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Abstract: The classical iterative methods for finding roots of nonlinear equations, like 
the Newton method, Halley method, and Chebyshev method, have been modified 
previously to achieve optimal convergence order. However, the Householder method has 
so far not been modified to become optimal. In this study, we shall develop two new 
optimal Newton-Householder methods without memory. The key idea in the 
development of the new methods is the avoidance of the need to evaluate the second 
derivative. The methods fulfill the Kung-Traub conjecture by achieving optimal 
convergence order four with three functional evaluations and order eight with four 
functional evaluations. The efficiency indices of the methods show that methods perform 
better than the classical Householder’s method. With the aid of convergence analysis and 
numerical analysis, the efficiency of the schemes formulated in this paper has been 
demonstrated. The dynamical analysis exhibits the stability of the schemes in solving 
nonlinear equations. Some comparisons with other optimal methods have been conducted 
to verify the effectiveness, convergence speed, and capability of the suggested methods. 
 
Keywords: Iterative method, householder method, simple root, optimal convergence, 
nonlinear equation. 

1 Introduction 
Many iterative schemes for finding roots of nonlinear equations  have been 
introduced. Traub presented the general theory of iterative schemes for solving nonlinear 
equations numerically [Kumar, Sharma and Argyros (2020)]. New ideas are continuously 
being developed for constructing better iterative schemes, see for example, Noor et al. 
[Noor, Waseem, Noor et al. (2015); Alharbi, Faisal, Shah et al. (2019); Argyros, Behl, 
Machado et al. (2019); Herceg and Herceg (2018); Kumar, Maroju, Behl et al. (2018); 
Solaiman, Karim and Hashim (2018); Solaiman and Hashim (2019); Waseem, Noor, 
Shah et al. (2018); Wang and Tao (2020)].  
Newton’s method is the most well-known method to find a simple root of a nonlinear 
equation, and it is given below: 
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                 (1) 

The convergence rate is quadratic provided that the initial guess is close enough to the 
real root. Householder [Abbasbandy (2003)] introduced an iterative scheme that reaches 
to the third order of convergence:  

               (2) 

Noor et al. [Noor, Aslam and Momani (2007)] suggested a two-step Householder 
scheme, which is the Newton method as a predictor and the Householder method as a 
corrector. This scheme has sixth order of convergence: 

               (3) 

Several years later, Nazeer et al. [Nazeer, Tanveer, Min et al. (2016)] presented a new 
two-step Householder scheme that is free from second derivatives. The scheme was 
modified to achieve the fifth order of convergence: 

            (4) 

All of the methods mentioned above did not achieve optimal order of convergence in the 
sense of the Kung-Traub conjecture [Behl, Alshomrani and Magreñán (2019)], which 
states that an optimal iterative method without memory can reach the highest order of 
convergence at  by  number of functional and derivative evaluations. The 
effectiveness of the iterative method can be evaluated using the Efficiency Index that was 
introduced by Ostrowski [Liu and Wang (2010)], which is 

                  (5) 

where  is the value of convergence order, and  is the total number of functional 
evaluations and derivatives per iteration. 
Since the method presented by Nazeer et al. [Nazeer, Tanveer, Min et al. (2016)] cannot 
achieve optimal order, we suggest developing a new optimal Newton-Householder 
method with improved efficiency as compared to the previous works [Abbasbandy 
(2003); Nazeer, Tanveer, Min et al. (2016); Noor, Aslam and Momani (2007)]. The rate 
of convergence for our proposed method has been validated and supported by numerical 
experiments. Furthermore, we also explore their dynamic behavior in the complex plane, 
which provides us information about the convergence, divergence, and stability of the 
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suggested methods to ensure the competitiveness of our methods. 

2 New suggested methods 
In this section, we shall modify the Newton-Householder method that was presented by 
Noor et al. [Noor, Aslam and Momani (2007)] to get two optimal schemes with a fewer 
number of function and derivative evaluations. The modification avoids the second 
derivative in the original method and reaches the optimal convergence order.  

2.1 Optimal two-step fourth-order method 
We consider a combination of the Newton method and Householder method which was 
suggested by Noor et al. [Noor, Aslam and Momani (2007)] as follows: 

                (6) 

Now, taking the approximations of the first and second derivatives in Eq. (6) as 

                 (7) 

gives a new optimal order method with three functional and derivative evaluations in the 
two-step method: 

                (8) 

where  

2.2 Optimal three-step eighth-order method 
By utilizing the ideas from Eq. (8), we add one more step as the Newton method to 
achieve an optimal eight method: 
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               (9) 

The scheme achieves optimal order, but it still does not fulfill the Kung-Traub conjecture. 
Hence, we take the following approximation: 

               (10) 

with 

            (11) 

where  is an analytical function in the neighborhood of . Therefore, 
the final scheme of the eighth-order Newton-Householder is 

             (12) 

where ,  and . 

