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Abstract: In the present work, an incompressible smoothed particle hydrodynamic (SPH) 
method is introduced to simulate water-soil-structure interactions. In the current calculation, 
the water is modelled as a Newtonian fluid. The soil is modelled in two different cases. In the 
first case, the granular material is considered as a fluid where a Bingham type constitutive 
model is proposed based on Mohr-Coulomb yield-stress criterion, and the viscosity is derived 
from the cohesion and friction angle. In addition, the fictitious suspension layers between 
water and soil depending on the concentration of soil are introduced. In the second case, 
Hooke’s law introduces elastic soil. In ISPH, the pressure is evaluated by solving the pressure 
Poisson equation using a semi-implicit algorithm based on the projection method and an eddy 
viscosity for water is modelled by a large eddy simulation with the Smagorinsky model. In 
the proposed ISPH method, the pressure is stabilized to simulate the multiphase flow between 
soil and water. Numerical experiments for water-soil suspension flow of Louvain erosional 
dam break with flat soil foundation, is simulated and validated using 3D-ISPH method. 
Coupling between water-soil interactions with different solid structures are simulated. The 
results revealed that, the suspension layers with the Bingham model of soil gives more 
accurate results in the experiment as compared to the case of the Bingham model without 
suspension layers. In addition, the elastic soil model by the Hooke’s law can simulate soil 
hump accurately as compared to the Bingham model. From the simulations, avoiding erosion 
behind the structure for preventing the structure break during flood are investigated by using 
an extended structure or a wedge structure.  
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1 Introduction 
The interaction between water, soil and structures poses problems to different areas of 
marine, geomechanics and hydraulic engineering. Numerical predictions for such 
interactions in the case of large deformations could provide useful knowledge for 
engineering practice and design. There are some traditional numerical methods for 
deformation and failure of geomaterials in the framework of continuum mechanics, such 
as Finite Element Method (FEM), Finite Difference Method (FDM) and Boundary 
Element Method (BEM). These methods have been successfully implemented. On the 
other hand, in the case of large deformation problems, the previous methods produce 
instabilities due to excessive distortion of a mesh. Several numerical methods have been 
introduced for large deformation problems. A more general method is the smoothed 
particle hydrodynamics (SPH) method, originally proposed by Lucy [Lucy (1977)] and 
further developed by Gingold et al. [Gingold and Monaghan (1977)] for treating 
astrophysical problems. Its main advantage is the absence of a computational grid or 
mesh since it is spatially discretized into Lagrangian moving particles. This allows the 
possibility of easily modelling flows with a complex geometry or flows where large 
deformations or the appearance of a free surface occurs. At the present time, it is being 
exploited for the solution of problems appearing in different physical processes. 
Monaghan [Monaghan (1992)] has provided a fairly extensive review of SPH methods. 
The SPH method was applied into compressible and incompressible viscous flow 
problems [Monaghan (1994); Morris, Fox and Zhu (1997); Monaghan (1995); Okahci, 
Hirota, Izawa et al. (2001)]. The SPH was originally developed in compressible flow, 
then some special treatment was required to satisfy the incompressible condition. One 
approach is to run the simulations in the quasi-incompressible limit, that is by selecting 
the smallest possible speed of sound which still gives a very low Mach number ensuring 
density fluctuations within 1% [Monaghan (1994); Morris, Fox and Zhu (1997)]. This 
method is known as the Weakly Compressible Smooth Particle Hydrodynamics 
(WCSPH). In the WCSPH, the artificial viscosity, which is originally developed by 
Monaghan [Monaghan (1992)], has been widely used not only for the energy dissipation 
but also for preventing unphysical penetration of particles. Recently a proposal for 
constructing an incompressible SPH model has been introduced, where pressure is 
implicitly calculated by solving a discretized pressure Poisson equation at every time step 
[Cummins and Rudman (1999); Pozorski and Wawrenczuk (2002); Shao and Lo (2003); 
Hu and Adams (2006); Ellero, Serrano and Espanol (2007); Lee, Moulinec, Xu et al. 
(2008); Khayyer, Gotoh and Shao (2008); Khayyer, Gotoh and Shao (2009); Hu and 
