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Abstract: Gold metallic nanoparticles are generally used within a lab as a tracer, to 
uncover on the presence of specific proteins or DNA in a sample, as well as for the 
recognition of various antibiotics. They are bio companionable and have properties to 
carry thermal energy to tumor cells by utilizing different clinical approaches. As the 
cancer cells are very smaller so for the infiltration, the properly sized nanoparticles have 
been injected in the blood. For this reason, gold nanoparticles are very effective. Keeping 
in mind the above applications, in the present work a generalized model of 
blood flow containing gold nanoparticles is considered in this work. The blood motion is 
considered in a cylindrical tube under the oscillating pressure gradient and magnetic field. 
The problem formulation is done using two types of fractional approaches namely CF 
(Caputo Fabrizio) and AB (Atangana-Baleanue) derivatives, whereas blood is considered 
as a counter-example of Casson fluid. Exact solutions of the problem are obtained using 
joint Laplace and Hankel transforms, and a comparative analysis is made between CF and 
AB. Results are computed in tables and shown in various plots for embedded parameters 
and discussed. It is found that adding 0.04-unit gold nanoparticles to blood, increase its 
heat transfer rate by 4 percent compared to regular blood. It is also noted that the heat 
transfer can be enhanced in the blood with memory.1 
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1 Introduction 
Nanoscience is the study of materials at atomic, molecular and macromolecular scales 
where physio-chemical residences might also differ notably from those at a larger 
particulate scale. The high-quality improvement of nanotechnology within the last decade 
promises innovative innovations inside the medical subject, beginning a big spectrum of 
opportunities and demanding situations [Leech and Scott (2017)]. Nanomaterials are 
considered powerful gear to reach healing targets in any other case difficult to reap via 
commonplace medical protocols. An awesome instance is using nanoparticles as drug 
providers and diagnostic probes for strong cancers [Ho, Pfeffer and Singh (2017)]. Most 
human cancers are complicated sicknesses resulting from genomic volatility and 
accretion of a couple of molecular changes. Existing indicative and prophetic taxonomies 
do no longer imitate the entire clinical heterogeneity of tumors [Pavlova and Thompson 
(2016)]. Recent studies have advanced efficient nanoparticles that are allied to biological 
molecules which include peptides and nucleic acids [Ashizawa and Cortes (2015); 
Saallah and Lenggoro (2018); Agostinelli, Vianello, Magliulo et al. (2015); Rudramurthy 
and Swamy (2018)]. In medical sciences, different nanoparticles such as magnetic 
particles and gold, have been studied for various clinical purposes, like magnetic particles 
and gold. In this study the gold nanoparticle has been considered, the question is why? 
The use of gold compounds in modern medicinal drugs commenced with the invention in 
1890 by Robert Koch using gold cyanide that turned into bacteriostatic in the direction of 
the tubercle bacillus [Herzog (1998)]. Gold metallic nanoparticles are generally used 
within the lab as a tracer, to stumble on the presence of specific proteins or DNA in a 
sample as well as for the recognition of various antibiotics like streptomycin and 
neomycin [Tomar and Garg (2013); Wang (2003)]. Researchers have these days used 
gold nanoparticles for figuring out one of a kind lesson of microorganisms. Gold 
nanoparticles are clean to synthesize, they are biocompatible and possess optical houses, 
inclusive of floor plasmon resonance leading to a narrow optical absorption band inside 
the visible/infrared spectrum relying on length and shape of AuNP. When they are 
injected in the bloodstream, the particles have interaction with blood proteins and 
biomolecules producing a biological interface at the surface, frequently called “corona”. 
The formation of such protein corona is a dynamic manner [Shilo, Berenstein, Dreifuss et 
al. (2015); Daniel and Astruc (2004)]. 
To stumble on and kill cancer cells, a unique sort of nanoparticles was used. However, 