3 Convergence analysis 
In Theorems 1 and 2, we show the convergence orders of the schemes in Eqs. (8) and (12). 
Theorem 1. Assume that the function  for an open interval  has a 
simple root . Let  be sufficiently smooth in the interval . Then, the order 
of convergence of the new method described by Eq. (8) is four and meets the following 
error equation: 

               (13) 

Proof. Let  be a simple root of , i.e.,  and . By using the 
Taylor series expansion, we have 
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       (14) 

or we can write  as 

            (15) 

where , and  for . Expanding  at , we get 

                        (16) 

By substituting Eqs. (15) and (16) into the first substep of the proposed method Eq. (8), 
we obtain: 

          (17) 

Now, using Eq. (17) and expanding it in the form of a Taylor series, we obtain: 

          (18) 

Hence, from Eqs. (15)-(18) we get: 

       (19) 

Substituting Eqs. (15)-(19) into the second substep of the suggested method Eq. (8), we 
get the following error: 

               (20) 

This complete the proof. 
Theorem 2. Assume that the function  for an open interval  has a simple 
root . Let  be sufficiently smooth in the interval . Then, the order of convergence 
of the new method defined by Eq. (12) is eight and satisfies the following error equation: 

            (21) 

Proof. Let  and  for . By applying , the Taylor 

expansion of  at  yields 

         (22) 
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Expanding  using the Taylor series around , we get 

         (23) 

Substituting Eqs. (22) and (23) into the first substep of the iterative scheme in Eq. (12), 
we get 

            (24) 

where  
 

 
 

 

 

Using Eq. (24) and the Taylor series expansion, we get the following equation: 

           (25) 

where  are given in terms of . Using the expressions 
in Eqs. (22)-(25), we have: 

 

        (26) 

where  are given in terms of . 

Inserting Eqs. (23)-(26) into the second substep of the iterative scheme yields: 

             (27) 

where 
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We obtain the following expression by taking Eq. (27) and the Taylor series expansion: 

          (28) 

Substituting expressions in Eqs. (22), (25) and (28) into the expressions for ,  and  in 
the iterative scheme in Eq. (12) gives: 

            (29) 

            (30)  

          (31)  

where ,  and  are given in 

terms of . 

Using Eqs. (22)-(31) in the third substep of the iterative scheme I Eq. (12), we will obtain 
the following error: 

            (32) 

This error proves that the iterative method presented in Eq. (12) reaches the eighth order 
of convergence. 

4 Numerical analysis 
In this section, we carry out some tests to verify the effectiveness and efficiency of the 
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suggested methods. All the test functions are taken from the paper [Behl, Maroju and 
Motsa (2017)] and are related to applied problems such as the chemical equilibrium 
calculation and kinetic problem. To examine the effectiveness of the proposed method, 
we name our scheme in Eq. (8) as  and Eq. (12) as  and make comparisons 
with the existing schemes of previous researchers: 
1. Chun [Chun (2007)] introduced a fourth-order method that is free from derivatives to 
solve nonlinear equations. We label this scheme as . 

                       (33)  

2. The second method we shall consider is the fourth-order method of Soleymani 
[Soleymani, Khattri and Vanani (2012)]. We label this scheme as . 

                (34) 

3. Next, we consider the fourth-order scheme of Maheshwari [Maheshwari (2009)]. The 
scheme is denoted as MM4. 

                                                                 

(35) 

4. Next, we consider the fourth-order method by Behl et al. [Behl, Maroju and Motsa 
(2017)] ( ) that is free from the second derivative. 

                      

(36) 

where , , ,  and . Here, 
we take . 
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5. Lee et al. [Lee, Kim and Neta (2016)] presented a family of eighth-order iterative 
schemes. We selected the following and label it as LM8: 

                         (37) 

where  and . 

6. Lastly, we consider the eighth-order scheme of Maroju et al. [Maroju, Behl and Motsa 
(2016)] (MRM8): 

                       (38) 

where , , ,  and .  

