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Abstract: Recently, the fifth generation (5G) of mobile networks has been deployed and 
various ranges of mobile services have been provided. The 5G mobile network supports 
improved mobile broadband, ultra-low latency and densely deployed massive devices. It 
allows multiple radio access technologies and interworks them for services. 5G mobile 
systems employ traffic steering techniques to efficiently use multiple radio access 
technologies. However, conventional traffic steering techniques do not consider dynamic 
network conditions efficiently. In this paper, we propose a network aided traffic steering 
technique in 5G mobile network architecture. 5G mobile systems monitor network 
conditions and learn with network data. Through a machine learning algorithm such as a 
feed-forward neural network, it recognizes dynamic network conditions and then 
performs traffic steering. The proposed scheme controls traffic for multiple radio access 
according to the ratio of measured throughput. Thus, it can be expected to improve traffic 
steering efficiency. The performance of the proposed traffic steering scheme is evaluated 
using extensive computer simulations. 
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1 Introduction 
Recently, mobile traffic is exploding with the spread of smart phones. In 2024, mobile 
data generated by smartphones is expected to reach 95% of total mobile data. The 
expansion of Over-The-Top (OTT) services increases the demand for mobile broadband 
and causes an increase in mobile traffic. Massive devices for Internet of Things (IoT) 
services also increase mobile traffic. That is, the demand for data traffic for service 
subscribers of mobile networks will increase exponentially [Eriksson, Forsman, 
Ronkainen et al. (2019)]. There is an increasing demand for new communication to 
provide stable services for explosive data traffic. The fifth generation (5G) mobile 
network system has been proposed as a solution. The wireless and core networks 
specifications are defined by ITU and 3GPP. The 5G mobile communication provides 
high mobility in fully connected services. It covers enhanced mobile broadband (eMBB) 
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and ultra-reliable and low latency communications (URLLC). It also supports massive 
machine type communication (mMTC). Through network virtualization, 5G mobile 
systems enable logical network slices. In addition, 5G mobile systems allows multiple 
radio access networks for 3GPP and Non-3GPP. Traffic steering among them is applied 
to the 5G mobile networks [Rost, Banchs, Berberana et al. (2016); 3GPP TS 23.501 
(2019); 5G PPP (2019); Rommer, Hedman, Olsson et al. (2019)].  
The 5G mobile network is composed of a fronthaul and backhaul network. Radio access 
occurs in a fronthaul network, while a backhaul network performs network core 
operations. For 3GPP communication, a terminal device (user equipment: UE) is 
connected to a next generation node B (gNB). The gNBs constitute the fronthaul network 
as a radio access network. Data traffic from the fronthaul network is transmitted to a user 
plane function (UPF) in a backhaul network. In non-3GPP communication, radio access 
is connected to UPF in a backhaul network through a 5G communication element. The 
UPF is connected to the Internet via a data core of 5G mobile networks and delivers user 
data traffic [3GPP TS 23.501 (2019); 5G PPP (2019); Rommer, Hedman, Olsson et al. 
(2019); Agyapong, Iwamura, Staehle et al. (2014)]. 5G mobile networks are completely 
divided into control plane and user plane in the network. The UPF enables the connection 
of multiple radio access technologies, and it handles user data transmission. In addition, 
the mobile edge computing (MEC) server can be integrated to the UPF. The MEC server 
provides cloud computing services to a radio access network in network edge [Kekki, 
Featherstone, Fang et al. (2018); Hu, Patel, Sabella et al. (2015); Mach and Becvar 
(2017); Frank, Fuhrmann and Ghita (2016)]; it monitors user traffic of radio access 
technologies and provides virtualization services for radio access technologies. Thus, 
network aided traffic steering can be applicable using the MEC system in the 5G mobile 
networks. In addition, if we employs machine learning in the MEC system, we can 
provide intelligent traffic steering to 5G mobile services. 
The traffic steering methods can efficiently provide mobile services for users. Keeping 
multiple data sessions, traffic routes in radio access can be controlled: traffic steering can 
choose a particular radio access technology for data transmission, change particular radio 
access during data transmission, and employ multiple radio access technologies for 
mobile services. Thus, traffic steering can improve the quality of user experiences (QoE). 
In 5G mobile networks, because 3GPP and Non-3GPP connections are integrated to UPF, 
traffic steering can be operated in the UPF. In 5G standards, there are several traffic 
steering methods however they do not use network data statistics for monitoring. In 
general, applying machine learning to mobile networks and systems gives them 
intelligence [Alsheikh, Lin, Niyato et al. (2014); Zhang, Patras and Haddadi (2019); 
Rostami, Sangaiah, Wang et al. (2019)]. It can improve the accuracy of decision-making 
in network controls. Kim et al. [Kim, Kim and Park (2018)] provided an efficient buffer 
management scheme for a video player in mobile video services. It used a logistic 
regression algorithm to fill the video player buffer in a bad wireless network. Kim et al. 
[Kim, Jeong and Kim (2017)] proposed a data filtering system in a network. In that 
research paper, the system used naïve Bayesian classifier algorithm to find and block 
malfunctioning and intrusion data. Kim et al. [Kim and Kim (2018)] studied data 
forwarding in a delay tolerant system with a mobile sink, where a naïve Bayesian 
classifier algorithm was used to determine the connectivity status with a mobile sink 
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terminal. Kim et al. [Kim and Kim (2019)] determined wireless channel migration using 
naïve Bayesian classifier algorithm. It maintained a better communication environment 
through the channel migration. As mentioned earlier, UPF integrated with MEC in 5G 
mobile networks can gathers traffic information of radio access technologies. If we use 
the gathered network information for machine learning, efficient decision-making for 
traffic steering is available. This leads to efficient mobile services in 5G networks 
through an intelligent traffic steering method. 
The rest of this paper is organized as follows. Section 2 discusses related work to 
establish the conceptual background for this study. The network architecture for 
intelligent traffic steering is then discussed in Section 3. Section 4 proposes an intelligent 
traffic steering method using machine learning, and Section 5 presents the performance 
evaluation thereof. Finally, Section 6 concludes the paper. 