Adams (2007); Hu and Adams (2009)]. 
On the other hand, SPH method has been developed for solving large deformation and 
post failure flow of soil [Bui, Sako and Fukagawa (2007); Bui, Fukagawa, Sako et al. 
(2008); Bui and Fukagawa (2013); Pastor, Haddad, Sorbino et al. (2009)]. In the water-
saturated soil problem, Bui et al. [Bui, Sako and Fukagawa (2007)] modelled the dry soil 
by one phase flow while saturated soil is modelled by separate water and soil phases and 
the interaction between soil and water is taken into account by means of pore water 
pressure and seepage force. Bui et al. [Bui and Fukagawa (2013)] showed that, it is 
common in computational geomechanics to treat the two phase system as a single phase 
with the interaction between soil and water handled by adding the pore-water pressure to 
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the effective stress, that is Terzaghi’s concept of effective stress. They used this approach 
to model the saturated soil problem with SPH method. On the other hand, Ulrich et al. 
[Ulrich, Koliha and Rung (2011)] modelled the water/soil interaction by SPH method as a 
multiphase flow and the layers between water and soil are introduced as fictitious 
suspension layers, which deserve more attention in several cases. In the current work, we 
follow Ulrich et al.’s [Ulrich, Koliha and Rung (2011)] technique for treating the 
interaction between water, soil and suspension layers. The fluids are assumed to be 
Newtonian and an eddy viscosity is modelled by means of large eddy simulation using 
the Smagorinsky model. The soil model considers the granular material as a fluid where a 
Bingham type constitutive model is proposed based on Mohr-Coulomb yield-stress 
criterion and the viscosity is derived from the cohesion and friction angle. A 
concentration based approach to mimic the stresses inside the fictitious suspension layer 
is introduced which is derived from a Chezy-relation between the shear stresses and the 
local flow velocity as proposed by Fraccarollo et al. [Fraccarollo and Chapart (2002)].  
Recently, Ren et al. [Ren, Zhuang, Rabczuk et al. (2019)] derived dual-support SPH (DS-
SPH) in the field of solid mechanics. The main advantage of DS-SPH method is the easy 
formulation of tangent stiffness matrix. Dai et al. [Dai, Ren, Zhuang et al. (2017)] 
introduced different support domain and dual-support of SPH method for treating elastic 
mechanics. Ren et al. [Ren, Zhuang and Rabczuk (2019)] developed dual-support 
smoothed particle hydrodynamics (DS-SPH) method with variable smoothing length. The 
current DS-SPH is applied into weakly compressible flow including water droplet flow 
and 2D dam break over dry bed. It is reported that DS-SPH can reduce the computational 
cost compare to conventional SPH. 
Ren et al. [Ren, Zhuang and Rabczuk (2017)] presented the dual-horizon peridynamics 
(DH-PD) formulation for simulations of crack paths with variable horizon and particle 
sizes. Ren et al. [Ren, Zhuang, Cai et al. (2016)] developed dual-horizon peridynamics 
which includes variations on the horizon sizes. Rabczuk et al. [Rabczuk, Ren and Zhuang 
(2019)] proposed the novel nonlocal operator theory based on the vibrational principle for 
solving the partial differential equations. The novel nonlocal operator can stabilize meshes 
methods by the dual-concept  and allows implementation of complete implicit methods.  
In the present study, the pressure is stabilized by introducing the source term which 
contains both contributions from velocity-divergence free and density invariance conditions 
[Aly, Asai and Sonoda (2011a, 2011b); Asai, Aly, Sonoda et al. (2012)]. In addition, the 
eddy viscosity based on the Smagorinsky model is introduced.  
To simulate soil hump for seawall, Bingham flow approach with suspension region and 
solid approach for soil, are integrated, then the technique is applied to a seawall collapse 
simulation during a tsunami. The modification in the original Bingham flow model 
[Ulrich, Koliha and Rung (2011)], which is based on weakly compressible approach for 
water, is the extension to the incompressible formulation by ISPH. First, the water-soil 
suspension flow of Louvain erosional dam break [Fraccarollo and Chapart (2002)] with 
flat soil foundation is simulated using 3D-ISPH method. This simulation is validated by 
comparing it to the experimental results. Second, several numerical tests for fluid-
structure soil foundation interactions are discussed. 
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2 Mathematical analysis 
The governing equations of transient compressible fluid flow include the equations for 
conservation of mass and momentum are:  