amongst them, the gold nanoparticle has accomplished a distinguishing function. Ikram et 
al. [Ikram, Jamil, Ahmad et al. (2019)] have these days mentioned about capacity use of 
GNPs in photothermal destruction of tumours. Kong et al. [Kong, Zhang, Li et al. (2017)] 
used gold nanoparticles in drug delivery applications. Abdelhalim et al. [Abdelhalim and 
Jarrar (2011)] check out the particle-size impact of GNPs at the renal tissue and try to 
cope with their ability toxicity. Hussein et al. [Hussein, Sultan and Yaseen (2016)] 
examine the efficacy of photothermal therapy via the use of gold nanoparticles with laser 
irradiation on two cancer mobile traces in vitro. Iancu [Iancu (2013)] illustrates the 
modern-day achievements inside the applications of gold nanoparticles as photothermal 
retailers against human cancers. Yao et al. [Yao, Zhang, Wang et al. (2016)] show that 
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GNPs have not any inherent cytotoxicity possessions in human cancer cellular strains in 
vitro and GNPs launch warmth in a focused outside RF area.  
Fractional derivatives are numerously used to investigate rheological properties in fluid 
mechanics. These derivatives have played a vital role in engineering and mathematical 
sciences and the world of fractional calculus, many mathematicians and researchers gave 
their contribution. In the present era of research, non-integer ordered derivatives are an 
effective and useful tool in physical situations. Fractional calculus produces more 
reliable, stable and effective mathematical models of physical problems in the area of 
chemistry, bioengineering and dynamics than classical calculus. Memory and hereditary 
properties of a fluid can be measured more accurately through fractional-order calculus 
instead of conventional order calculus. For an instant, fractional derivatives are used in 
bio-rheology, astrophysics, biophysics, thermodynamics, plasma physics, traveling wave 
solutions, optics and electromagnetism [Owolabi and Atangana (2019)]. Nowadays the 
two main definitions of Atangana and Baleanue (AB) and CF fractional derivatives are 
very famous in theoretical as well as experimental works. Owolabi et al. [Owolabi and 
Atangana (2018)] used the AB fractional derivative in Chaotic problems by the Adams 
Bashford method. Atangana [Atangana (2017a)] gave a new model of Darcy scale in a 
dual medium flow also gave a new numerical scheme in fractal fractional operators. 
Tremendous work has been given by Atnagana [Atangana (2017b)] in the field of 
Geohydrology using the fractional derivative. Atangana [Atangana (2016)] gives some 
new definitions of fractional derivatives related to Laplace and Fourier transforms and 
also gave a new model for real-world problems. Ali et al. [Ali, Yousaf, Khan et al. 
(2019)] used the definition of AB fractional derivative in blood flow with magnetic 
particles in cylindrical coordinates.  
The above literature shows that numerous experimental articles on GNP’s with blood and 
Fractional derivatives have been published, however, such types of theoretical studies, 
particularly on exact analysis, are scarce. To the best of our knowledge, no attempt has 
been found in which the exact solutions are presented for the blood flows in arteries with 
Gold nano-particles and heat transfer in a cylindrical domain using two integer order newly 
developed fractional models (Atangana-Baleanue) and (Caputo-Fabrizio) fractional 
derivative models. Since the blood flows in arteries and it is a Biomagnetic fluid [Ali, 
Imtiaz, Khan et al. (2018)], therefore cylindrical tube in the vertical direction is chosen as a 
physical model of the present problem. More exactly, in the present paper, the two well-
known fractional models have been developed and the effect of GNPs in blood has been 
investigated. Since the blood has been considered so it is very necessary to take the 
pressure gradient in oscillatory form into account. The novelty of this problem is that a 
comparative analysis of Caputo-Fabrizio et al. [Atangana and Baleanue (2016)] fractional 
models have been considered with a transversely applied magnetic field. The two fractional 
models have been developed with the appropriate initial and boundary conditions the exact 
solutions have been obtained using the joint Laplace and Hankel transformations. 