2 Related work 
5G mobile systems allow a variety of radio access networks and can use multiple 
connections. This situation leads to traffic steering for better mobile services. 3GPP 
defines traffic steering as three functions: steering, switching, and splitting [3GPP TS 
23.793 (2018)]. Traffic steering is to select an appropriate radio access before data 
transfer, while traffic switching is to change a radio access to another one during data 
transfer. Traffic splitting, then, is to use multiple radio accesses by splitting a data flow. 
These functions are represented by access traffic steering, switching, and splitting 
(ATSSS). This ATSSS is a key technology in 5G mobile networks to provide various 
ranges of services. 
There are several studies for traffic steering in mobile networks. Condoluci et al. 
[Condoluci, Johnson, Ayadurai et al. (2019)] provides a hybrid access gateway (HAG) 
using traffic splitting. The HAG is used as a traffic aggregation point in a core network so 
that fixed and mobile broadband services can be used simultaneously. A data flow, which 
the HAG receives from a content server for broadband services, is separated to a mobile 
network and a wired infra network and mobile terminal receives traffic from the separated 
data flows. Therefore, it is possible to satisfy QoS for broadband services from sufficient 
data traffic. Barmpounakis et al. [Barmpounakis, Magdalinos, Alonistioti et al. (2018)] 
proposes an analytics framework to support radio access technology (RAT) selection. It 
characterizes a mobile network with high data volumes and a large number of users. Traffic 
load is determined by the behavioral profiles of users, which are constructed by users’ 
collected network information. According to the traffic load, an appropriate RAT is 
selected to avoid traffic load of a radio access network. Prasad et al. [Prasad, Moya, Ericson 
et al. (2016)] deals with traffic steering in the tight integration of LTE and 5G 
communication. An integration layer is placed in bearer (i.e., between a core network and 
radio access networks). It receives various data flows from a core network and selects a 
proper RAT for each data flow using radio link feedback. Through the integration layer 
entity, dynamic QoS management for data flows is provided. Nguyen et al. [Nguyen and 
Pham (2018)] provides a traffic steering solution to minimize routing costs in a network. In 
a multipath routing protocols, a routing path is determined through network function 
virtualization (NFV). The routing costs are calculated by a heuristic algorithm. 
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When multiple paths are available (i.e., there are multiple RATs or transmission paths), 
the traffic steering technology can provide the best connection for a given service. 
Therefore, 3GPP defines traffic steering modes in 5G mobile networks. There are five 
traffic steering modes: active-standby, priority-based, best-access, redundant, and load-
balance mode [3GPP TS 23.793 (2018)]. According to the traffic steering mode, the 
usage of RATs in 5G mobile networks can be different. Fig. 1 represents traffic steering 
modes in 5G mobile networks. 
 