1 0,D
Dt x

α

α

ρ
ρ

∂
+ =
∂
v  (1) 

1 ,D g
Dt x

α αβ
α

β

σ
ρ
∂

= +
∂

v  (2) 

where subscripts α and β  refer to the spatial coordinates, t is the time, g is the 
gravitational acceleration, v is the velocity vector.     

2.1 Fluid model 
For the simple Newtonian fluids, the stress tensor σ  is given by: 

,pαβ αβ αβσ δ τ= − +  (3) 

where p  is the pressure, αβδ is the unit tensor and αβτ is the stress tensor and represents 
the viscous stresses which depend on an isotropic viscosity *µ and gradient of velocity as: 

* ,
x x x

β α γ
αβ αβ

α β γτ µ ϑ δ
   ∂ ∂ ∂

= + +   ∂ ∂ ∂   

v v v  (4) 

where, ϑ  is viscosity coefficient and strain rate-tensor is defined as: 

1 ,
2

S
x x

β α
αβ

α β

 ∂ ∂
= + ∂ ∂ 

v v  (5) 

And the effective dynamic viscosity *µ is composed from a viscosity µ and an eddy 

viscosity Tµ as:    

 *
Tµ µ µ= +  (6) 

In this paper, it is assumed that the eddy viscosity is modeled by the static Smagorinsky 
model as ( )2 ,T sC Sµ ρ= ∆   in which 0.2sC =  is the Smagorinsky constant (taken as 

the analytical value in this paper), ∆  is constant and it taken as smoothing compact 

support. The local strain rate ( )1 2
2S S Sαβ αβ=  can be calculated in the SPH 

formulation as Violeau et al. [Violeau and Issa (2007)].  
For incompressible fluids . 0;∇ =v the viscous stress tensor is: 

* ,f x x

β α
αβ

α βτ µ
 ∂ ∂

= + ∂ ∂ 

v v      (7) 

The total stress tensor is therefore: 
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* ,fp
x x

β α
αβ αβ

α βσ δ µ
 ∂ ∂

= − + + ∂ ∂ 

v v                                                                                         (8) 

Note that, in the most general incompressible flow approach, the density is assumed by a 
constant value with its initial value 0ρ . Then, the governing equations for an 
incompressible Newtonian fluid are summarized: 

0,D
Dt
ρ
=                                                                                 (incompressibility)    (9) 

0,
x

α

α

∂
=

∂
v                                                                                  (continuity)  (10) 

*
0 0

1 1 ,f
D p g
Dt x x x x

α β α
α

α β α βµ
ρ ρ

  ∂ ∂ ∂ ∂
= − + + +  ∂ ∂ ∂ ∂  

v v v    (momentum)  (11) 

2.1.1 Projection method 
In the projection method [Cummins and Rudman (1999)], the velocity-pressure 
coupling problem has been solved separately for velocity and pressure. Here, all the 
state variables may update from a previous time step to current time step.  In this below, 
superscripts (n) and (n+1) indicate previous and current time step, respectively. In the 
first predictor step, the intermediate distate without pressure gradient is assumed and its 
velocity field is indicated by *v . The intermediate velocity field can be evaluated by 
solving the following equation:  

**
0

1 ,n n n
f g

t x x x

α α β α
α

β α βµ
ρ

  − ∂ ∂∂
= + +  ∆ ∂ ∂ ∂  

v v v v  (12) 

(Predictor): *
* 0

1 n n
n ft g

x x x

β α
α α α

β α βµ
ρ

   ∂ ∂∂
= + ∆ + +    ∂ ∂ ∂   

v vv v  (13) 

Then, the following corrector step introduces an effect of remaining ‘current’ pressure 
gradient term as follow: 

1 * 1
0

1 ,n np
t x

α α

αρ
+ +− ∂

=−
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v v  (14) 

(Corrector): 1
1 * * * 0

1 ,n
n

pt
x

α α α α
αρ
+

+

 ∂ 
= + ∆ = −∆  ∂ 

v v v v  (15) 

where *
α∆v  indicates the incremental velocity from the predicted velocity *

αv . 