2 Blood flow mathematical model 

The blood flow is considered in a vertical cylindrical tube of the radius 0R ( )1 1, ,r zθ  with 
the uniformly distributed gold nanoparticles. The uniform magnetic field applied 
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transversely to the flow direction and the induced magnetic field is ignored for a small 
value of Reynold number [Srinivas and Kothandapani (2009)] as shown in Fig. 1. Blood 
flow is due to the uniform motion of the cylinder and buoyancy forces. Initially, the fluid, 
as well as the cylinder both, are stationary and the temperature is T∞ . At 1 0t += , the 
temperature rises to wT .  

                                                          z 
                                                               0R                         

                                                                                         
                                                                  

                                                                                1r  

 
 
 
                                  0B      

       
 
 
 
 
 
 
 

Figure 1: Flow configuration [Ali, Imtiaz, Khan et al. (2018)] 

Under the above assumptions, the governing equations for the prescribed study as given 
by Oztop et al. [Oztop and Abu-Nada (2008)] 
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the pressure gradient of the oscillation form Aman et al. [Aman, Khan, Ismail et al. 
(2018)] is given by  

0 1 1 ,p P Pcos t
z

ω∂
− = +
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                                                                                                     (2)
                                     

 

here ( )1 1,u r t is the blood velocity.  
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The energy equation is specified for the cylindrical coordinates is given by Ali et al. [Ali, 
Imtiaz, Khan et al. (2018)]: 
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subjected to the initial and boundary conditions 
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According to Oztop et al. [Oztop and Abu-Nada (2008)], the spherical shape NP model 
has been considered and the thermophysical properties of base fluid and nanoparticle are 
given in Tab 1. 
 
Table 1: Thermophysical properties of blood and gold [Aman, Khan, Ismail et al. (2018); 
Hatami and Ganji (2014)] 
 

Introducing the following dimensionless quantities  
2 2
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into Eqs. (1)-(4), we get (dropping out star notation):
   

Material Symbol ρ (Kg/m3) cp(J/KgK) k(W/mK) 

Blood - 1050 3617 0.52 
Gold Au 19300 129 318 
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2.1 Caputo-fabrizio fractional model and its solution 
In fractional form, Eqs. (7) and (8) can be written as:
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Here ( )t s tα℘ = /

0

1 ( )exp ( ) , 0 1
1 1

t f dt for
τ α τ τ α

α α
− −  < < − − ∫  shows the Caputo-

Fabrizio time-dependent fractional-order derivative. 
For the solution of Eqs. (10)-(11) using nondimensional IBC’s from (9) and the Laplace 
and Hankel transformations are utilized. 

2.1.1 Solution of the energy equation 
By applying the Laplace transform to Eq. (8), we get 
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where ( , )r qθ is the Laplace transform of ( , )r tθ , 0
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Now applying the Hankel transform of order zero and using the transformed condition, 
we get: 
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which upon inverse Hankel transform results:  
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2.1.2  Solution of the velocity distribution 
The Laplace transform of Eq. (10), yields 
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and the finite Hankel transform of Eq. (16) with boundary condition we get:  
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using 1
1
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=  Eq. (17) becomes: 
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Eq. (18) is simplified in the following form: 
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Correspondingly, simplifying ( )1nF q by incorporating ( ),H nr qθ , results  
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Incorporating Eqs. (20)-(22) into Eq. (19), we get: 
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Laplace inverse of Eq. (23), gives 
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Now by taking Hankel inverse by      
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Eq. (24) yields: 
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2.2 Atangana-baleanue fractional model 
Now utilizing Atangana-Baleanue fractional derivative to Eqs. (7)-(8), yields: 
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                                                (27) 

Eqs. (26) and (27) using conditions from Eq. (9) are solved by joint Laplace and Hankel 
transformations as follows: 

2.2.1 Solution of the energy equation 
Applying the joint Laplace and Hankel transforms using the transformed condition to Eq. 
(27), we get, 

( )
1 1 5 1 1 1

1 2
1 1 1 1 4

1
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where 
2
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Now applying inverse Laplace transformation to Eq. (28), and by using Lorenzo and 
Hartley’s and Robotnov and Hartley’s functions respectively [Ali, Imtiaz, Khan et al. 
(2018)] 
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we get: 
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which upon inverse Hankel transform yields:  
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2.2.2 Solution of the velocity distribution 
Applying the joint Hankel and Laplace transform to Eq. (26), we get: 

