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Abstract: In today’s fourth industrial revolution, various blockchain technologies are 
being actively researched. A blockchain is a peer-to-peer data-sharing structure lacking 
central control. If a user wishes to access stored data, she/he must employ a private key to 
prove ownership of the data and create a transaction. If the private key is lost, blockchain 
data cannot be accessed. To solve such a problem, public blockchain users can recover 
the key using a wallet program. However, key recovery in a permissioned blockchain 
(PBC) has been but little studied. The PBC server is Honest-but-Curious (HBC), and 
should not be able to learn anything of the user; the server should simply recover and 
store the key. The server must also be resistant to malicious attacks. Therefore, key 
recovery in a PBC must satisfy various security requirements. Here, we present a 
password-protected secret sharing (PPSS) key recovery system, protected by a secure 
password from a malicious key storage server of a PBC. We describe existing key 
recovery schemes and our PPSS scheme. 
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1 Introduction 
A blockchain ensures the integrity of stored data and service availability [Liu, Yu, Chen 
et al. (2017)]. The blockchain generates a private user key that is employed to sign data. 
After signature, the transaction is propagated to the blockchain network to inform all 
about ownership of the data [Nakamoto (2019)]. Thus, the private user key is very 
important because it proves ownership of data when the signature appears in the 
blockchain. Therefore, the key must be secure. In a public blockchain, key management 
is performed within a personal software wallet, but stored key information may be leaked 
by an attacker who accesses the user’s wallet. Leakage compromises user data [He, Zeng, 
Zhang et al. (2018)]. However, a PBC uses a more reliable network and solves this 
problem by creating a separate key management authority. 
Motivating Example: One method of key recovery is a secret key distribution/storage 
technique. Secret values are fragmented and the pieces hidden in other objects [Wazod, 
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Das, Odelu et al. (2017)]. Secret key recovery is possible only by collecting at least k 
values from n secret variances [Harn, Xia, Hsu et al. (2020)]. If an attacker collects less 
than k values, the key cannot be recovered. However, it is difficult to apply the Shamir 
secret distribution technology to blockchain key recovery because there is no user 
authentication step, associated with a risk of spoofing attacks (by user mimics). Also, as 
the secret fragments are not encrypted, the secret is exposed. 
Thus, we developed a PPSS method; key recovery is authenticated via secret distribution 
and employment of a user password. PPSS was first proposed by the Bagherzandi group 
[Bagherzandi, Jarecki, Saxena et al. (2011)]. However, if an attacker attempts 
authentication and key recovery using many random passwords, it may be that one is in 
fact the user’s password. 
In this paper, we propose a key recovery system in a permissioned blockchain following 
contributions and organization: 
Contributions: To solve this problem, we add a data authentication value to the secret 
distribution value and encrypt the Ogata approach to confirm that the correct data have 
been received. The key that encrypts the secret fragment is itself encrypted with a 
knowledge-based symmetrical key that only the user knows. This ensures the 
confidentiality of secret fragmentation and user authentication. The key recovery server 
does not know the secret because the secret distribution value is encrypted and 
transmitted. In addition, users authenticate other users via their abilities to recover secrets. 
In addition, as the secret fragment bears a hash value, a forgery can be detected early 
even if the secret fragment is not completely recovered. 
Organization: The structure of the paper is as follows. Section 2 describes relevant studies. 
Section 3 describes the PPSS and Ogata schemes that form the basis of the paper. Section 4 
describes the security requirements of key recovery. Section 5 describes our new PPSS 
scheme that blocks malicious servers. Section 6 analyzes the security requirements of the 
new method and compares the calculations to those of existing PPSS schemes. 

2 Related work 
In this section, we research related work. First, a blockchain will be described, as will 
variations in blockchain environments caused by structure and network configurations. 
Second, the key recovery techniques of existing blockchains will be discussed, and the 
secret distribution technique of Shamir. 

2.1 Blockchain 
A blockchain was first proposed in 2009 by Satoshi Nakamoto. Bitcoin is not issued and 
managed by a central bank. In a peer-to-peer network, all participants form a network that 
uses a distributed database with the same ledger [Li, Zhang, Luo et al. (2019)]. A blockchain 
is a list of records that grows continuously (a type of distributed database) and cannot be 
manipulated by distributed node operators. A bitcoin blockchain collects bitcoin transaction 
histories, creates and records blocks, and periodically creates special blocks that connect with 
the front block, generating data in the form of chains. As the periodically generated blocks are 
connected in order of creation, it is difficult to forge data because it would be necessary to 
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modulate all data [Zhang, Zhong, Wang et al. (2020)]. Recall that a blockchain lacks a 
management server; data are shared by all participants. It is very difficult to falsify data; it 
would be necessary to tamper with over 51% of the total computing power [Ismail, Matter, 
Walla (2019)]. Blockchain is a permission-free environment. Blockchain participants can be 
publicly configured without any restrictions. In a PBC, only a predetermined node can form a 
blockchain network; that node may provide a specific function agreed upon in advance. A 
PBC can be subdivided into public and private environments depending on the blockchain 
data to be accessed. Again, a user must keep the private key safe. As there are no trusted 
institutions in an unlicensed blockchain, users must often perform key recovery unaided. In a 
PBC, there are several ways by which a user can recover a key. 

2.2 Keys and key recovery in a blockchain 
Blockchain key data must be securely stored and managed, as described above. In the early 
days of Bitcoin, the key management program was termed a wallet that stored and used all 
private keys. Employing the wallet, a user signed a transaction; if it was blocked, the 
transaction owner was identified using a public key [Liu, Li, Wang et al. (2017). The wallet 
created, stored, used, recovered, and retired keys. In general, public blockchains are 
unreliable; many methods of self-recovery are employed. 
The first advance in key recovery was a key encryption method. A key in the wallet was 
encrypted using a password known only to the user. However, the key may be leaked if it is 
recovered using the password. The second advance was to move the associated code to 
another medium for storage. This reconstituted the bits of an existing key by connecting 
words in different languages to words with designated bit lengths. The key can be easily 
recovered, but can be leaked if the other medium is stolen. A blockchain commonly focuses 
on user self-recovery. However, in an authorized blockchain, trusted permissions can be 
used for key recovery. Existing key recovery methods are described below. 

2.3 Shamir’s (k, n) secret sharing (SSS) 
The best-known, existing, key recovery method is secret distribution. In a PBC, the SSS 
scheme is used to distribute secret values for key recovery by a trusted third-party 
institution. SSS satisfies two properties: 
1) If a user gathers k-1 or less secret pieces, the secret is not recovered. 
2) The user must collect more than k shared values to recover the secret. 
The scheme is called the (k, n) threshold scheme; if k = n, all secret pieces are required to 
recover the secret. The secret data can be converted to numbers. The secret and shared 
areas are elements of a finite field 𝑍𝑍𝑝𝑝; the dealer constructs a polynomial of degree k − 1 to 
divide the secret value by n.  

