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Abstract: In this manuscript, we consider a stochastic smoking epidemic model from 
behavioural sciences. Also, we develop a structure preserving numerical method to 
describe the dynamics of stochastic smoking epidemic model in a human population. The 
structural properties of a physical system include positivity, boundedness and dynamical 
consistency. These properties play a vital role in non-linear dynamics. The solution for 
nonlinear stochastic models necessitates the conservation of these properties. 
Unfortunately, the aforementioned properties of the model have not been restored in the 
existing stochastic methods. Therefore, it is essential to construct a structure preserving 
numerical method for a reliable analysis of stochastic smoking model. The usual explicit 
stochastic numerical methods are time-dependent and violate most of the structural 
properties. In this work, we have developed the implicitly driven explicit method for the 
solution of stochastic smoking model. It is also proved that the newly developed method 
sustains all the aforementioned properties of the system. Finally, the convergence 
analysis of the newly developed method and graphical illustrations are presented. 
 
Keywords: Smoking model, stochastic numerical techniques, convergence.  

1 Literature survey 
In the 19th century, due to trade between Europe and China, the use of opium smoking 
became popular due to its medicinal properties. Later on, opium smoking spread in the elite 
class of Europe and gradually this habit spread all over the world. In World War II, the trend 
decreased in Europe, while in China, it became outdated during the traditional revolution. 
Zheng et al. [Zheng, Wang and Xia (2018)] investigated that 5 million people died in a year 
due to the use of tobacco and can be doubled by 2025. Jeong et al. [Jeong, Kuk and Kim 
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(2019)] investigated that the extensive use of tobacco, which leads to severe ailments like 
cardiovascular disease, chronic lungs disease and lungs cancer, is the main cause of such 
high death rate. A recent study in Saudi Arabia has revealed that the total number of smokers 
in the country is 6 million, which will be increased to 10 million by the end of 2020. These 
smokers spend 21 billion Saudi riyals annually on smoking. Zaman [Zaman (2011)] has 
presented first time, the smoking model by taking into account, the occasional smoker’s 
compartment. Smoking is very common in Pakistan. According to a careful estimate, about 
one hundred and seventy-seven million cigarettes are smoked daily. A demographic health 
survey found that 46% of men and 4.5% of women smoke in Pakistan. This habit greatly 
attracted young generation and farmers of the country. Pakistan is one of the largest 
consumers of cigarettes in South Asia. The State Bank of Pakistan reported that in the 
financial year 2016, Pakistanis spent Rs 250 billion on approximately 64 billion cigarettes. It 
is reported that 90% of lungs diseases in Pakistan are caused by the use of tobacco, which 
kills 100,000 people annually. Bassiony [Bassiony (2009)] concluded on the basis of a 
survey conducted by sustainable development policy institute (SDPI) that the number of 
tobacco users in the country is over 3.95 million, out of which 125,000 suffered from lungs 
diseases every year due to the widespread of tobacco use. More than 80% of smokers belong 
to the third world or developing countries. Extensive use of tobacco in such countries leads 
to deaths and diseases. For instance, in Karachi, a large number of young people are being 
diagnosed with lungs’ cancer due to tobacco use, and the number is day by day growing. 
Smoking causes asthma in adults and also damages their immune system. The smoking in 
developed countries has declined over the past few decades. Sharomi et al. [Sharomi and 
Gumel (2008)] have found that mathematical frameworks are major tools to understand the 
dynamics of diseases in humans, animals and plant populations. Zeb et al. [Zeb, Bano, 
Alzahrani et al. (2018)] presented dynamical analysis of smoking model with saturated 
bilinear rate. Selya et al. [Selya, Lvanov, Bachman et al. (2019)] presented the anti-smoking 
policies, by using a system of dynamics simulation in youth. Xiong et al. [Xiong, Yang, 
Zhao et al. (2017)] presented robust dynamics network traffic partitioning against malicious 
attacks of smoking. Chen et al. [Chen, Xu, Zuo et al. (2019)] found the fire recognition 
algorithm using dynamic feature fusion and IV-SVM classifier. Zeb et al. [Zeb and Zaman 
(2013)] discussed square root dynamics of the smoking model with deterministic analysis. 
Raza et al. [Raza, Arif and Rafiq (2019)] pointed out that some explicit numerical methods 
produce unexpected fluctuations for certain scenario. Arif et al. [Arif, Raza, Rafiq et al. 
(2019)] investigated that explicit techniques are less efficient and less reliable. No doubt, the 
stochastic differential equations (SDEs) have no explicit solutions. Pierret [Pierret (2015)] 
presented the structure preserving properties on Euler Maruyama method. Cresson et al. 
[Cresson and Pierret (2014)] studied the structure preserving dynamical properties for 
biological problems. These problems are solved by the stochastic numerical techniques. A 
convergence analysis is the main concern of the numerical techniques. There is not any 
stochastic numerical technique that preserves all the dynamical properties in the existing 
literature. The main focus of this paper is to introduce the stochastic implicitly driven 
explicit technique known as stochastic nonstandard finite difference method. Mickens 
[Mickens (2005)] designed construction rules of the nonstandard finite difference technique. 
Our paper plan is as follows: In Section 2, we shall consider deterministic smoking model 
and its equilibria. We will construct the stochastic smoking model in Section 3. In Section 4, 
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we will use different stochastic numerical techniques. Finally, in Section 5 conclusion and 
directions will be discussed. 