( ) ( )

( )

2
1 1 10 1

1 1 1 1 1
1 1 1 1 1 1

1 10 1
1 1 12 2

1 1 11

,
,

( ) (1, )

1 ( , ).

n H n
H n

n n

n
H n

n

r e r qa q
M e r q

q a r J r e q

J r
Gr r q

q rq

α

α γ

ξ ξ
θ

φ ω

 − 
+ =     + +   

 
+ + + + 

                                             (31)                                                                                        

Incorporating the transformed condition 1
1

1(1, ) ,e q
q

=  Eq. (31) becomes: 
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                          (32) 

Eq. (32) is simplified in the following form as: 
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where  



 
 
 
182                                                                             CMC, vol.65, no.1, pp.171-192, 2020 

( )

2 24 5 2
7 6 5 1 1 1 3 4 1 1 3

1 4 1

2 2
2 1 1 0 1 1 0 1 1 0

, , , 1 , ,

, .

n n n
n n n n n n n n

n n n

n n n n

c c c
c c c r a c c r c

c c c

c r M a c a r M

γ γ

γ γ

= = = − = − =

= + = + +
 

( )
( )
1 3 37 6 7 3 6

8 9 10 11 10
3 3 3 3 3

( ), , , 1,n n n n n
n n n n n

n n n n

a a ac c c c cc c c c c
c c c a c

+−
= = = = −

+
 

0 10 0 10 1 18 1 16
2 3 4 5

1 1 1 1

2 2 21 17
6 12 1 3 13 1 3 14 3

1

212 13 12 3
15 16 17 18 15

14 14 14

( 1)
, , , ,

, , , ,

.
, , , . .

n n n n n n n n
n n n n

n n
n n n n n n n

n n n n
n n n n n

n n n

c c c c

c
c a c c a c c c

c c c c
c c c c c

c c c

ξ ξ ξ ξ
ξ ξ ξ ξ

φ φ φ φ
ξ

ξ ω ω
φ

ω

−
= = = =

= = − = + = +

= = = =

 

( )

( )

1 1 1 8 9
1 1

1 3

1 1 23 24 25
1

1 3 4

1 12 26 4 5
2 2

13

1
1 1 1

1 1 1

1 1 1

( ) ( )
,

( )

n n n n
H n

n n n

n n n n

n n n

nn n n n

nn

J r J r c c
r q

r q r q q c

J r c c c
Gr

r q q c q a

J rc q
q rq c q

e β

β β

β

ξ ξ ω ξ
ω

= + +
+

+ − −
+ +

+
+ − +

+ +

 
 
 

  
  
  

 
 
 

                                                (34)                                                      
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Applying Laplace inverse to Eq. (34), we get: 
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Now by taking Hankel inverse by the above-mentioned result, yields 
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3 Heat transfer rate

 

The dimensional expression of the rate of heat transfer in ( )1 1, ,r zθ  is given by 
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                                                              (37) 

Using the dimensionless variables from Eq. (6), the non-dimensional form of heat 
transfer rate by ignoring the * notation is given as 
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              (38) 

4 Graphical interpretation and discussion 
The Casson blood flow is assumed with the gold nanoparticles in cylindrical coordinates. 
The classical model is transformed into fractional models by Caputo-Fabrizio and 
Atangana-Balenu time-fractional operators and by joint Laplace and Hankel transforms 
the exact solutions have been found. Various physical parameters effect on temperature 
( )1 1,rθ τ and velocity ( )1 1 1,e r τ  profiles have been deliberated physically. Fig. 1 shows 

the physical model of the problem. Fig. 2 has been plotted for the involvement of α  on 
temperature profile. It is worthwhile that at the centre of the cylinder when α increases 
the fractional fluid temperature is observed higher while to the cylinder walls the reverse 
effect has been perceived.   
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Figure 2: Temperature profile for different values of α , when 0.1ω = , 0.5, 1,Gr γ= =  

1M =  & Pr 22.64=  
Fig. 3 is plotted to show the effect of the volume fraction φ  on the temperature profile. It 
can be seen from the figure that fluid temperature increases by taking higher values φ . 
This enhancement of the fluid temperature b the shear-thinning behaviour of the 
nanoparticles. 