3 Preliminaries 
PPSS encrypts and distributes secret sharing employing a password that only the user knows. 
We now describe the basic Bagherzandi PPSS scheme and the complementary Ogata scheme. 
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3.1 Bagherzandi et al. Scheme 
In general, Shamir’s secret sharing scheme works based on a trusted key storage server. 
In this environment, the user transmits the secret sharing value to the storage server in a 
state where the secret sharing value is revealed. However, this scheme has a disadvantage 
in that if the server attempts a collusion attack, it can recover the key without the user’s 
consent [Bagherzandi, Jarecki, Saxena et al. (2011)]. Bagherzandi first proposed the 
concept of PPSS to solve this problem. PPSS is a technique that calculates and transmits 
a user's secret shared value to a key storage server using a password known only to the 
user. Because of this, the secret shared value is secured with a password, it is a technique 
to prevent collusion attacks between servers [Hasegawa, Isobe, Iwazaki et al. (2015)]. 

3.1.1 Parameters 
The coefficients of the Bagherzandi et al. scheme are as follows. 
 c,𝑑𝑑: Password-protected value. 
 S: A set of n servers, such as (𝑆𝑆1,𝑆𝑆2,⋯ , 𝑆𝑆𝑛𝑛). 
 𝑝𝑝: Uesr passwords. 
 sk : User secrets. 

 𝑟𝑟𝑠𝑠, 𝑟𝑟𝑝𝑝, 𝑡𝑡𝑗𝑗: Random numbers. 
 𝑔𝑔: A generator of group G of prime order P. 

3.1.2 Distribution phase 
The key distribution steps follow. The user generates a private key, fragments it, and 
distributes it to the server. 
Step 1. The user calculates a private key. 
𝑠𝑠𝑠𝑠 ∈ 𝑍𝑍𝑝𝑝                                (1)  
Step 2. The user distributes the secret key value 𝑠𝑠𝑠𝑠 via SSS. 
𝑠𝑠𝑠𝑠 = (𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠𝑛𝑛)                             (2) 
(𝑐𝑐𝑠𝑠,𝑑𝑑𝑠𝑠) = (𝑔𝑔𝑟𝑟𝑠𝑠 ,𝑦𝑦𝑟𝑟𝑠𝑠 ∗ 𝑠𝑠𝑖𝑖)                                                  (3) 
�𝑐𝑐𝑝𝑝,𝑑𝑑𝑝𝑝� = (𝑔𝑔𝑟𝑟𝑝𝑝 ,𝑦𝑦𝑟𝑟𝑝𝑝 ∗ 𝑔𝑔𝑝𝑝)                  (4) 
Step 3. Subsequent secret distribution. 
(𝑐𝑐𝑠𝑠,𝑑𝑑𝑠𝑠), �𝑐𝑐𝑝𝑝,𝑑𝑑𝑝𝑝� to all 𝑆𝑆𝑖𝑖.                            (5) 

3.1.3 Reconstruction phase 
Key recovery includes the following steps: The user calculates a random value for the 
key recovery request and sends it to the server. The server returns a key fragment via the 
user’s random calculation. The user recovers the fragment of the private key. 
Step 1. The user chooses a random value 𝑟𝑟𝑝𝑝’ and calculates 𝑟𝑟𝑝𝑝’. 

�𝑐𝑐𝑝𝑝,𝑑𝑑𝑝𝑝� = (𝑔𝑔𝑟𝑟𝑝𝑝 ,𝑦𝑦𝑟𝑟𝑝𝑝 ∗ 𝑔𝑔𝑝𝑝)                     (6) 



 
 
 
A Key Recovery System Based on Password-Protected Secret                               157 

Step 2. The calculated value �𝑐𝑐𝑝𝑝,𝑑𝑑𝑝𝑝� is sent to all 𝑆𝑆𝑖𝑖. 

Step 3. A total of k 𝑆𝑆𝑗𝑗servers choose a random value 𝑡𝑡𝑗𝑗and derive 𝑐𝑐𝑝𝑝
𝑐𝑐𝑝𝑝′

,  𝑑𝑑𝑝𝑝
𝑑𝑑𝑝𝑝′

 using �𝑐𝑐𝑏𝑏𝑗𝑗 ,𝑑𝑑𝑏𝑏𝑗𝑗� =

(𝑔𝑔(𝑟𝑟𝑝𝑝−𝑟𝑟𝑝𝑝′)∗𝑡𝑡𝑗𝑗 ,𝑦𝑦(𝑟𝑟𝑝𝑝−𝑟𝑟𝑝𝑝′)∗𝑡𝑡𝑗𝑗 ∗ 𝑔𝑔
�𝑝𝑝−𝑝𝑝′�∗𝑡𝑡𝑗𝑗

) and �𝑐𝑐𝑏𝑏𝑗𝑗 ,𝑑𝑑𝑏𝑏𝑗𝑗�, and send these to the user. 

Step 4. The user computes �𝑐𝑐𝑏𝑏𝑗𝑗 ,𝑑𝑑𝑏𝑏𝑗𝑗� = (𝑔𝑔(𝑟𝑟𝑝𝑝−𝑟𝑟𝑝𝑝′)∗∑ 𝑡𝑡𝑗𝑗 ,𝑦𝑦(𝑟𝑟𝑝𝑝−𝑟𝑟𝑝𝑝′)∗∑ 𝑡𝑡𝑗𝑗 ∗ 𝑔𝑔�𝑝𝑝−𝑝𝑝′�∗∑𝑡𝑡𝑗𝑗), finds 
∏ 𝑐𝑐𝑏𝑏𝑗𝑗
𝑘𝑘
𝑗𝑗=1 , ∏ 𝑑𝑑𝑏𝑏𝑗𝑗

𝑘𝑘
𝑗𝑗=1 , and sends these to 𝑆𝑆𝑗𝑗. 