The key point here is the evaluation of ‘current’ pressure value. By taking the divergence 
of correction step (Eq. (14)) as: 

1 * 1
0

1 ,n np
x t x x

α α

α α αρ
+ + −  ∂ ∂ ∂

=−   ∂ ∆ ∂ ∂  

v v  (16) 
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From the incompressible condition (Eq. (9)), which leads:  

1 0,n

x

α

α
+∂
=

∂
v    (17) 

By substitute Eqs. (17) into (16), this leads to the following pressure Poisson equation 
(PPE): 

0 0
1 *

0 2

1 ,
num

np
x x t x t

α

α α α

ρ ρ ργ
ρ

+ ∂  ∂∂ −
= + ∂ ∂ ∆ ∂ ∆ 

v    (18) 

where, ( ): 0 1γ γ≤ ≤  is a relaxation coefficient and numρ  is the numerical density, 
which is calculated from SPH approximation. 
The above corrector step can be implemented by substituting the pressure gradient with 
the solution of PPE. The flow chart for solving steps of fluid flow using ISPH method has 
been introduced in Fig. 1.  
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Figure 1: Flow chart of ISPH method for fluid flow model 
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2.2 Soil model 
In this section, the two different approaches of soil modelling are discussed. In the first 
approach, the soil model considers the granular material as a fluid with a variable 
viscosity, where a Bingham type constitutive model is proposed based on Mohr-Coulomb 
yield-stress criterion [Ulrich, Koliha and Rung (2011)]. The other approach [Bui, Sako 
and Fukagawa (2007)] is the use of nonlinear material constitutive model in the 
framework of solid mechanics.  

2.2.1 Bingham flow 
Here, the soil particles are treated as a viscous material with a variable viscosity. Where, 
the viscosity is based on Mohr-Coulomb yield-stress criterion for granular material and is 
derived as follows: 
For non-Newtonian fluids with the yield strength, the relation between shear stress τ  and 
shear strain rate γ is given by: 

τ γ τ ,so yµ= +    (19) 

where, τ y is the yield shear strength. For shear stresses below the yield stress, a Bingham 

fluid has behavior such as a rigid body and doesn’t deform but when the shear stress 
surpasses the yield stress, the flow failure occurs resulting in large deformations. Fig. 2 
presents the relation between shear stress and shear strain. The Mohr-Coulomb criterion 
is introduced as the yield shear strength in the Bingham model for a given soil as: 
τ tany c p φ= +    (20) 

where, c is the cohesion, and φ is the friction angle. Then, the soil viscosity should be 
expressed in Bingham model as: 

max

max max

tan
τ γ
γ

so s s
s

s s s

c p φµ µ µ
µ

µ µ µ

+ += = 
 ≥







   (21) 

where, soµ is the viscosity after yield, maxsµ is the maximum viscosity for a given soil.  

 
Figure 2: Relation between shear stress and shear strain 
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2.2.2 Water-soil suspension flow  
The suspension layer is nested between soil and water regions depending on the 
concentration of soil. Particles which reside inside a fictitious suspension layer are assigned 
to a viscosity that is derived from a Chezy-relation between the stress and the local flow 
velocity along a route outlined by Fraccarollo et al. [Fraccarollo and Chapart (2002)]. 

( )*

γ
s f

c T

C v vα αρ
µ µ= +



   (22) 

where, sρ  is the density of soil and fC  is the friction coefficient of the Chezy-relation. Three 

different regions are defined, depending on the local volumetric soil concentration soilc  as: 

( )

* *
*

* *

* *

0.2
0.2

0.2 0.6,

0.6 0.6
1-0.6

c f
f soil

susp c soil

s c
c soil soil

c

c

c c

µ µ
µ

µ µ

µ µµ

 −
+ ≤

= 
 − + − ≥





 

 

   (23) 

2.2.3 Elastic soil 
In the current study, the elastic model will be introduced to describe the soil behavior. 
Hooke’s law is used as the constitutive model: 

e eDαβ αβγξ γξσ ε=    (24) 

where, αβσ is the stress tensor, eDαβγξ is the elastic modulus matrix. For an elastic model, 
the resulting constitutive model is typically given by: 

2G e Kαβ αβ γγ αβσ ε δ= +      (25) 

where, 
1
3

eαβ αβ γγ αβε ε δ= −   is the deviatoric shear strain rate tensor; K is the elastic 

bulk modulus, which relates to the shear modulus G and Poisson’s ratio λ  through the 
following equations: 