 

Figure 3: Temperature profile for different values of φ , when 0.1ω = , 
0.5, 1, 1Gr Mγ= = =  Pr 22.64=  

Fig. 4 illustrates the behaviour of the Nusselt number. By increasingφ  the Nusselt 
number is increased which indicates a rise in heat transfer rate.  
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Figure 4: Variation in Nusselt number for different values of φ , when 0.1ω =  
0.5, 1,Gr γ= =  1M =  & Pr 22.64=  

The effect of nanoparticle volume fraction φ  and time t  on Nusselt number has been 
noticed in Tab. 2. It is observed that an increase in the values of 1andφ τ  enhancement 
in Nusselt number occurs. 

Table 2: Effect of various parameters on Nusselt number ( Nu ) 

φ  1τ  Nu   

0.01 1 0.176 
0.04 1 0.182 
0.01 1.5 0.18 

From Tab. 3 it is found that the heat transfer rate of Blood-based nanofluid with gold 
nanoparticles is 4% greater than fluid without nanoparticles.  

Table 3: Impact of volume fraction on nusselt number and percent enhancement 

 φ  1τ  Nu  % 

0 1 0.175 - 
0.01 1 0.176 0.571 
0.02 1 0.177 1.142 
0.03 1 0.179 2.28 
0.04 1 0.182 4 

Figs. 5-8, show the effect of the fractional parameter α on velocity profiles. It has been 
observed from these figures that for higher values ofα , fluid velocity decreases. The 
corresponding results for regular blood flow with gold nanoparticles ( 1α = ) are 
compared and found that regular blood is more viscous than the fractional blood velocity. 
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Fig. 5 shows the effect of the Casson fluid parameter γ on fractionalized fluid velocity. In Fig. 
5(a), Casson fluid parameter 0.5γ = whereas in Fig. 5(b), 1γ = . From this figure, it is 
depicted that by increasing γ from 0.5 to 1, the fluid velocity increases. Substantially it is true 
because increasingγ  the yield stress falls through which boundary layer thickness decreases.  

 

Figure 5: Velocity profile for different values of γ , when 0.1ω = , 
1, 0.01, 0.5M Grφ= = =  & Pr 22.64=  

The influence of Gr  fluid velocity has been discussed in Fig. 6. In Fig. 6(a) Grashoff 
number is Gr=0.5 whereas in Fig. 6(b) Gr=1, it is seen that the velocity increases with an 
increase in Gr  due to enhancement of buoyancy forces. From Gr and γ , it can be 
concluded that by enhancing both parameters the blood velocity increases and through 
this the cancer tumour can be targeted through gold Nanoparticles and easily destroyed 
without harming other healthy tissues.   

 

Figure 6: Velocity profile for different values of Gr , when 0.1ω = , 
1, 1, 0.01M γ φ= = =  & Pr 22.64=  
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Fig. 7 depicts the effect of nanoparticle volume fractionφ . In Fig. 7(a) volume fractions are 
0.01φ =  whereas in Fig. 7(b) 0.04φ = . From this figure, it is determined that by enhancing 

φ from 0.01 to 0.04, the fluid becomes more viscous which leads to decrease velocity.  

 

Figure 7: Velocity profile for different values of φ , when 0.1ω = , 
1, 1, 0.5M Grγ= = =  & Pr 22.64=  

In Fig. 8 the effect of magnetic field parameter M has been shown. In Fig. 8(a) magnetic 
field parameter is M=1 whereas in Fig. 8(b) M=2 It is found from the figure that by 
increasing M the velocity profile decreases. Physically, when a magnetic field is applied 
the Lorentz forces produce as an external force, which retards blood flow. A decreased in 
fluid velocity means the viscosity of the fluid (blood) is increased which consequently 
maintains the laminarity of the flow.  