 
Figure 1: Steering modes for 5G mobile networks [3GPP TS 23.793 (2018)] 

In the active-standby steering, all data traffic is only delivered to one RAT in the active 
state. The RAT in the standby state waits until the RAT in the active state becomes 
unavailable. If the RAT re-enters the active state, data traffic can be transferred to the 
RAT. This mode provides a continuity of connection. If one RAT has a problem during a 
mobile service, another RAT in the standby state can be used in the active state. That is, 
the radio access is switched. In the priority-based steering, priorities are assigned to the 
RATs. All data traffic is delivered to the high-priority access and if congestion occurs in 
the high priority access, the low priority access is used for additional data flows. This 
mode also provides improved connection continuity and RAT coexistence. In the best-
access steering, the RAT with the smallest RTT is selected. The radio access for data 
transmission can be dynamically changed because this mode depends on measured RTT 
in RATs. This mode is known to have better performance than the priority-based steering 
mode. The redundant steering uses both radio accesses to increase reliability. The same 
data traffic is transmitted to both radio accesses. Then, even though traffic loss occurs in 
one radio access, lost traffic can be delivered through another radio access. The Load-
balance steering exploits the percentage of data flows to indicate traffic load. The traffic 
load of each radio access is assigned and the data traffic is split according to the given 
traffic load. This mode can provide bandwidth aggregation with balanced load. 
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3 5G mobile network architecture 
The 5G mobile network is composed of a 5G core, 3GPP radio access, and Non-3GPP 
radio access networks. In the 5G core network, the access and mobility management 
function (AMF) interacts with a radio network through signaling to manage user 
mobility. The unified data management function (UDM) deals with authentication data 
for subscribers. The session management function (SMF) manages user session (i.e., 
creation and release) and IP allocation for UE. The policy control function (PCF) 
manages policy rules for the network and services for users. The user plane function 
(UPF) has an important role in processing and transmitting user data. In the 3GPP radio 
access network, the UE connects to a next generation NodeB (gNB). As a base station, it 
receives a radio signal and relays to the core network. In case of the non-3GPP radio 
access network, an access point (AP) receives the data signal and delivers it to the UPF 
via the non-3GPP interworking function (N3IWF). The N3IWF provides tightly coupled 
integration with 3GPP and non-3GPP mobile networks. For 5G core elements, several 
signaling interfaces are used to transmit information for mobile networks. Data flows in 
5G mobile networks are created via the UPF. Fig. 2 shows the 5G mobile network 
architecture. As shown in the figure, data sessions of 3GPP and non-3GPP are 
constructed via the UPF. The UPF manages data flows for users and provides a gate to 
connect to Internet. In 5G standard, multipath TCP (MPTCP) [Bonaventure and Seo 
(2016)] is allowed to support multiple data sessions for a single data transmission. It can 
use multiple network interfaces by generating subflows. This is useful when performing 
traffic steering. 
In 5G mobile networks, the UPF gathers all data flows and integrates with radio access 
networks. This allows for radio access control through the UPF. That is, the UPF can 
select or share network interfaces for users. Thus, 3GPP 5G standard includes traffic 
steering techniques (i.e., ATSSS) in 5G specification as mentioned in Section 2. 
However, the schemes are quite simple. Mobile networks have various service 
conditions. For user satisfaction, it is necessary to provide intelligent traffic steering per 
service contents. This is why network-aided intelligent traffic steering is proposed. 

Table 1: 5G mobile network notations 

Elements Descriptions 

UE User equipment  

gNB Next generation NodeB 

UPF User plane function 

AMF Access and mobility management function 

SMF Session management function 

PCF Policy control function 

UDM Unified data management function 

N3IWF Non-3GPP interworking function 
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Figure 2: 5G mobile network architecture 