Step 5. 𝑆𝑆𝑗𝑗 computes (𝑐𝑐𝑎𝑎 ,𝑑𝑑𝑎𝑎) = (𝑔𝑔𝑟𝑟𝑠𝑠+(𝑟𝑟𝑝𝑝−𝑟𝑟𝑝𝑝′)∗∑𝑡𝑡𝑗𝑗 ,𝑦𝑦𝑟𝑟𝑠𝑠+(𝑟𝑟𝑝𝑝−𝑟𝑟𝑝𝑝′)∗∑ 𝑡𝑡𝑗𝑗 ∗ 𝑠𝑠 ∗ 𝑔𝑔�𝑝𝑝−𝑝𝑝′�∗∑𝑡𝑡𝑗𝑗)  and 
sends (𝑐𝑐𝑎𝑎 ,𝑑𝑑𝑎𝑎) to the user. 
Step 6. The user reconstructs 𝑐𝑐𝑎𝑎𝑥𝑥 and computes:  

𝑎𝑎0 = 𝑑𝑑𝑎𝑎 ∗ 𝑐𝑐𝑎𝑎−1 = 𝑠𝑠 ∗ 𝑔𝑔�𝑝𝑝−𝑝𝑝′�∗∑ 𝑡𝑡𝑗𝑗 (7) 
Step 7. If 𝑎𝑎0 = s, the passwords can match and s is reconstructed. 
However, an attacker can discover the password if two recovery attempts are made using 
values other than that of the password. To solve this problem, Ogata [Ogata (2013)] 
proposed the following PPSS scheme. 

3.2 Ogata scheme 
In the Bagherzandi scheme, if an attacker requests key recovery using a random value (not 
the user’s password), the server generates data employing the non-password and returns a 
value to the attacker. If the attacker does this at least twice, the password can be inferred 
because the exponential operation employs the password. Ogata used a threshold of 
�𝑘𝑘+1

2
,𝑛𝑛� instead of (k, n) when performing SSS. Password leakage was prevented by 

adding the value of [0(𝚤𝚤)]������� [Ogata (2013)]. The Ogata scheme prevents leakage of secrets 
via [0(𝚤𝚤)]�������𝑗𝑗. However, in terms of security, malicious server behavior remains possible.  

Table 1: A comparison between secret sharing and PPSS 

 Threshold Communication 
Amount 

Prevention of 
illegal key 
recovery 

Malicious 
behavior 

prevention 
SSS (𝑡𝑡,𝑛𝑛) 2n Not offered Not offered 

PPSS (𝑡𝑡,𝑛𝑛) 4n Offered Not offered 

Ogata ((𝑠𝑠 + 1)/2,𝑛𝑛) 2n Offered Not offered 

3.2.1 Parameters 
The Ogata’s scheme parameters are: 
 S: A set of n servers, such as (𝑆𝑆1,𝑆𝑆2,⋯ , 𝑆𝑆𝑛𝑛). 
 [𝑠𝑠]𝚤𝚤�����: The share of 𝑠𝑠 for player S𝑖𝑖. 
 [𝑠𝑠]𝑖𝑖: A set of shares, such as ([𝑎𝑎𝑠𝑠]𝚤𝚤������, [𝑎𝑎0]𝚤𝚤������,⋯ [𝑎𝑎𝑘𝑘−1]𝚤𝚤���������). 
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 𝑝𝑝: User passwords. 
 𝑠𝑠: User secrets. 
 𝑟𝑟𝑠𝑠, 𝑟𝑟𝑝𝑝, 𝑡𝑡𝑗𝑗: Random numbers. 

3.2.2 Distribution phase 
The key distribution steps follow. The user generates a private key, fragments it, and 
distributes it to the server. 
Step 1. The user generates [𝑠𝑠]𝚤𝚤�����  using the ((𝑠𝑠 + 1)/2,𝑛𝑛)  threshold scheme. [𝑃𝑃]𝚤𝚤����� 
calculates this and sends it to all 𝑆𝑆𝑖𝑖. 

3.2.3 Reconstruction phase 
Key recovery proceeds as follows. A user calculates a random value for the key recovery 
request and sends it to the server. The server returns a key fragment via the user’s random 
calculation. The user employs this to recover the original private key. 
Step 1. The user employs  ((𝑠𝑠 + 1)/2,𝑛𝑛) scheme to generate [𝑃𝑃]𝚤𝚤����� and send it to all 𝑆𝑆𝑖𝑖 
servers. 
Step 2. All servers 𝑆𝑆𝑖𝑖 select a random number r(i) and then proceed with secret sharing 
using the ((𝑠𝑠 + 1)/2,𝑛𝑛) SSS scheme. And servers 𝑆𝑆𝑖𝑖 distribute 0 using (𝑠𝑠,𝑛𝑛) SSS and 
send [𝑟𝑟(𝚤𝚤)]𝚥𝚥�������� and [0(𝚤𝚤)]𝚥𝚥��������� to servers 𝑆𝑆𝑗𝑗 (𝑗𝑗 = 0,⋯𝑠𝑠 − 1). 
Step 3. Server 𝑆𝑆𝑗𝑗 proceeds with the following calculation. 

[𝐷𝐷]𝚥𝚥������ = �[𝑃𝑃]𝚥𝚥����� − [𝑃𝑃′]𝚥𝚥�������∑ [𝑟𝑟(𝚤𝚤)]�������𝑗𝑗𝑛𝑛−1
𝑗𝑗=0 + [𝑠𝑠]����𝑗𝑗 +∑ [0(𝚤𝚤)]�������𝑗𝑗𝑛𝑛−1

𝑗𝑗=0                    (8) 

Step 4. The server sends [𝐷𝐷]𝚥𝚥������ to the user. 

Table 2: Components and notation of the model threat and security scenario 

𝐴𝐴𝑑𝑑 HBC Adversary: This is the agent playing the role of the HBC 
adversary, thus the PBC key recovery server, which includes participants. 

𝑈𝑈 User: A participant in the PBC who stores a private key in the key 
recovery server. 

𝑚𝑚1, …𝑚𝑚𝑛𝑛 Message: A sequence of one or more informational items sent as a single 
unit. We assume that a message is sent by a single sender. 

[𝑠𝑠]𝚤𝚤����� Private Key: The private user key value distributed to and stored in the 
storage server S𝑖𝑖 . 

[𝑠𝑠]𝑖𝑖 
Secret distribution fragment: A secret fragment that can recover a user’s 
private key  ([𝑎𝑎𝑠𝑠]𝚤𝚤������, [𝑎𝑎0]𝚤𝚤������,⋯ [𝑎𝑎𝑘𝑘−1]𝚤𝚤���������). 

𝐸𝐸([𝑠𝑠]𝑖𝑖 , ℎ([𝑠𝑠]𝑖𝑖)) PPSS ciphertext: Ciphertext encrypted with the key of the user’s 
knowledge base for secret fragment [𝑠𝑠]𝑖𝑖 

Verifiable [𝑆𝑆𝑖𝑖]← 𝑟𝑟 Key verification value: The server verifies a legitimate user’s request by 
extracting the PPSS using the user parameter 𝑟𝑟. 