( )3 1 2
EK

λ
=

−
 and 

( )2 1
EG
λ

=
+

   (26) 

3 SPH formulation 
3.1 SPH concepts 
In the SPH method, a physical scalar function ( ),ix tφ  at a sampling point ix can be 
represented by: 
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( ) ( ) ( ), , , ,j
i i ij j j

j j

m
x t W r h x tφ φ φ

ρ
≈〈 〉 =∑    (27) 

where, the subscripts i and j indicate positions of labeled particle, and jm  means 

representative mass related to particle j. Note that the triangle bracket iφ〈 〉  means SPH 
approximation of a function φ . W is a weight function called by smoothing kernel 

function in the SPH literature. In the smoothing kernel function, ( )ij i jr x x= −  and h 

are the distance between neighbor particles and smoothing length, respectively. The 
divergence of the scalar function can be assumed by using the above defined SPH 
approximation as follows:  

( ) ( ) ( ),
,ijji i

j i
j j

W r hmr
x x xβ β β

φ φ φ φ
ρ
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≈ 〈 〉 = −

∂ ∂ ∂∑    (28) 

Also, the other expression for the gradient can be represented by: 

( ) ( )
2 2

,
.

i

ijji i i
i j

j j

W r hr
m

x x xβ β β

φφ φ φρ
ρ ρ

  ∂∂ ∂
≈ 〈 〉 = +  ∂ ∂ ∂ 

∑    (29) 

In this paper, quintic spline function is utilized as a kernel function as follows: 

( )

5 5 5

5 5
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3 6 2 15 1 0

3 6 2 2
, ,

3 2 3

0 3

ij ij ij
ij

ij ij
ij

ij d
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h h h

r r
h r h

W r h h h
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  − ≤ < 
 
 ≥

   (30) 

where, dβ  is 2 37 478 and3 358h hπ π in two and three dimension space. 

3.2 Discretization of projection method 
Here, the projection method for incompressible fluid and Bingham flow problems is 
discretized into particle quantities based on the SPH methodology. For this purpose, the 
gradient of pressure and the divergence of velocity are approximated as follow: 

( ) ( )
2 2

,
,

j i

ijji i i
i j

j

W r hpp x p pm
x x xβ β βρ

ρ ρ

  ∂∂ ∂
 ≈ 〈 〉 = +
 ∂ ∂ ∂ 

∑    (31) 
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( ) ( ) ( ),
. ,ijji i

j i
j j

W r hmx
x x x

α α
α α

β β βρ

∂∂ ∂
≈ 〈 〉 = −

∂ ∂ ∂∑
v v v v    (32) 

The second derivative of velocity for the viscous force and the Laplacian pressure have 
been proposed by Morris et al. [Morris, Fox and Zhu (1997)] by an approximation 
expression as follows: 

( ) ( ) ( )
( )

( )
* *

*
2 2

,
ij

nf f ijj i jn n
f n ij

j j i j n ij

W
rm x

x x x r
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β α α

αβ
β α β αβ

µ µ
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ρ ρ ρ η

∂ 
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 

∑v v v    (33) 

where η  is a parameter to avoid a zero dominator, and its value is usually given by 
2 20.0001 .hη =   

Similarly, the Laplacian of pressure in pressure Poisson equation (PPE) is given by: 

( ) ( )
( )
1

1
0 2

1 ,
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n nij iji jn
j

j i j n ij

W
p rp xm

x x r

αβ
α

α α αβ

ρ ρ
ρ ρ ρ η

+
+
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 

∑     (34) 

3.3 SPH based on solid mechanics 
In this section, SPH method is introduced to model the soil in the framework of solid 
mechanics. After applying SPH interpolation theory into the general equation of motion, 
the momentum equation can be expressed as: 

2 2 ,j iji i
j

j i j

WD m g
Dt x

αβα αβ
α

β

σσ
ρ ρ

  ∂
= + +   ∂ 
∑v

 (35) 

The stress-strain relationship in SPH formulation can be immediately expressed as follows: 

2 ,i i i
D G e K

Dt

αβ
αβ γγ αβσ ε δ= +   (36) 

and the strain rate tensor of a particle has discretized into the SPH formulations as: 