4 Intelligent traffic steering 
4.1 Network architecture for network-aided intelligent traffic steering 
As mentioned earlier, mobile traffic connects to the Internet through UPF. Thus, among 
integration scenarios of mobile edge cloud (MEC) in 5G mobile networks, the UPF and 
MEC integration scenario may be appropriate. MEC provides computing resources to 
radio access networks so that radio access networks can offload their computing loads. It 
also provides local storage for radio access networks. Thus, service data for UEs can be 
cached in MEC for QoS. In addition, MEC monitors radio access networks and supports 
virtualization interfaces [Hu, Patel, Sabella et al. (2015); Mach and Becvar (2017)]. 
Therefore, the network-aided traffic steering method can be implemented as a function of 
MEC. Fig. 3 represents the network architecture for network-aided traffic steering. 
Integrated UPF (i.e., UPF with MEC) can performs deep neural network learning on 
radio network status through network data such as signal strength, transmission delay, 
RTT, transmission rate, etc. It monitors RATs during data transmission and gathers 
network data of RATs. Learning to predict RAT status is periodically performed using 
updated network data. The learning results are used for traffic steering of RATs. In 
wireless networks, network control by learning can provide better performance because it 
performs decision-making using intelligence instead of a simple threshold. The integrated 
UPF has a role of MPTCP [Bonaventure and Seo (2016); Nguyen, Kibria, Ishizu et al. 
(2019); Lee and Chung (2019)] proxy and supports MPTCP flows. UEs with MPTCP 
functionality can use multiple subflows of MPTCP in an access network by connecting to 
the MPTCP proxy of the integrated UPF. 
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Figure 3: UPF integrated with mobile edge cloud (MEC) in 5G mobile network architecture 

4.2 Network-aided traffic steering  

 
Figure 4: System architecture of the proposed method 

The system for the network aided traffic steering is composed of four modules: traffic 
flow monitor, traffic flow database, status inference module, and traffic steering module. 
Fig. 4 represents a system architecture of the proposed method. In the integrated UPF, the 
traffic flow monitor gathers network data of traffic subflows. Gathered network data is 
managed by the traffic flow database. The status inference module performs learning to 
predict subflow status using data in the traffic flow database. This module employs a 
learning model using a deep neural network algorithm. The learning for network data 
(e.g., signal strength, delay, RTT, jitter, etc.,) is not required complex computation such 
as convolutional neural network for image processing. The learning results are applied to 
transmission traffic control by the traffic steering module. The proposed traffic steering 
uses intelligence in the integrated UPF. Through the intelligence by the collected network 
data, suitable traffic control for mobile services can be enabled. 
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Traffic-Steering-Algorithm ():  
line 1:  f1←D, f2←D 
line 2:  Loop: 
line 3:      N1←{RSS, delay, throughput, etc.}1  
line 4:      N2←{RSS, delay, throughput, etc.}2  
line 5:      S1←Learning-Status-Inference (N1) 
line 6:      S2←Learning-Status-Inference (N2) 
line 7:      If (S1 ≠ S2): 
line 8:          n←floor (TPg/TPb) 
line 9:          If n>THRD: 
line 10:             fg←M×D, fb←0 
line 11:         Else  
line 12:             fg ← n×D, fb←(M-n)×D 
line 13:         End if  
line 14:     Else  
line 15:         f1 ← M/2×D, f2←M/2×D 
line 16:     End if 
line 17: End loop 

Figure 5: The proposed traffic steering algorithm 

Table 2: Notations for the proposed traffic steering 

Elements Descriptions 

fi Subflow i 

D Unit data size for requests 

Nj Network data of subflow j 

Sj Network state of subflow j 

TPg Throughput of the subflow with good state 

TPb Throughput of the subflow with bad state 

THRD Threshold to select a network interface 

n Throughput ratio of two subflows 

M Maximum number of request data 

fg Subflow with good state 

fb Subflow with bad state 
 
Fig. 5 represents the proposed traffic steering algorithm to adjust the amount of traffic to 
network interfaces. Tab. 2 shows notations for the proposed traffic steering algorithm. The 
proposed algorithm starts with the collected network data. A status inference of network 
interfaces by learning is carried out in lines 3~6. If the states of two network interfaces are 
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different (i.e., they are in a good and bad state, respectively), the throughput ratio of the 
network interfaces is calculated in line 8. If the radio is greater than THRD, only one 
network interface with a good state is selected to transmit the data traffic (lines 9~10). 
Otherwise, the amount of traffic is assigned to each network interface according to the 
throughput ratio (lines 11~12). When the network interfaces are in the same state, the same 
amount of traffic is assigned to each network interface (lines 14~15). The proposed 
algorithm is periodically performed with updated network data in the integrated UPF. 
According to the result of the proposed algorithm, traffic steering for network interfaces is 
carried out. The proposed algorithm employs deep neural network–based learning to 
improve the recognition of network status. It allocates data traffic to the network interfaces 
through accurate state awareness of networks. Thus, it can use network resources efficiently 
in 5G mobile networks. This can greatly the improve user’s QoE. 