𝐻𝐻(𝑠𝑠) Cryptographic hash: An integrity check of the secret piece 𝑠𝑠 left by the 
user. 
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Step 5. The user computes 𝑠𝑠 by collecting all the [𝐷𝐷]𝚥𝚥������ strings. If the passwords match, 
recovery proceeds; if the passwords do not match, random values are displayed. 
Tab. 1 compares the three schemes. In the SSS scheme, the secret is distributed by applying 
a threshold value, but a collusion attack by the storage servers would reveal the secret 
value. The shared value is password-protected in the PPSS scheme; attacks are prevented. 
However, as explained above, if an attacker uses a strange password, the password may be 
leaked. The Ogata scheme prevents password leakage by adjusting the threshold of the 
secret distribution value, but malicious servers remain problematic. Thus, our scheme 
explores whether the server is malicious by adding a parameter that verifies the value of the 
secret when the user first creates it. 

4 Security models 
In this section, we design a model for key recovery in a PBC. Section 4.1 describes 
security threats and adversaries. Subsection 4.1.1 defines the HBC adversary and 
adversarial participants (servers and users) in a PBC. Subsection 4.1.2 describes the 
security threats to a PBC posed by the key recovery scheme. We use the components and 
notation defined in Tab. 2. Section 4.2 analyzes the security requirements.  

4.1 Security threat and adversary 
4.1.1 The honest-but-curious adversary 
For protocol analysis in general, the best-known adversary model is the Dolev-Yao (DY) 
model [Dong and Muller (2018)]. The model is one of the strongest possible adversaries in 
terms of capabilities. In the ideal case, security and privacy would be safe even against a DY 
adversary. However, in some cases, the DY adversary is too strong to be used in a realistic 
model of the system. The key recovery system must be protected from external DY attackers. 
However, legitimate participants in protocols (such as key recovery agencies) cannot 
realistically model DY antagonists. Various factors, including regulatory, auditing, and 
oversight concerns, as well as a desire to maintain a good reputation, limit the functionality of 
the key recovery server. However, although a DY model is not appropriate here, this does not 
necessarily mean that the key recovery server is not adversarial. We therefore model the agent 
as semi-honest [Paverd, Martin and Brown (2014)] or HBC, defined as follows: 
Definition 1 (Honest-But-Curious Adversary). The HBC adversary is a legitimate 
participant who will not deviate from a defined communication protocol but attempts to 
learn all possible information from legitimately received messages. In a PBC, all 
participants are HBC. Therefore, all content can be collected and stored to calculate user 
information correctly according to the protocol. 
Definition 2 (Adversarial capabilities). The PBC key recovery agency (a server) 
observes and collects secret key fragments and key data generated by users. Other 
participants can access the network to observe the communication process and acquire data. 

4.1.2 Security threat 
Tab. 2 describes objects and elements used to model threats to the key recovery system 
of a PBC. 
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Message sniffing 
The PBC key recovery server, and participants, can learn user information because they are 
HBC. When a user sends a plaintext key or a secret key fragment to a key storage server, an 
attacker can observe and collect that value via eavesdropping. During key recovery, an 
attacker can obtain the key and the secret fragment values, and recover the key. 
Threat Scenario 1 (Message sniffing):  𝑈𝑈([𝑠𝑠]𝚤𝚤�����) → 𝐴𝐴𝑑𝑑 || 𝑈𝑈([𝑠𝑠]𝑖𝑖 ⟷
[𝑎𝑎𝑠𝑠]𝚤𝚤������, [𝑎𝑎0]𝚤𝚤������,⋯ [𝑎𝑎𝑘𝑘−1]𝚤𝚤���������) → 𝐴𝐴𝑑𝑑, 𝐴𝐴𝑑𝑑 ∶ 𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑦𝑦 ��[𝑠𝑠]𝑖𝑖 , [𝑎𝑎𝑠𝑠]𝚤𝚤������, [𝑎𝑎0]𝚤𝚤������,⋯ [𝑎𝑎𝑘𝑘−1]𝚤𝚤����������� ⟷  [𝑠𝑠]𝚤𝚤����� 

Message spoofing 
The recovery server of the PBC employs user information in an HBC manner. An attacker 
tricks the user into also attacking. Participants in a malicious PBC can attack the user by 
tricking the user into acting as a key recovery server for a legitimate user or by obtaining a 
secret distributed value disguised by a user and sent to another key storage server. 
Threat Scenario 2 (Message spoofing): 𝑈𝑈([𝑠𝑠]𝚤𝚤�����) → 𝐴𝐴𝑑𝑑||𝑈𝑈([𝑠𝑠]𝑖𝑖, [𝑎𝑎𝑠𝑠]𝚤𝚤������, [𝑎𝑎0]𝚤𝚤������,⋯ [𝑎𝑎𝑘𝑘−1]𝚤𝚤���������) =
→ 𝐴𝐴𝑑𝑑, 𝐴𝐴𝑑𝑑 ∶ 𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑦𝑦 ��[𝑠𝑠]𝑖𝑖 , [𝑎𝑎𝑠𝑠]𝚤𝚤������, [𝑎𝑎0]𝚤𝚤������,⋯ [𝑎𝑎𝑘𝑘−1]𝚤𝚤����������� ⟷ [𝑠𝑠]𝚤𝚤����� 

Collusion of participants 
The key recovery server of the PBC publicizes user information because the server is HBC. 
Key recovery servers collaborate to rebuild a user key. Participants in a malicious PBC can 
recover user keys by collecting an adequate number of secret key fragments. 
Threat Scenario 3 (Collusion of participants): 𝑈𝑈([𝑠𝑠]𝚤𝚤�����) →
𝐴𝐴𝑑𝑑 || 𝑈𝑈([𝑠𝑠]𝑖𝑖 , [𝑎𝑎𝑠𝑠]𝚤𝚤������, [𝑎𝑎0]𝚤𝚤������,⋯ [𝑎𝑎𝑘𝑘−1]𝚤𝚤���������) =→ 𝐴𝐴𝑑𝑑 , 𝐴𝐴𝑑𝑑 ∶
𝑟𝑟𝑟𝑟𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑦𝑦 ��[𝑠𝑠]𝑖𝑖 , [𝑎𝑎𝑠𝑠]𝚤𝚤������, [𝑎𝑎0]𝚤𝚤������,⋯ [𝑎𝑎𝑘𝑘−1]𝚤𝚤����������� ⟷ [𝑠𝑠]𝚤𝚤����� 