 

Figure 8: Velocity profile for different values of M , when 0.1ω = , 
0.5, 1, 0.01Gr γ φ= = =  & Pr 22.64=  
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Fig. 9 shows the comparison of two well-known fractional derivatives It has been observed 
from the figure that the velocity by AB derivative higher than the CF derivative velocity.  

                             

Figure 9: Comparison of AB and CF derivatives 
Fig. 10 shows the velocities of two different fractional derivatives (AB and CF) which 
are compared for different values of t. It has been observed that for initial values of time 
velocity of AB is greater than CF and by increasing t an invert behaviour has been seen. 
While for the unit time both velocities become indistinguishable. 

 

Figure 10: Comparison of AB and CF velocities for different times 
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5 Conclusions  
A comparative study for unsteady Nanofluid blood flow is carried out in cylindrical 
coordinates. The influence of various physical parameters on fluid velocity in the 
cylindrical field has been shown. Closed-form solutions have been obtained by utilizing 
the Joint Laplace and Hankel transforms. On the basis of the obtained results, it has been 
concluded that for different times the velocities of both fractional operators show 
opposite behavior and for a unit time, both velocities become indistinguishable. The AB 
fractional operator is more dominant in blood velocity as compared to the CF fractional 
operator and an accelerating behavior has been noticed for the fluid flow by AB 
fractional operator as compared to the CF operator which is a key thing for the 
consideration.  The blood velocity increases with an increase in the Grashoff number Gr 
and Casson fluid parameter γ , the blood velocity increases due to the shear-thinning 
behavior of the blood and rapidly carries the gold nanoparticles to the cancerous tumor. 
Correspondingly, an external applied magnetic field M retards the velocity of the fluid 
and controls the turbulency produced in the blood flow.  
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Nomenclature 
p oscillating pressure gradient φ  solid volume fraction of 

nanoparticle; 

0P  amplitude of the systolic 
pressure gradient 

fρ  density of base fluid (kg m-3); 

1P  amplitude of the diastolic 
pressure gradient 

n fρ  density of Nanofluid (kg m-3); 

1e  dimensionless fluid velocity 
in ′z -direction (m/s); 

( )p f
cρ  heat capacitance of base fluid; 

1r  radial axis ( )p n f
cρ  heat capacitance of Nanofluid; 

fν  dynamic viscosity coefficient 
of base fluid; 

( )p s
cρ  heat capacitance of nanoparticle; 

Gr  Grashoff number fµ  viscosity of base fluid (kg m-1 s-1); 

fk  thermal conductivity of base 
fluid (Wm-1K-1); 

fσ  

 

electrical conductivity of base fluid 
(=s3 A2 m-3kg-1); 

n fk  thermal conductivity of 
Nanofluid (Wm-1K-1); 

n fσ  electrical conductivity of Nanofluid 
(=s3 A2 m-3kg-1); 

sk  thermal conductivity of 
nanoparticles (Wm-1K-1); 

sσ  electrical conductivity of 
nanoparticle (=s3 A2 m-3kg-1). 

n fµ  dynamic viscosity of 
Nanofluid (kg m-1 s-1); 

γ  

 
Casson fluid parameter; 

1τ  dimensionless time 
sρ  density of the solid particles 

T  fluid temperature (K); M  Magnetic parameter; 
fβ  thermal expansion coefficient 

of base fluid (K-1); 
ω  angular frequency 

n fβ  thermal expansion coefficient 
of Nanofluid (K-1); 

Pr Prandtl number; 

sβ  thermal expansion coefficient 
of nanoparticle (K-1); 

0B  induced magnetic field; 

0R  radius of the cylinder g  acceleration due to gravity (m s-2); 

0u  characteristic velocity 
1t  dimensional time 

nfν  kinematic viscosity of the 
nanofluid 

T∞   ambient temperature 

α   fractional parameter wT   wall temperature 

 


	According to Oztop et al. [Oztop and Abu-Nada (2008)], the spherical shape NP model has been considered and the thermophysical properties of base fluid and nanoparticle are given in Tab 1.
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