 

Figure 6: The deep neural network model for the network status prediction 

 
Figure 7: A node of the deep learning model: the number of inputs becomes the number 
of activated nodes (n) in the previous layer 
The Learning-Status-Inference function in Fig. 5 is placed in the status inference module 
of the system architecture, called by the traffic steering module. This function is based on 
a deep neural network for learning of network status. The deep neural network model 
consists of 1 input layer, 8 hidden layers and 1 output layer. The number of nodes in a 
hidden layer is 30. Fig. 6 shows the deep learning model to predict the status of network 
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interfaces. The learning outputs of the previous layer are used as the input of the next layer. 
In each node, the attributes of the input are multiplied by the weight and then used for an 
activation function. A result of the activation function is an output of each node. In this 
learning model, we use ReLu [Goodfellow, Bengio and Vourville (2016)] as the activation 
function. In addition, the dropout technique (50%) is applied to every three layers in hidden 
layers to reduce overfitting. Fig. 7 represents a node of the learning model. The output layer 
consists of a single node using sigmoid [Goodfellow, Bengio and Vourville (2016)] as an 
activation function and its output becomes the final result. An error occurs when there is a 
difference between this final result and the real output. To minimize this error, the deep 
neural network performs optimization using gradient. We employ the Adam [Goodfellow, 
Bengio and Vourville (2016)] method to optimize the weights. 

4.3 Cooperation with neighbor MECs  

 

Figure 8: Collaboration with an adjacent integrated UPF 

In the proposed method, the UPF is integrated with the MEC. This integrated UPF can 
temporarily store requested data by users. Data exchange between the integrated UPFs is 
also possible. Thus, when a UE attempts to request data using MPTCP, the integrated 
UPF can piggyback neighboring UPF information. The piggybacked request is delivered 
to a content server, which then divides the requested data and transmits the data blocks to 
the requested UPF and its neighbor UPF. When the UE creates the second subflow, the 
UPF requests data from its neighbor UPF. Data in the neighboring UPF is delivered to the 
requested UPF, which then transmits the data to the second subflow for UE. Fig. 8 shows 
the collaboration with an adjacent integrated UPF. Because the second subflow’s request 
is not transmitted to a content server, delays for service time may be reduced. 

5 Performance evaluation 
Performance evaluations are carried out with computer simulations. The proposed 
method is compared with the existing traffic steering modes (i.e., best-access, priority-
based and load-balance) of 5G mobile networks, using event-driven simulations. The 
simulator is implemented by C language with SMPL [MacDougall (1987)] library, which 
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provides APIs for event scheduling. A mobile node (i.e., UE) has two network interfaces: 
3GPP and Non-3GPP. It performs data download for performance evaluation. Both 3GPP 
and Non-3GPP access networks have two states of Markov chain model: a good and a 
bad state. The network channel state changes according to the model. In the simulation, 
traffic download events occur with a uniform distribution of 1 min on average. The UE 
requests 500 MB for a content server to download. To download the entire data, several 
requests are needed, each having up to 40 MB. The total simulation time is set to 24 
hours. Fig. 9 represents a state diagram for the simulation. In the TFGEN state, the 
download events occurs and the ratio of priority download is 30%. In the NET state, the 
channel states of access networks are changed. If a download event occurs, the UE 
downloads data traffic from the C-SERV via the I-UPF and the gNB. Transmission 
delays are assumed to Tinternet, Tcore, and Taccess. Tcore, and Tinternet are set to 10 ms and 200 
ms, respectively. Taccess depends on data rate of access networks. In the AL state, traffic 
steering algorithms are run. In the proposed method, access network status prediction by 
the proposed deep neural network model is used. According to the traffic steering in the 
AL state, the UE adjusts the amount of requested traffic. 