( ) ( )1 1 . .
2 2

j ij j iji i
i j i j i

j ji i j i j i

m W m Wv v
x x x x

α β
αβ α α β β

β α β αε
ρ ρ

 ∂ ∂ ∂ ∂
= + = − + −  ∂ ∂ ∂ ∂    

∑ ∑ v v v v  (37) 

3.3.1 Artificial viscosity 
In the numerical solutions, unphysical oscillations are appearing if the dissipative term is 
not introduced into the governing equations. To improve the numerical stability and to 
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damp out such undesirable oscillations, artificial viscosity ijΠ  is introduced into the 

momentum equation as follows: 

2 2 ,j iji i
j ij i

j i j

WD m g
Dt x

αβα αβ
αβ α

β

σσ δ
ρ ρ

  ∂
= + −Π +   ∂ 
∑v    (38) 

The artificial viscosity ijΠ  is derived by [Monaghan (1992)] as: 
2

, 0

0, 0

ij ij ij
ij ij

ijij

ij ij

Cα φ β φ
ρ

Π Π− +
⋅

Π = 
 ⋅ ≥

v x

v x

   (39) 

where, 

2 2
, ,

2 2
ij ij i j i j

ij ij ij

ij

h C C
C

ρ ρ
φ ρ

η

⋅ + +
= = =

+

v r

r
 

,ij i j ij i j= − = −r r r v v v  

  (40) 

In the above equation, αΠ  and βΠ  are constants and are chosen according to particular 
applications; C is the sound speed in soil, which is calculated from elastic bulk modulus 
and density as KC ρ= . 

3.3.2 Tensile instability and artificial stress method 
In the case of applied SPH in solids, the SPH particles mimic the behavior of the atoms.  
The instability, which is strictly related to the interpolation technique of the standard SPH 
method [Rabczuk, Belytschko and Xiao (2004)], is especially noticeable when simulating 
tension states in solids. The SPH particles forming clumps and causing non-physical 
fractures in the material. To avoid particles clumping, the artificial stress was proposed by 
Gray et al. [Gray, Monaghan and Swift (2001)] to eliminate the effects of tensile instability. 
The key idea of artificial stress is to introduce a small repulsive force between neighboring 
particles to avoiding particles clumping. Rabczuk et al. [Rabczuk and Belytschko (2007)] 
avoided instabilities in simulating the cracks by 3D-meshfree particle method.   
In the current work, the artificial stress is introduced in three dimensions as follows: 

( )2 2 ,j ijni i
j ij i ij i j

j i j

WD m f R R g
Dt x

αβα αβ
αβ αβ αβ α

β

σσ δ
ρ ρ

  ∂
= + −Π + + +   ∂ 
∑v  (41) 

where, n is the exponent dependent on the smoothing kernel and ijf  is the repulsive force 
term and is specified, according to Monaghan [Monaghan (2000)], in terms of the kernels as: 

( ),
ij

ij

W
f

W d h
=

∆
 (42) 

where d∆  is the initial particle spacing. h is assumed to be constant in the current work.  

https://www.sciencedirect.com/science/article/pii/S0045782507000564#!
https://www.sciencedirect.com/science/article/pii/S0045782507000564#!


 
 
 
216                                                                             CMC, vol.65, no.1, pp.205-224, 2020 

4 Results and discussions 
In this section, the numerical examples have been introduced to validate the current scheme. 
In addition, several numerical tests for water-soil-solid interactions were performed. 

4.1 Water/soil-suspension flow  
The Louvain erosional dam break experiment presented by Fraccarollo et al. [Fraccarollo 
and Chapart (2002)] is used to validate the suspension model. Fig. 3 introduces the initial 
diagram of the Louvain erosional dam break experiment. The model has the following 
dimensions; width of the water is Lw=1 m and height Hw=0.1 m. The width of the soil bed 
is Ls=2 m and height Hs=0.6 m. The ratio of the density between soil and water is 1.54. 
The collapse of the water column induces a surge leading to erosions of the soil. A 
suspension layer form between the pure soil and fluid whose evolution has been tracked 
in the experiments. Fig. 4 shows the evolution of the three phases in the experiment and 
the simulations at times 0.25, 0.5, 0.75 and 1.0 sec, respectively. Two simulations are 
considered in the comparison. The first simulation refers to suspension layers nested 
between water and soil. The second simulation is performed without a special treatment 
of the suspension layer. From the current investigation, the simulation with suspension 
layer gives more accurate validations compare to the experiment. While, the simulation 
without suspension layer has delay on the wave front of the water over soil compare to 
the experimental results and suspension case.  