We utilize multi-precision mathematical programming of Maple 18 to perform numerical 
computations on the test functions as listed in Tab. 1. We display the results of the tests 
which consist of the absolute difference between two consecutive iterations , 

absolute residual error of the corresponding function , CPU time in milliseconds 
(ms) and computational order of convergence (COC) that was presented by Cordero et al. 
[Cordero and Torregrosa (2007)]: 

             (39) 

All the computational results presented in the form of , which stands for 
 and up to 5000 significant digits to minimize the round-off error. Besides that, 

all the computational order convergence is calculated up to four significant digits (please 
see Tabs. 2-4 for the complete results). 
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Table 1: Test functions 

Test Functions  

  

  

  

  

Table 2: Numerical results for the function  

Method    
COC CPU Time 

 

1 5.6 (-1) 2.1 (0)   
2 2.5 (-2) 6.3 (-2) 3.995 188.0 

3 4.7 (-7) 1.2 (-6)   

 

1 2.6 (2) 6.7 (4)   

2 1.4 (52) 2.5 (21) Diverge - 

3 2.4 (259) 2.0 (104)   

 

1 5.7 (-1) 2.2 (0)   

2 2.7 (-2) 6.9 (-2) 3.394 188.0 

3 8.9 (-7) 2.2 (-6)   

 

1 5.1 (-1) 1.8 (0)   

2 1.8 (-2) 4.4 (-2) 3.535 188.0 

3 1.2 (-7) 3.1 (-7)   

 

1 4.0 (-1) 1.3 (0)   

2 5.6 (-3) 1.4 (-2) 4.414 188.0 

3 3.8 (-11) 9.5 (-11)   

 

1 2.0 (-1) 5.7 (-1)   
2 4.4 (-6) 1.1 (-5) 7.857 141.0 

3 1.1 (-42) 2.7 (-42)   

 

1 8.1 (-2) 2.2 (-1)   

2 1.8 (-9) 4.5 (-9) 7.972 219.0 

3 1.8 (-70) 4.6 (-70)   

 

1 1.5 (-1) 4.3 (-1)   

2 1.4 (-7) 3.6 (-7) 8.151 250.0 

3 1.1 (-56) 2.6 (-56)   
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Table 3: Numerical results for the function  

Method    COC CPU 
Time 

 
1 9.3 (-3) 1.13 (-1)   
2 4.7 (-8) 5.6 (-7) 3.995 47.0 
3 3.2 (-29) 3.8 (-28)   

 

1 1.9 (-2) 2.3 (-1)   

2 8.8 (-7) 1.0 (-5) 3.987 47.0 

3 4.8(-24) 5.7 (-23)   

 
1 2.3 (-2) 2.9 (-1)   
2 2.2 (-6) 2.6 (-5) 3.982 47.0 
3 2.1 (-22) 2.5 (-21)   

 
1 1.3 (-2) 1.6 (-1)   
2 1.8 (-7) 2.1 (-6) 3.992 78.0 
3 6.9 (-27) 8.3 (-26)   

 
1 3.8 (-2) 4.3 (-1)   
2 6.3 (-6) 7.6 (-5) 4.217 47.0 
3 7.7 (-22) 9.2 (-21)   

 
1 2.4 (-4) 2.8 (-3)   
2 3.3 (-27) 3.9 (-26) 8.000 62.0 
3 4.2 (-210) 5.0 (-209)   

 
1 1.0(-4) 1.2 (-3)   
2 7.2 (-31) 8.5 (-30) 8.000 63.0 
3 3.7 (-240) 4.4 (-239)   

 
1 3.3 (-2) 4.2 (-1)   
2 6.4 (-12) 7.6 (-11) 7.996 78.0 
3 1.2 (-89) 1.5 (-88)   

Table 4: Numerical results for the function  

Method    
COC CPU Time 

 
1 1.6 (-3) 1.2 (-1)   
2 2.5 (-11) 1.8 (-9) 3.999 47.0 
3 1.4 (-42) 9.8 (-41)   

 
1 1.4 (-3) 1.0 (-1)   
2 1.6 (-11) 1.2 (-9) 3.999 47.0 
3 2.9 (-43) 2.1 (-41)   
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1 1.8 (-3) 1.3 (-1)   
2 4.4 (-11) 3.2 (-9) 3.999 47.0 
3 1.7 (-41) 1.2 (-39)   

 
1 1.6 (-3) 1.2 (-1)   
2 2.2 (-11) 1.6 (-9) 3.999 63.0 
3 8.8 (-43) 6.3 (-41)   

 
1 1.1 (-3) 8.1 (-2)   
2 1.2 (-12) 8.4 (-11) 4.001 47.0 
3 1.3 (-48) 9.6 (-47)   

 
1 1.6 (-5) 1.2 (-3)   
2 4.2 (-37) 3.0 (-35) 8.000 62.0 
3 8.3 (-290) 5.9 (-288)   