 
Figure 9: State diagram for the simulation 

5.1 Network channel model  
As shown in Fig. 10, a state transition occurs with a given probability. The probability p 
is used to change the state from good to bad. The good state is maintained with the 
probability 1-p, and the bad state is changed to the good state with the probability q, 
which is maintained with the probability 1-q. During the simulation, the state transition is 
checked every NET time. For the 3GPP access network, p and q are assumed to be 0.2 
and 0.9, respectively. For the non-3GPP (i.e., high speed WiFi) network, they are 
assumed to be 0.4 and 0.7, respectively. The NET time is set to 5 sec. In the access 
network model, the non-3GPP access network has a more frequent network state 
transition than 3GPP. In the good state of 3GPP, the data rate and received signal strength 
are randomly determined in the range of 90 to 130 MB/s, and in the range of -70 to -55 
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dBm. In the bad state of 3GPP, they are randomly determined in the range of 10 to 50 
MB/s, and in the range of -85 to -70 dBm. In the good state of non-3GPP, the data rate 
and received signal strength are randomly determined in the range of 20 to 100 MB/s, and 
in the range of -65 to -45 dBm. In the bad state of non-3GPP, they are randomly 
determined in the range of 62 to 500 KB/s, and in the range of -85 to -65 dBm. Tab. 3 
shows the simulation parameters. 

 
Figure 10: Network channel model for the simulation 

Table 3: Simulation parameters 

Description Parameter values 

Simulation Time 24 hours 

NET time 5 sec 

Traffic event Uniform distribution (60 sec) 

Priority traffic ratio 30% 

Total download 500 MB 

Max. request (M) 40 

Unit size (D) 1 MB 

Channel prob. (3GPP) p=0.2 and q=0.9 

Channel prob. (non-3GPP) p=0.4 and q=0.7 

THRD (in proposed al.) 20 

Tcore 10 ms 

TInternet 200 ms 

Network status prediction prob. 99.9% 

5.2 Network status prediction  
The learning model for network status prediction in Section 4.2 is implemented with 
Keras [Keras (2019)], which is an open source library for deep learning. Training data 
consists of throughput and received signal strength as a tuple. 8,000 data tuples from a 
training data set with 10,000 data tuples are used for training and 2,000 data tuples are 
used for validation. The batch size for training samples is set to 1,000, and training is 
repeated for a given number of epochs-3,000 in the case of our study. As mentioned in 
Section 4.2, the learning model employs ReLu as an activation function in the hidden 
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layers and sigmoid in the output layer. A loss function is binary cross-entropy and the 
loss is optimized by the optimizer Adam. Fig. 11 represents the learning result of the 
prediction model in Section 4.2. The model accuracy is 99.89%—a high result. 

 
Figure 11: Learning result of network status prediction 

5.3 Simulation results  

 
Figure 12: Average download delays in active-standby mode 

Fig. 12 shows the result of active-standby mode, namely the average delays for 
simulation time when WiFi or 5G-cellular is only activated. The average delays are 
45.105 sec in non-3GPP (WiFi only) and 8.324 sec in 3GPP (5G-cellular) only. Because 
the wireless conditions of the access network are frequently changed in non-3GPP, delays 
in the data downloads are longer than in 3GPP. In 3GPP, the wireless conditions remain 
relatively more stable than in non-3GPP. The data download in 3GPP causes less 
transmission delays but incurs more transmission costs. The transmission cost of non-
3GPP using an unlicensed radio band is relatively low. 
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Figure 13: Average download delays 