4.2 Security requirements 
Key recovery schemes must be authenticated, and must prevent illegal key recovery and 
malicious behavior, the three basic elements of security are confidentiality, integrity, and 
availability [Abidin, Rúa and Preneel (2016)].  
1) Confidentiality: Transmitted information must be protected against eavesdropping or 
surveillance. 
2) Integrity: Transmitted information should not be forged or altered by third parties. 
3) Availability: The key should be recoverable whenever the user wishes. 
4) Authentication: It is necessary to confirm that the recovery request message is from 
the real user. 
5) Spoof attack prevention: Third parties cannot masquerade as users or service providers. 
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Figure 1: A model of our scheme 

 
Figure 2: The scenario of our scheme 
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6) Prevention of illegal key recovery: It must be impossible for servers with 
fragmented secret information to collaborate to recover keys. 
These security requirements are basic. The key storage server is HCB, and a legitimate 
participant, but must not be able to learn or exploit other information. For an HCB server, 
it is important to prevent malicious operation. Objects with fragmented shared keys must 
not be able to give false responses or tamper with data. 
The key recovery protocol for an HBC PBC is a synchronous distributed algorithm over n 
nodes, with up to f=k−1 malicious or faulty nodes, where n=2f+1. The user provides 
initial inputs to all nodes. Note that verification is performed over some random prime 
field vp and not over the RSA modulus N (vp>N). The detailed protocols are introduced 
in Section x and the security requirements are analyzed using the security model of 
Section 6.  

5 Our scheme 
The plan is that for the blockchain of Fig. 1. The method features a user and a key storage 
server; stored secret data are password-protected and the key storage server is unknown. 
The method checks whether the key storage server is performing malicious actions when 
recovering the key; the password does not leak during this action. 
The scheme features distribution and reconstruction steps (Fig. 2). In the key distribution 
step, the user’s secret value is fragmented employing the Shamir method and 
exponentiation performed employing the user’s password. A confirmation value is 
calculated using the divided secret value and other coefficients, and distributed to all 
servers. In the reconfiguration step, an arbitrary value is determined and a cryptographically 
calculated value transmitted to the server. Then, the returned value is collected and 
calculated to recover the password. After recovering the password, the confirmation value 
is recovered using the password and compared to the user’s secret value. This detects 
malicious behavior. 

5.1 Parameters 
The parameters assume that there are several key storage servers. The components are the 
key recovery users and key storage servers. Secret distribution and key recovery are 
performed using the PPSS equations and the user’s password. 
 *: Participating object (User performing key recovery: User, Key store server: Server). 
 𝑛𝑛: The number of servers. 
 𝑠𝑠: The threshold required to restore the secret. 
 𝑍𝑍𝑃𝑃: Finite filed on prime numbers. 
 S: A set of n servers, such as (S1, S2,⋯ , S𝑛𝑛−1). 
 [𝑠𝑠]𝚤𝚤�����: A share of 𝑠𝑠 for player S𝑖𝑖. 
 [𝑠𝑠]𝑖𝑖: A set of shares, such as ([𝑎𝑎𝑠𝑠]𝚤𝚤������, [𝑎𝑎0]𝚤𝚤������,⋯ [𝑎𝑎𝑘𝑘−1]𝚤𝚤���������). 
 𝑝𝑝: Uesr passwords. 
 𝑠𝑠: User secrets. 
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 𝑟𝑟𝑠𝑠, 𝑟𝑟𝑝𝑝, 𝑡𝑡𝑗𝑗: Random numbers. 
 𝑔𝑔: A generator of group G of prime order P. 

 5.2 Distribution phase 
The key distribution phase is divided into a key generation step that uses the SSS to divide 
the keys, and a password calculation step that protects the secret shared values. In the key 
generation step, the user generates a private key and devises a secret value using the ((k +
1)/2, n)  SSS. In the key calculation step, password-protected data are generated by 
calculating the secret shared value created in the key generation step using a password that 
only the user knows. After generating the data, the value is sent to the server.  

5.2.1 Key generation step 
The user first generates a private key and divides it into secret fragments using the SSS. 
Step 1. The user chooses private keys.  
𝑠𝑠𝑠𝑠 ∈ 𝑍𝑍𝑝𝑝  (9) 
Step 2. The user divides the private key value 𝑠𝑠𝑠𝑠 using SSS. 
𝑠𝑠𝑠𝑠 = (𝑠𝑠1, 𝑠𝑠2,⋯ , 𝑠𝑠𝑛𝑛)                  (10) 

5.2.2 Key calculation step 
The key calculation step involves calculating a password for a random value selected by a 
user and the user’s secret shared value. The node is verified as non-malicious and the 
calculated value sent to the servers.  
Step 1. The user chooses a random value 𝑟𝑟𝑝𝑝 and the password 𝑝𝑝 and calculates. 

[𝑃𝑃]𝚤𝚤����� = �𝑐𝑐𝑝𝑝,𝑑𝑑𝑝𝑝� = (𝑔𝑔𝑟𝑟𝑝𝑝 ,𝑦𝑦𝑟𝑟𝑝𝑝 ∗ 𝑔𝑔𝑝𝑝)                                     (11) 
Step 2. The user selects a random value 𝑟𝑟𝑠𝑠 and encrypts the private key value 𝑠𝑠 using 
((𝑠𝑠 + 1)/2,𝑛𝑛) SSS. 
[𝑠𝑠]𝚤𝚤����� = (𝑐𝑐𝑠𝑠,𝑑𝑑𝑠𝑠) = (𝑔𝑔𝑟𝑟𝑠𝑠 ,𝑦𝑦𝑟𝑟𝑠𝑠 ∗ 𝑠𝑠𝑖𝑖)                                    (12) 
Step 3. An 𝑟𝑟𝑠𝑠 value is generated to identify the secret sharing value 𝑠𝑠. 
𝑟𝑟𝑠𝑠 = (𝑦𝑦𝑝𝑝 ∗ 𝑠𝑠)                                      (13) 
Step 4. The user sends [𝑠𝑠]𝚤𝚤�����, [𝑃𝑃]𝚤𝚤�����, 𝑟𝑟𝑠𝑠 to all servers 𝑆𝑆𝑖𝑖. 
Step 5.  All servers 𝑆𝑆𝑖𝑖 store  [𝑠𝑠]𝚤𝚤�����, [𝑃𝑃]𝚤𝚤�����, 𝑟𝑟𝑠𝑠 

5.3 Reconstruction phase 
The key reconstruction phase begins with the user selecting a random value and performing 
the password-protected calculation. The user sends the calculated value to the key storage 
server and recovers the secret 𝑠𝑠 via an operation requiring the password-protected secret 
shared value transmitted in the distribution phase. 
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5.3.1 Random value generation step 
During random value generation, the user selects a random value, applies the password, and 
transmits the result to the server. 
Step 1. The user calculates a ((𝑠𝑠 + 1)/2,𝑛𝑛) SSS using the random value 𝑟𝑟𝑝𝑝  and the 
known 𝑝𝑝′. 
[𝑃𝑃]𝚤𝚤����� = �𝑐𝑐𝑝𝑝,𝑑𝑑𝑝𝑝� = (𝑔𝑔𝑟𝑟𝑝𝑝 ,𝑦𝑦𝑟𝑟𝑝𝑝 ∗ 𝑔𝑔𝑝𝑝′)                                       (14) 
Step 2. The user sends [𝑃𝑃]𝚤𝚤����� to all servers 𝑆𝑆𝑖𝑖. 