 
Figure 3: Initial schematic model of the Louvain erosional dam break experiment 
[Fraccarollo and Chapart (2002)] 

 

 

 
(a) T=0.25 sec 
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(b) T=0.5 sec 

 
(c) T=0.75 sec 

 

 

 
(d) T=1.0 sec 

Figure 4: Comparison of dam break between experiment [Fraccarollo and Chapart 
(2002)] and simulations using current ISPH method at times 0.25 and 1.0 sec 
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4.2 Water-soil-solid interactions 
Here, water, soil and solid interactions are introduced. To simulate soil hump, Bingham 
flow for seawall is not enough since the soil is modeled as a fluid with a variable 
viscosity, which leads to very soft soil even if the physical parameters are chosen with 
high values. Solid approach for soil is applied to simulate soil hump. The initial models 
for coupling between water-soil interactions with fully structure body and structure body 
over soil hump were introduced in Fig. 5. Here, the density of the structure body is taken 
as 3 2.8ρ = gm/cm3. In Fig. 6, the suspension layers are formed between the water and 
soil. After impact to the structure body, the splash waves of the water are formed over the 
structure. Later, the fluid flow makes an erosion behind the structure. Similar tendencies 
occur between the fluid-soil and structure over soil hump in Fig. 7. The only difference 
here appears after erosion in the soil hump. This simulation can predict the effects of the 
soil erosion in a dam break analysis. Additional numerical tests were presented in Figs. 8-
10. The effects of the water flow velocity on both of the shape of the waves over structure 
and formed erosion around structure are presented in Fig. 8. It is observed that the shape 
of the wave over structure is strongly affected by the initial velocity of the fluid flow. 
Moreover, an extra erosion occurs near to the structure at low initial velocity of the fluid 
flow. One simulation trying to prevent erosion near to the structure is showed in Fig. 9. In 
this simulation, an extended structure behind the main structure was added to prevent 
erosion.  Another simulation which tries to prevent the impact of the erosion by adding a 
wedge for the structure is shown in Fig. 10. In this case, the wedge can prevent the effects 
of the erosion around the structure during the fluid impacts. 

 

 
Figure 5: Initial schematic diagrams of models 1 and 2 
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Figure 6: Coupling between water-soil interactions with structure body 

  

   

Figure 7: Coupling between water-soil interactions with structure body over soil hump 
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(a) High initial velocity (b) Low initial velocity 

Figure 8: Coupling between water-soil-solid interactions with two different initial velocity 
 

  
T=0.002 sec T=1.0 sec 
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T=1.4 sec T=2.0 sec 

Figure 9: Coupling between water-soil-solid interactions with extended solid structure 
            

  
Time=2.5 sec Time=3.75 sec 

  
Time=5.0 sec Time=10.0 sec 

Figure 10: Coupling between water-soil-solid interactions with wedge structure 

5 Conclusion 
In this study, an ISPH method has been used to simulate water, soil and solid structure 
interactions. The fluid is modeled as a Newtonian fluid and the soil is modeled in two 
different cases depending on the nature of the simulation. Firstly, the soil is simulated by 
Bingham model. In this model, the granular material is taken as a fluid with derived 
viscosity from the cohesion and friction angle. Moreover, the Bingham type constitutive 
model is proposed based on Mohr-Coulomb yield-stress criterion. From the validation 
with the experimental results, the simulation with suspension layer gives more accurate 
validations compare to the experiment. 
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Secondly, the soil is modeled by the solid mechanics, and the soil constitutive model is 
based on the Hooke’s law of linear elasticity. The nested suspension layers between water 
and soil are formed in both of the two cases.  
From the current simulations, the following points are reported: 
• The shape of the wave over structure is strongly depend on the initial velocity of the 

fluid flow.  
• An extra erosion occurs near to the structure at a low initial velocity of the fluid flow.   
• An extended structure behind the main structure try to prevent erosion. 
• Adding a wedge can prevent the structure from the impact of the erosion. 
Finally, the solid structure is taken as a rigid body in this study and as a future work, the 
solid structure will be taken as a concrete material with deformations.   
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