Fig. 13 shows the average delays of traffic steering modes and the proposed method. The 
average delay is 11.588 sec in the proposed method and 9.976 sec in the best-access 
mode. In the priority-based mode, the average delay is 33.485 sec, while it is 15.25 sec in 
the load-balance mode. As mentioned earlier, wireless conditions in non-3GPP networks 
are frequently changed. Thus, wireless access in bad conditions causes long transmission 
delays. In the case of the best-access mode, because it selects the best network for data 
download, it has a high 3GPP network usage rate. Thus, it shows the lowest download 
delays. In the load-balance mode, downloaded traffic is split into 3GPP and non-3GPP 
networks. Because the non-3GPP usage rate is high, it shows long download delays. In 
the priority-based mode, the high-priority data downloads use the 3GPP network. Thus, 
although the ratio of high-priority download rate is 30%, 3GPP usage can reduce the 
download delays. The proposed method steers access networks according to status 
prediction and the algorithm in Fig. 5. Therefore, the proposed method can reduce the 
download delays as the best-access mode. However, it does not use 3GPP as much as the 
best-access mode. The proposed method can be affected by the THRD parameter. In the 
simulation, the value showing the best performance in delay was set as a parameter. 
When the average delay was measured by changing to 3, 5, 10 and 20, the result of 
THRD at 3 and 5 were 11.84 sec and 11.65 sec. The result was the same when the THRD 
was 10 or higher.  
Fig. 14 represents the average delays in high priority downloads. The priority-based 
mode allows high priority downloads to assign better network connection such as 3GPP. 
Thus, the average delays of high priority downloads in the priority-based and best-access 
modes are very similar. The proposed method has more delay, but the difference between 
the proposed method and other methods (i.e., priority-based and best-access) is only 1.2 
sec. In the case of the load-balance mode, it uses 3GPP and non-3GPP networks at the 
same rate. Thus, due to non-3GPP usage, the average delay of high-priority downloads is 
longer than other methods. As shown in Figs. 13 and 14, in terms of average download 
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delays, the best-access mode and the proposed mode provide better performance. 
However, the best-access mode uses more expensive 3GPP network resources. 

 
Figure 14: Average download delays of high priority downloads 

Fig. 15 represents the amount of downloaded data traffic in each wireless network. The 
amount of traffic received in the proposed method is 181,689,915 KB and 555,610,112 
KB, respectively, in non-3GPP and 3GPP. In the case of the best-access mode, the 
amount of traffic is 54,060,370 KB and 683,253,760 KB respectively. In the proposed 
method, the amount of non-3GPP traffic is more than three times higher than that of the 
best-access mode. Therefore, although the proposed method shows more delay, it has an 
offloading effect on the traffic load by using more non-3GPP. In addition, the difference 
in delay between the proposed method and best-access mode is not significant. In the 
priority-based mode, only the high-priority downloads use 3GPP. Because the high 
priority traffic rate is 30%, the amount of traffic downloaded from non-3GPP is higher 
(496,047,755 KB in non-3GPP and 241,254,400 KB in 3GPP). In the load-balance mode, 
when a download request occurs, both 3GPP and non-3GPP are used. In general, non-
3GPP access networks are not stable and change frequently. Thus, the amount of traffic 
downloaded from non-3GPP (213,788,795 KB) is less than 3GPP (523,509,760 KB). 
Because the priority-based and the load-balance modes use more non-3GPP than the best-
access mode and the proposed method, the amount of non-3GPP traffic is usually more. 
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Figure 15: Amount of downloaded data traffic 

In Section 4.3, the proposed method uses neighbor UPF-MEC as temporary data storage. 
If there is data traffic to be downloaded in the neighboring UPF-MEC, the delay to 
request/transmit traffic to/from a content server on the Internet can be reduced because it 
is possible to request a download to a neighboring UPF-MEC instead of a content server. 
Fig. 16 shows the download delay with and without the neighboring UPF-MEC in the 
proposed method. It can be seen that the download delay is longer when the neighboring 
UPF-MEC is not used. The difference in delay is about 200 ms and this can be viewed as 
Internet access time. 

 
Figure 16: Download delay with and without neighbor UPF-MEC in the proposed method 

6 Conclusion 
Traffic steering technology in 5G mobile network systems is important for the efficient 
use of radio resources. The 5G mobile network standard provides five traffic steering 
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modes for 3GPP and non-3GPP radio access networks: the active-standby, priority-based, 
best-access, redundant and load-balance mode. According to each steering mode, the 
usage of radio resources can be different. Although the five steering modes in the 
standard can be supported for mobile services, they do not lead to efficient usage of radio 
resources because they do not consider radio conditions dynamically. Therefore, a traffic 
steering method that considers dynamic radio conditions is proposed. The proposed 
method employs a deep neural network to predict radio conditions. According to the 
learning result, it steers the amount of traffic of radio networks. Among the five steering 
modes in the standard, the best-access mode shows the best performance in aspect of 
transmission delay. However, it uses more expensive 3GPP radio access. The proposed 
method has a slightly longer delay time (1.2 sec), but performs three times the data 
offloading than that of the best-access mode during data downloads. Therefore, the 
proposed method enables mobile services to use radio resources more efficiently. 
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