2 Deterministic smoking model 
In this section, we consider the deterministic smoking model. The state variables involved 
in the model are described as follows: 𝑋𝑋1 : Signifies the non-smokers (potential smokers), 
𝑋𝑋2: Signifies the light smokers (Occasional smokers), 𝑋𝑋3: Signifies the heavy smokers, 𝑋𝑋4: 
Signifies the smokers who left smoking temporarily, 𝑋𝑋5: Signifies the smokers who left 
smoking forever. The flow chart of smoking in the human population is shown in Fig. 1. 

 
Figure 1: Flow diagram of the smoking model 

The parameters of the model are described as follows: 𝜛𝜛 (denotes the contact rate between 
smokers and temporarily left smoking individuals), 𝜈𝜈  (denotes the rate at which the 
individuals stop smoking), 𝜔𝜔1  (denotes the contact rate between non-smokers and light 
smokers), 𝜔𝜔2 (denotes the contact rate between light smokers and heavy smokers), 𝜉𝜉 (denotes 
the rate of recruitment of potential smokers) and 𝜌𝜌 (denotes the remaining fraction who left 
smoking forever). The governing equations of the smoking model as follows: 
𝑋𝑋1′ = 𝜉𝜉 − 𝜉𝜉𝑋𝑋1 − 𝜔𝜔1𝑋𝑋1𝑋𝑋2 .                (1) 
𝑋𝑋2′ = −𝜉𝜉𝑋𝑋2 +𝜔𝜔1𝑋𝑋1𝑋𝑋2 − 𝜔𝜔2𝑋𝑋2𝑋𝑋3.               (2) 
𝑋𝑋3′ = −𝜉𝜉𝑋𝑋3 − 𝜈𝜈𝑋𝑋3 +𝜔𝜔2𝑋𝑋2𝑋𝑋3 +𝜛𝜛𝑋𝑋4.               (3) 
𝑋𝑋4′ = −𝜉𝜉𝑋𝑋4 −𝜛𝜛𝑋𝑋4 + 𝜈𝜈(1 − σ)𝑋𝑋3.               (4) 
𝑋𝑋5′ = −𝜉𝜉𝑋𝑋5 + 𝜌𝜌𝜈𝜈𝑋𝑋3.                 (5) 
with conditions 𝑋𝑋1 ≥ 0,𝑋𝑋2 ≥ 0,𝑋𝑋3 ≥ 0,𝑋𝑋4 ≥ 0 ,𝑋𝑋5 ≥ 0 and 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋4 + 𝑋𝑋5 =
w1, w1is represented as the whole human population. 
The reduced form of Eqs. (1) to (5) is  
𝑋𝑋1′ = 𝜉𝜉 − 𝜉𝜉𝑋𝑋1 − 𝜔𝜔1𝑋𝑋1𝑋𝑋2.                (6) 
𝑋𝑋2′ = −𝜉𝜉𝑋𝑋2 +𝜔𝜔1𝑋𝑋1𝑋𝑋2 − 𝜔𝜔2𝑋𝑋2𝑋𝑋3.               (7) 
𝑋𝑋3′ = −𝜉𝜉𝑋𝑋3 − 𝜈𝜈𝑋𝑋3 +𝜔𝜔2𝑋𝑋2𝑋𝑋3 +𝜛𝜛𝑋𝑋4.               (8) 
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𝑋𝑋4′ = −𝜉𝜉𝑋𝑋4 −𝜛𝜛𝑋𝑋4 + 𝜈𝜈(1 − σ)𝑋𝑋3.              (9) 
with conditions 𝑋𝑋1 ≥ 0,𝑋𝑋2 ≥ 0,𝑋𝑋3 ≥ 0,𝑋𝑋4 ≥ 0 and 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋4 ≤ w1. 