 
1 5.6 (-4) 6.2 (-2)   
2 1.2 (-23) 1.3 (-21) 8.000 63.0 
3 5.2 (-181) 5.6 (-179)   

 
1 1.0 (-5) 7.2 (-4)   
2 7.9 (-40) 5.6 (-38) 8.000 62.0 
3 1.1 (-312) 7.9 (-311)   

Table 5: Numerical results for the function  

Method    COC CPU Time 

 
1 1.6 (-2) 1.3 (8)   
2 9.3 (-12) 7.5 (-2) 4.000 94.0 
3 9.5 (-49) 7.6 (-39)   

 
1 4.8 (1710) 1.1 (11)   
2 3.2 (25714) 1.1 (11) Diverge - 
3 9.3 (385771) 1.1 (11)   

 
1 3.0 (-2) 2.4 (8)   
2 1.5 (-10) 1.2 (0) 4.000 94.0 
3 8.7 (-44) 7.0 (-34)   

 
1 1.9 (-2) 1.5 (8)   
2 1.6 (-11) 1.3 (-1) 4.000 110.0 
3 9.1 (-48) 7.3 (-38)   

 
1 2.3 (-2) 1.8 (8)   
2 1.0 (-11) 8.4 (-2) 4.001 110.0 
3 4.6 (-49) 3.7 (-39)   

 
1 2.9 (-5) 2.3 (5)   
2 1.3 (-45) 1.0 (-35) 8.000 125.0 
3 1.6 (-368) 1.3 (-358)   
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1 1.5 (-6) 1.2 (4)   
2 2.5 (-57) 2.0 (-47) 8.000 141.0 
3 1.3 (-463) 1.1 (-453)   

 
1 2.7 (-4) 2.1 (6)   
2 1.8 (-38) 1.4 (-28) 8.000 157.0 
3 7.7 (-312) 6.2 (-302)   

Figs. 1 to 6 show that the dynamics for  have fewer divergence points than  and are 
almost the same as that of , , . Our suggested method  has a wider region 

of convergence and is comparable to  and . For the test function ,  and 

 give better convergence regions than  and . We conclude that the proposed 
methods have fast convergence and greater stability based on the dynamical analysis. 

5 Dynamical analysis 
In this part, we plot the dynamical planes of the schemes , , , , , 

, , and  using the ideas represented in the paper [Chicharro, Cordero and 
Torregrosa (2013)] for stability comparisons. Using Mathematica 12, we took a mesh of 

 points in the region of the complex plane  and specified a 
color (purple, turquoise, yellow, red, blue) to each point whose orbit converges to the 
simple root and used black for those points whose orbits diverge from the root. A black 
point in the figure represents the zeros. We set a maximum of  iterations with a 
tolerance of  as the stopping criterion for convergence. The standard dynamic test 
functions are listed in Tab. 6. 

Table 6: Dynamics test functions and their roots 

Dynamic Test Functions List of Roots Dynamics Figure 

 

  
  

 1, 2 
  
  

 
  
 3, 4 

  

 

  
 5, 6 
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Figs. 1 to 6 show that the dynamics for  have fewer divergence points than  and are 
almost the same as that of , , . Our suggested method  has a wider region 
of convergence and is comparable to  and . For the test function ,  and 

 give better convergence regions than  and . We conclude that the proposed 
methods have fast convergence and greater stability based on the dynamical analysis. 

    

Figure 1: Dynamics of , ,  and , respectively for  

    

Figure 2: Dynamics of , ,  and , respectively for  

    

Figure 3: Dynamics of , ,  and , respectively for  

    

Figure 4: Dynamics of , ,  and , respectively for  
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Figure 5: Dynamics of , ,  and , respectively for  

    

Figure 6: Dynamics of , ,  and , respectively for  

5 Conclusion 
In this research, we constructed two new optimal Newton-Householder methods to find the 
simple roots of nonlinear equations. Based on theoretical analysis and numerical tests, we 
found that the new Newton-Householder methods achieve convergence order four and 
eight with a greater efficiency index  and , respectively, compared to 
the original Householder method [Abbasbandy (2003)] ( ), the methods of Noor 
et al. [Noor, Aslam and Momani (2007)]  and Nazeer et al. [Nazeer, Tanveer, 
Min et al. (2016)] . The dynamics also verified the convergence analysis and 
numerical analysis of the suggested methods and showed that the modified Newton-
Householder methods could compete with the existing schemes. Thus, the newly proposed 
methods contribute to the improvement of the Householder method. 
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