ℎ𝜇𝜇)2

0
ℎ𝛽𝛽𝐼𝐼1

1+ℎ𝛼𝛼1+ℎ𝜇𝜇
1+ℎ𝜎𝜎2∆𝐵𝐵2
1+ℎ𝛼𝛼1+ℎ𝜇𝜇

ℎ𝛽𝛽𝑆𝑆1
1+ℎ𝛼𝛼1+ℎ𝜇𝜇

0

0 ℎ𝛼𝛼1
1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)

ℎ𝜎𝜎3∆𝐵𝐵3
1+ℎ(𝛼𝛼2+𝜇𝜇+𝛽𝛽)

0

0 0 ℎ𝛼𝛼2
1+ℎ𝜇𝜇

1+ℎ𝜎𝜎4∆𝐵𝐵4
1+ℎ𝜇𝜇 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
Figure 5: Spectral radius of Jacobean matrix for endemic equilibria (EE) 

The largest eigen value of J(E) is less than one, eventually remaining two eigen values 
are also less than one. So, the proposed technique is locally asymptotical stable (LAS) 
around E. 
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(c)      (d) 

Figure 6: (a) Converges behavior of compartment when h=0.1 (b) Converges behavior 
of compartment when h=100 (c) Exposed humans when h=0.1 (d) First run for exposed 
humans when h=100 

4.5 Contrast section 
The contrast of existing numerical techniques has presented below as: 

 
(a)                    (b) 

 
(c)                     (d) 

Figure 7: (a) First run for exposed humans with Euler Mayuyama (b) Exposed humans’ 
behavior with stochastic Euler (c) Second run for exposed humans with stochastic Runge 
Kutta (d) Exposed humans’ behavior with stochastic Runge Kutta 
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4.6 Covariance of model 
The covariance of model for each compartment has presented. In Tab. 3, the relationship 
quantity and its consequences are described. 

Table 3: Relationship Quantity 

Population Compartments Relationship Coefficient (𝜌𝜌) Relationship 
(𝑆𝑆,𝐸𝐸) −0.8410 Inverse 
(𝑆𝑆, 𝐼𝐼) −0.8922 Inverse 
(𝑆𝑆,𝑅𝑅) −0.9091 Inverse 
(𝐸𝐸, 𝐼𝐼) 0.9676 Direct 
(𝐸𝐸,𝑅𝑅) 0.9832 Direct 
(𝐼𝐼,𝑅𝑅) 0.9466 Direct 

We have noticed in Tab. 3, inverse relationship has among susceptible compartment and 
remaining three sections. Exposed population is directly correlated with infected and 
recovered populations. There is also a direct relationship between infected and recovered 
population. So, increase the individuals in susceptible section means population have 
moved to disease free equilibrium (DFE). 

5 Results and discussion 
In Fig. 2, the Euler Maruyama behaves well for h=0.1 at disease free equilibrium (DFE) 
but it diverges for h=0.001 at endemic equilibrium (EE). Furthermore, we have observed 
more runs at same time step size the given scheme shows negativity, unexpeted flucations 
and eventually diverge. It means we can not study the malaria dynamics in the human 
poulation over long period of time by Euler Maruyama method. In Fig. 3, stochastic 
Euler method behaves same as Euler Maruyama method. But in Fig. 4, stochastic Runge 
Kutta shows unexpected flucation, negativity and even diverge for certain runs. In Fig. 6, 
the stochastic non standard finite difference (SNSFD) method shows always convergence 
at any time step size and even for any run. We have claim that the stochastic non standard 
finite difference (SNSFD) method is most convient strategy to the study the malaria 
dynamics in the human poulation over long period. In Fig. 7, the efficency of stochastic 
non standard finite difference (SNSFD) method at different time step sizes and runs. 
Also, the deterministic solution called the averages of stochastic solutions. So, we have 
claim our proposed method is strcuture preserving method. 

6 Conclusion and future framework 
Comparatively, the numerical treatment for the stochastic malaria model gives a better 
understanding of disease dynamics. The Euler Maruyama, stochastic Euler and stochastic 
Runge-Kutta behave well for very small-time step sizes and may diverge for relatively 
for large step sizes. The newly constructed stochastic non standard finite difference 
(SNSFD) method works better for any partition of interval and absorbed the dynamical 
features defined by Mickens [Mickens (2005)] in stochastic sense. We have claim 
stochastic analysis of model is most effective and real as compared to deterministic 
analysis of model. No doubt they are connected to each other. In future, we shall extend 
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our work in stochastic fractional order systems [Salahsour, Ahmadian, Senu et al. (2015)]. 
Moreover, we shall extend this idea in neural network based finite time control and 
stochastic resonance dynamics as presented in Wang et al. [Wang, Zhang, Zhou et al. 
(2019); Deivalakshmi, Palanisamy and Gao (2019)]. 
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