2.1 Equilibria of smoking model 
The two equilibria states of model are as follows:  
Smoking free equilibrium is D1 = (1, 0, 0, 0). 
Smoking present equilibrium is E1 = (𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4). 

where, 𝑋𝑋1 = 𝝃𝝃𝜔𝜔2(𝝃𝝃+𝜛𝜛)
𝜔𝜔2𝝃𝝃(𝝃𝝃+𝜛𝜛)+𝜔𝜔2[𝝃𝝃(𝝃𝝃+𝜛𝜛)+𝝃𝝃𝝃𝝃+𝜛𝜛𝝃𝝃𝜌𝜌], 𝑋𝑋2 = 𝝃𝝃(𝝃𝝃+𝜛𝜛)+𝝃𝝃𝝃𝝃+𝜛𝜛𝝃𝝃𝜌𝜌

𝜔𝜔2(𝝃𝝃+𝜛𝜛) , 

𝑋𝑋3 = 𝝃𝝃
𝜔𝜔2
� 𝜔𝜔1𝜔𝜔2(𝝃𝝃+𝜛𝜛)
𝜔𝜔2𝝃𝝃(𝝃𝝃+𝜛𝜛)+𝜔𝜔1[𝝃𝝃(𝝃𝝃+𝜛𝜛)+𝝃𝝃𝝃𝝃+𝜛𝜛𝝃𝝃𝜌𝜌] − 1� and 𝑋𝑋4 = 𝝃𝝃(1−𝜌𝜌)𝑋𝑋3o

(𝝃𝝃+𝜛𝜛) . 

2.2 Force of infection 

The reproduction number of the deterministic smoking model is as follows: Ro
d = β

𝝃𝝃
. This 

model has two states as the force of infection Ro
d = β

𝝃𝝃
< 1, which represents the smoking 

free population. If the force of infection Ro
d = β

𝝃𝝃
> 1 which represents smoking present in 

the human population. 

3 Stochastic smoking model 
Allen et al. [Allen, Allen and Arciniega (2008)] presented the parametric noise idea in 
which we shall introduce the stochastic environmental factors 𝜔𝜔1dt = 𝜔𝜔1dt + 𝜛𝜛1 dB and 
𝜛𝜛dt = 𝜛𝜛dt + 𝜛𝜛2dB in the Eqs. (6) to (9) as follows: 
d𝑋𝑋1 = (𝜉𝜉 − 𝜉𝜉𝑋𝑋1 − 𝜔𝜔1𝑋𝑋1𝑋𝑋2)dt − 𝑋𝑋1𝑋𝑋2𝜛𝜛1dB.            (10) 
d𝑋𝑋2 = (−𝜉𝜉𝑋𝑋1 + 𝜔𝜔1𝑋𝑋1𝑋𝑋2 − 𝜔𝜔2𝑋𝑋2𝑋𝑋3)dt + 𝑋𝑋1𝑋𝑋2𝜛𝜛1dB.           (11) 
d𝑋𝑋3 = (−𝜉𝜉𝑋𝑋3 − 𝜈𝜈𝑋𝑋3 + 𝜔𝜔2𝑋𝑋2𝑋𝑋3 + 𝜛𝜛Qt)dt −𝜛𝜛2𝑋𝑋4dB.           (12) 
d𝑋𝑋4 = (−𝜉𝜉𝑋𝑋4 − 𝜛𝜛𝑋𝑋4 + 𝜈𝜈(1 − 𝜌𝜌)𝑋𝑋3 )dt + 𝜛𝜛2𝑋𝑋4dB.           (13) 
where the Brownian motion is represented by B and 𝜛𝜛1, 𝜛𝜛2 are the random environmental 
effects in the contact rates of smokers. But d𝑋𝑋1

dt
+ d𝑋𝑋2

dt
+ d𝑋𝑋3

dt
+ d𝑋𝑋4

dt
≤ 𝜉𝜉 − 𝜉𝜉(𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 +

𝑋𝑋4). Let w1 = 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋4 , then w1
′ ≤ 𝜉𝜉 − 𝜉𝜉w1. The problem 𝜑𝜑′ = 𝜉𝜉 − 𝜉𝜉𝜑𝜑 with 

𝜑𝜑(0) = w(0) has solution 𝜑𝜑(t) = 1 − ce−𝜉𝜉t,  and lim
n→∞

𝜑𝜑(t) = 1. Therefore, w1(t) ≤
𝜑𝜑(t) and  lim

t→∞
sup w1(t) ≤ 1. So, the system from Eqs. (10) to (13) has feasible region i.e., 

Ω = {𝑋𝑋1,𝑋𝑋1,𝑋𝑋1,𝑋𝑋1): 𝑋𝑋1 + 𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋4 ≤ 1,𝑋𝑋1 ≥ 0,𝑋𝑋2 ≥ 0,𝑋𝑋3 ≥ 0,𝑋𝑋4 ≥ 0}. 
The solutions of this region will be nonnegative invariant. This region is also called the 
feasible region of Eqs. (10) to (13). 