5.3.2 Key reconstruction step 
The key reconstruction step restores the value calculated by the password sent by the user 
to the password-protected value stored by the user, and returns the result to the user. The 
user gathers the data, reconstructs the password, and verifies whether the node is malicious 
by calculating a verification value. 
Step 1. A total of k server 𝑆𝑆𝑗𝑗 perform the following calculation. 

[𝐷𝐷]𝚥𝚥������ = �[𝑃𝑃]𝚥𝚥����� − [𝑃𝑃′]𝚥𝚥�������∑ [𝑟𝑟(𝚤𝚤)]�������𝑗𝑗𝑛𝑛−1
𝑗𝑗=0 + [𝑠𝑠]����𝑗𝑗 +∑ [0(𝚤𝚤)]�������𝑗𝑗𝑛𝑛−1

𝑗𝑗=0                 (15) 

Table 3: An security comparison of two existing schemes and our new scheme 

 Bagherzandi  Ogata  Our scheme 

Confidentiality Secret Sharing + 
PPSS 

Secret Sharing 
+ PPSS 

Secret Sharing 
+ PPSS 

Integrity PPSS PPSS PPSS 
Availability Threshold Recovery Threshold Recovery Threshold Recovery 

Authentication PPSS PPSS PPSS 

Prevent spoofing 
attacks PPSS PPSS Validity Operation 

Prevention of illegal 
key recovery Not offered Validity value   

[0(𝚤𝚤)]������� Validity Operation 

Preventing 
malicious behavior Not offered Not offered 

Malicious nodes can be 
identified via 𝑟𝑟𝑠𝑠, the 
secret sharing 
verification value 

 
Step 2. The user computes 𝑠𝑠 by collecting all the [𝐷𝐷]𝚥𝚥������ strings.  
Step 3. The user recovers [𝐷𝐷]𝚥𝚥������ and computes: 

𝑎𝑎0 = [𝐷𝐷]𝚥𝚥������  ∗ 𝑐𝑐𝑎𝑎−1 = (𝑠𝑠 ∗ 𝑔𝑔�𝑝𝑝−𝑝𝑝′�∗∑ 𝑡𝑡𝑗𝑗)                    (16) 
Step 4. If the value calculated in (16) is 𝑎𝑎0 = 𝑠𝑠 , password can match and 𝑠𝑠  is 
reconstructed. 
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Step 5. The user verifies that s = (𝑟𝑟𝑠𝑠)−𝑝𝑝 and treats 𝑠𝑠 as normal if so. If there is no match, 
the node is malicious. 

6 Analysis 
6.1 Security 
We analyze existing schemes and our new scheme in terms of the key recovery algorithm 
for the PBC-blockchain-based HBC security model of Section 4.2 (Tab. 3). 

6.1.1 Security requirements 
 Confidentiality: Confidentiality is guaranteed when performing the steps of rounds 1 
and 2 of the key recovery algorithm for PBC-based HBC security (the Bagherzandi and 
Ogata models). The scheme determines a random value r_p', and encrypts this using 
�𝑐𝑐𝑝𝑝,𝑑𝑑𝑝𝑝� = (𝑔𝑔𝑟𝑟𝑝𝑝 ,𝑦𝑦𝑟𝑟𝑝𝑝 ∗ 𝑔𝑔𝑝𝑝) as the password for the key, then sending the ciphertext �𝑐𝑐𝑝𝑝,𝑑𝑑𝑝𝑝�  
to all  𝑆𝑆𝑖𝑖, ensuring confidentiality. Our method ensures the confidentiality of transmitted data 
by encrypting the private key with a PPSS-based password: 
From Eq. (12): [𝑠𝑠]𝚤𝚤����� = (𝑐𝑐𝑠𝑠,𝑑𝑑𝑠𝑠) = (𝑔𝑔𝑟𝑟𝑠𝑠 ,𝑦𝑦𝑟𝑟𝑠𝑠 ∗ 𝑠𝑠𝑖𝑖) 
 Integrity: Integrity is guaranteed when performing the steps of rounds 1 and 2 of the 
key recovery algorithm for PBC-based HBC security (the Bagherzandi and Ogata 
models). The user �𝑐𝑐𝑝𝑝,𝑑𝑑𝑝𝑝�  are sent to all 𝑆𝑆𝑖𝑖 and stored. A total of k servers  𝑆𝑆𝑗𝑗 calculate 
�𝑐𝑐𝑏𝑏𝑗𝑗 ,𝑑𝑑𝑏𝑏𝑗𝑗� = (𝑔𝑔(𝑟𝑟𝑝𝑝−𝑟𝑟𝑝𝑝′)∗𝑡𝑡𝑗𝑗 ,𝑦𝑦(𝑟𝑟𝑝𝑝−𝑟𝑟𝑝𝑝′)∗𝑡𝑡𝑗𝑗 ∗ 𝑔𝑔�𝑝𝑝−𝑝𝑝′�∗𝑡𝑡𝑗𝑗) using 𝑐𝑐𝑝𝑝

𝑐𝑐𝑝𝑝′
,  𝑑𝑑𝑝𝑝
𝑑𝑑𝑝𝑝′

  and send �𝑐𝑐𝑏𝑏𝑗𝑗 ,𝑑𝑑𝑏𝑏𝑗𝑗� to 

the user to ensure integrity. The user calculates a ((𝑠𝑠 + 1)/2,𝑛𝑛) SSS using a random 𝑟𝑟𝑝𝑝  
and the known 𝑝𝑝′. The k servers 𝑆𝑆𝑗𝑗 calculate [𝑃𝑃]𝚤𝚤����� = �𝑐𝑐𝑝𝑝,𝑑𝑑𝑝𝑝� = (𝑔𝑔𝑟𝑟𝑝𝑝 ,𝑦𝑦𝑟𝑟𝑝𝑝 ∗ 𝑔𝑔𝑝𝑝′) Finally, 
the k servers return the same [𝐷𝐷]𝚥𝚥������ = �[𝑃𝑃]𝚥𝚥����� − [𝑃𝑃′]𝚥𝚥�������∑ [𝑟𝑟(𝚤𝚤)]�������𝑗𝑗𝑛𝑛−1

𝑗𝑗=0 + [𝑠𝑠]����𝑗𝑗 + ∑ [0(𝚤𝚤)]�������𝑗𝑗𝑛𝑛−1
𝑗𝑗=0  to 

ensure integrity. 
 Availability: The secret distribution is sent to n servers during key recovery, and can 
thus be completely recovered even if some servers are not functional. If 3n+1≤S (where n is 
the number of malicious or inoperable servers and S the total number of servers), Byzantine 
fault tolerance indicates that the user obtains a key recovery fragment from the key 
recovery server. Thus, the key can be recovered normally. Integrity is guaranteed when 
performing the steps of round 4 of the key recovery algorithm for a PBC-based HBC 
security model. In the Bagherzandi and Ogata schemes, a user selects a random value r_s 
and encrypts the secret key value s using ((𝑠𝑠 + 1)/2,𝑛𝑛) SS ([𝑠𝑠]𝚤𝚤����� = (𝑐𝑐𝑠𝑠,𝑑𝑑𝑠𝑠) = (𝑔𝑔𝑟𝑟𝑠𝑠 ,𝑦𝑦𝑟𝑟𝑠𝑠 ∗
𝑠𝑠𝑖𝑖)) to ensure availability. The user calculates a ((𝑠𝑠 + 1)/2,𝑛𝑛) SSS using the random 𝑟𝑟𝑝𝑝 
and the known 𝑝𝑝′. [𝑃𝑃]𝚤𝚤����� = �𝑐𝑐𝑝𝑝,𝑑𝑑𝑝𝑝� = (𝑔𝑔𝑟𝑟𝑝𝑝 ,𝑦𝑦𝑟𝑟𝑝𝑝 ∗ 𝑔𝑔𝑝𝑝′). This ensures availability. 
From Eqs. (12) and (14): (𝑡𝑡,𝑛𝑛) , ((𝑠𝑠 + 1)/2,𝑛𝑛) Secret Sharing. 
 Authentication: Authentication is guaranteed when performing the steps of round 3 
of the key recovery algorithm for a PBC-based HBC security model. In the Bagherzandi 
and Ogata schemes, the user recovers ( [𝐷𝐷]𝚥𝚥������  and computes 𝑎𝑎0 = [𝐷𝐷]𝚥𝚥������  ∗ 𝑐𝑐𝑎𝑎−1 = (𝑠𝑠 ∗
𝑔𝑔�𝑝𝑝−𝑝𝑝′�∗∑ 𝑡𝑡𝑗𝑗) . If 𝑎𝑎0 = 𝑠𝑠 , the passwords match and s is reconstructed. This affords 
authentication. 
 Preventing malicious behavior: Malicious server operation is prevented because 
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the user employs 'e-s'. 

6.1.2 Threat and mitigation 
Mitigation of sniffing 
The Bagherzandi, Ogata, and our schemes feature an HBC adversary. The user key is 
[𝑠𝑠]𝚤𝚤����� = (𝑐𝑐𝑠𝑠,𝑑𝑑𝑠𝑠) = (𝑔𝑔𝑟𝑟𝑠𝑠 ,𝑦𝑦𝑟𝑟𝑠𝑠 ∗ 𝑠𝑠𝑖𝑖). This is an encrypted knowledge-based parameter that is 
difficult to eavesdrop or collect. Acquisition/decryption without a key is very difficult 
because of the Diffie-Hellman problem (DHP). In some forms of cryptography, the DHP 
is hard (Description 1). 
Description 1. The Diffie-Hellman problem can be stated informally as follows: Given 
an element 𝑔𝑔 and the values of 𝑔𝑔𝑥𝑥  and 𝑔𝑔𝑦𝑦 , what is the value of 𝑔𝑔𝑥𝑥𝑦𝑦? Formally, 𝑔𝑔 is 
a generator of some group (typically the multiplicative group of a finite field or an elliptic 
curve group) and 𝑥𝑥 and 𝑦𝑦 are randomly chosen integers. For example, in Diffie–Hellman 
key exchange, an eavesdropper observes 𝑔𝑔𝑥𝑥  and 𝑔𝑔𝑦𝑦  that are exchanged as part of the 
protocol, and the two parties both compute the shared key 𝑔𝑔𝑥𝑥𝑦𝑦. A rapid means of solving 
the DHP would allow an eavesdropper to violate the privacy of the Diffie–Hellman key 
exchange and many of its variants, including ElGamal encryption. 

Table 4: An efficiency comparison of two existing schemes and our new scheme 
 Bagherzandi  Ogata  Our scheme 

Communication 
level 

4nW 2nW 2nW 

Computational 
complexity 

Distribution: (S+6E) 
Recovery: S+(6k+7) E 

Distribution: 2S 
Recovery: (n+3k) S 

Distribution: 2S+k 
Recovery: (n+4k) 

S 

Mitigation of spoofing 

The Bagherzandi server computes �𝑐𝑐𝑏𝑏𝑗𝑗 ,𝑑𝑑𝑏𝑏𝑗𝑗� = (𝑔𝑔(𝑟𝑟𝑝𝑝−𝑟𝑟𝑝𝑝′)∗𝑡𝑡𝑗𝑗 ,𝑦𝑦(𝑟𝑟𝑝𝑝−𝑟𝑟𝑝𝑝′)∗𝑡𝑡𝑗𝑗 ∗ 𝑔𝑔�𝑝𝑝−𝑝𝑝′�∗𝑡𝑡𝑗𝑗) 
when the server returns the user key distribution fragment [𝑠𝑠]𝚤𝚤����� = (𝑐𝑐𝑠𝑠,𝑑𝑑𝑠𝑠) = (𝑔𝑔𝑟𝑟𝑠𝑠 ,𝑦𝑦𝑟𝑟𝑠𝑠 ∗
𝑠𝑠𝑖𝑖)  to the user. An HBC adversary requests a key but cannot infer �𝑐𝑐𝑐𝑐𝑗𝑗 ,𝑑𝑑𝑐𝑐𝑗𝑗� =

(𝑔𝑔(𝑟𝑟𝑝𝑝−𝑟𝑟𝑝𝑝′)∗𝑡𝑡𝑗𝑗 ,𝑦𝑦(𝑟𝑟𝑝𝑝−𝑟𝑟𝑝𝑝′)∗𝑡𝑡𝑗𝑗 ∗ 𝑔𝑔�𝑝𝑝−𝑝𝑝′�∗𝑡𝑡𝑗𝑗). The servers of the Ogata scheme and our new 
scheme choose a random value r(i)  and create  [𝑟𝑟(𝚤𝚤)]𝚥𝚥��������  , [0(𝚤𝚤)]𝚥𝚥���������  to be shared by all 
servers (𝑗𝑗 = 0,⋯𝑠𝑠 − 1). The servers return the user key distribution to the user: [𝐷𝐷]𝚥𝚥������ =
�[𝑃𝑃]𝚥𝚥����� − [𝑃𝑃′]𝚥𝚥�������∑ [𝑟𝑟(𝚤𝚤)]�������𝑗𝑗𝑛𝑛−1

𝑗𝑗=0 + [𝑠𝑠]����𝑗𝑗 + ∑ [0(𝚤𝚤)]�������𝑗𝑗𝑛𝑛−1
𝑗𝑗=0 . An HBC adversary cannot be inferred 

from key fragments and ciphertexts. 

Mitigation of collusion 
The 𝑆𝑆𝑗𝑗  servers of the Bagherzandi and Ogata schemes calculate [𝐷𝐷]𝚥𝚥������ = �[𝑃𝑃]𝚥𝚥����� −
[𝑃𝑃′]𝚥𝚥�������∑ [𝑟𝑟(𝚤𝚤)]�������𝑗𝑗𝑛𝑛−1

𝑗𝑗=0 + [𝑠𝑠]����𝑗𝑗 + ∑ [0(𝚤𝚤)]�������𝑗𝑗𝑛𝑛−1
𝑗𝑗=0 . An HBC adversary can forge and transmit 

unverifiable values [𝐷𝐷]𝚥𝚥′������ = �[𝑃𝑃]𝚥𝚥����� − [𝑃𝑃′]𝚥𝚥�������∑ [𝑟𝑟(𝚤𝚤)]�������𝑗𝑗𝑛𝑛−1
𝑗𝑗=0 + [𝑠𝑠]����𝑗𝑗 + ∑ [0(𝚤𝚤)]�������𝑗𝑗𝑛𝑛−1

𝑗𝑗=0  to users. In 

https://en.wikipedia.org/wiki/Cryptography
https://en.wikipedia.org/wiki/Generating_set_of_a_group
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Multiplicative_group
https://en.wikipedia.org/wiki/Finite_field
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Elliptic_curve
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
https://en.wikipedia.org/wiki/ElGamal_encryption
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our scheme, an HBC adversary cannot interfere with key recovery without knowing the 
PPSS value and the hash parameter for calculating s = (𝑟𝑟𝑠𝑠)−𝑝𝑝 

6.2 Efficiency 
We here compare the efficiencies of the Bagherzandi, Ogata, and our schemes (Tab. 4) 
using the following symbols. 
 W: Size of the shared SSS data. 
 S: The SSS computational complexity over 0.218 s [Sugianto, Sugianto and Nico 

(2018)] 
 E: The computational complexity of the ElGamal cryptosystem. Message size 1 kB, 

encryption and decryption operation speed 0.120 s [Shaina and Pooja (2014)] 
 k: The computational complexity of random numbers. 
 n: The number of secret key pieces. 

 
Figure 3: An efficiency comparison of two existing schemes and our new scheme 

In terms of efficiency comparison, multiple passwords and secrets are in play, and the 
owner and user are engaged in key distribution and reconstruction. The distribution 
protocols include user registration and secret sharing. Bagherzandi et al. [Bagherzandi, 
Jarecki, Saxena et al. (2011)] were the first to introduce the PPSS concept, but if an 
attacker attacks with a strange value more than once, the password may leak. To solve 
this problem, Ogata did not divide passwords by counting 0-n numbers but, rather, by 
dividing them by 1-n numbers. However, there was no way to prevent malicious server 
behavior. Our scheme preserves Ogata’s password leakage prevention, but identifies 
malicious nodes using random values. A user must perform key recovery calculations 
several times if a node is malicious. By recognizing such nodes, it is possible to reduce 
the number of recovery calculations. 
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In terms of the number of communications, the Bagherzandi scheme allows the user to 
receive a key recovery value via four communications; the Ogata scheme requires only 
two. The comparisons are made as follows: 
The Bagherzandi scheme uses the Shamir secret (t, n) threshold technique and ElGamal 
cryptographic operations. In contrast, Ogata’s scheme uses the x, and the Threshold 
scheme when distributing, requiring the following calculations.  
In our scheme, verification of normal server behavior increases the amount of 
computation. Fig. 3 shows the execution times of the various schemes, which are 
influenced by the number and complexity of communications. If the communication  
complexity <S, E, k, n> of each scheme is set to 1, the execution time will be proportional 
to the following constants. The Bagherzandi scheme requires the user to perform recovery 
correctly; the server then returns the key. This is inefficient. Both the Ogata scheme and our 
scheme feature verification using a symmetrical PPSS secret value; key fragment integrity 
can be verified without key recovery. However, the Ogata scheme does not defend against 
attacks if a server incorrectly stores or provides a symmetrical secret value of a fragment. 
Our method uses a hash function to calculate the secret. This adds a step to Recovery. 
However, our scheme is much more efficient than the Bagherzandi scheme and somewhat 
more efficient than the Ogata scheme (see Fig. 4). 

 
Figure 4: Comparison of the recovery efficiencies of two existing schemes and our scheme 

7 Conclusion 
In blockchains such as cryptocurrency, key management is performed by wallets; key 
recovery methods for users of networks lacking trusted persons/servers have been well-
studied. However, if the blockchain is a PBC, a trusted authority can be used for key 
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recovery. Research on the safe storage and retrieval of private PBC keys continues. Most 
studies attempt to solve the problem by securely storing keys in trusted institutions; often, 
users alone cannot perform key recovery. Various schemes allowing users to participate 
in key recovery employing a PPSS password have been proposed, but passwords can be 
leaked and nodes can be malicious. We propose a new PPSS scheme that prevents these 
problems. We confirm that normal data are exchanged by adding a user-chosen random 
value during key recovery and erase that value before full recovery. Also, we detect 
malicious nodes, eliminate interference during key recovery, and reduce the number of 
user operations. In future, we will explore safe and efficient key recovery from the 
wallets of current blockchains with consideration given to calculation efficiency and 
communication time. 
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