3.1 Stochastic threshold dynamics 
For Eqs. (10) to (13) the infected individuals 𝑋𝑋2(t) is said to be extinct if lim

t→∞
𝑋𝑋2(t) = 0. 
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Theorem: If 𝜛𝜛1
2 < 𝜔𝜔1

𝜉𝜉
 and Ro

d < 1, then the infected individuals in the model Eqs. (10) to 
(13) tend to zero exponentially. 
Proof: Assume that (𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4) is a solution of the system from Eqs. (10) to (13) 
satisfying the initial value (𝑋𝑋1(0),𝑋𝑋2(0),𝑋𝑋3(0),𝑋𝑋4(0)) ∈ R+

4  by Ito’s lemma and 
f(𝑋𝑋2) = ln (𝑋𝑋2) 

dln(𝑋𝑋2) = f ′(𝑋𝑋2)d𝑋𝑋2 + 1
2

f ′′(𝑋𝑋2)𝑋𝑋22�𝑋𝑋12𝑋𝑋22𝜛𝜛1
2�dt. 

dln(𝑋𝑋2) = ( 1
𝑋𝑋2

[(−𝜉𝜉𝑋𝑋2 +𝜔𝜔1𝑋𝑋1𝑋𝑋2 − 𝜔𝜔2𝑋𝑋2𝑋𝑋3)dt + 𝜛𝜛1𝑋𝑋1𝑋𝑋2 dB] + 1
2

(−1
𝑋𝑋22

)𝑋𝑋22(𝑋𝑋12𝜛𝜛1
2)dt. 

dln(𝑋𝑋2) = (−𝜉𝜉 +𝜔𝜔1𝑋𝑋1 − 𝜔𝜔2𝑋𝑋3)dt + 𝜛𝜛1𝑋𝑋1 dB − 1
2
𝑋𝑋12𝜛𝜛1

2dt. 

dln(𝑋𝑋2) = �−𝜉𝜉 + 𝜔𝜔1𝑋𝑋1 − 𝜔𝜔2𝑋𝑋3 −
𝑋𝑋12𝜛𝜛1

2

2
�dt + 𝜛𝜛1𝑋𝑋1 dB. 

ln𝑋𝑋2(t) = ln𝑋𝑋2(0) + �−𝜉𝜉 + 𝜔𝜔1𝑋𝑋1 − 𝜔𝜔2𝑋𝑋3 −
𝑋𝑋12𝜛𝜛1

2

2
� t +∫ 𝜛𝜛1𝑋𝑋1dBt

0 . 

where M1(t) = ∫ 𝜛𝜛1𝑋𝑋1 dB t
0  with M(0) = 0. 

If 𝜛𝜛1
2 < 𝜔𝜔1

𝜉𝜉
, 

ln𝑋𝑋2(t) ≤ �−𝜉𝜉 + 𝜔𝜔1 −
𝜛𝜛1

2

2
� t + M1(t) + ln𝑋𝑋2(0). 

ln𝑋𝑋2(t) ≤ 𝜉𝜉 �−1 + 𝜔𝜔1
𝜉𝜉
− 𝜛𝜛1

2

2𝜉𝜉
� t + M1(t) + ln𝑋𝑋2(0). 

 ln𝑋𝑋2(t)
t

≤ 𝜉𝜉 �−1 + 𝜔𝜔1
𝜉𝜉
− 𝜛𝜛1

2

2𝜉𝜉
� t + M1(t)

t
+ ln𝑋𝑋2(0) 

t
. 

if lim
t→∞

M1(t)
t

= 0. 

lim
t→∞

sup  ln𝑋𝑋2(t)
t

≤ 𝜉𝜉(R0
s − 1), then when R0

s < 1, we get 

lim
t→∞

sup  ln𝑋𝑋2(t)
t

< 0. 

lim
t→∞

𝑋𝑋2(t) = 0 almost sure. 

Ro
S = Ro

d − 𝜛𝜛1
2

2𝜉𝜉
< 1. 

Note that Ro
S  is the stochastic threshold number, the human population will be smoking 

free if Ro
S < 1, and smoking will be present if Ro

S > 1. 

4 Numerical simulations 
In this section, we will study the discrete behavior of the continuous system. For this, we 
will use the existing explicit techniques and the proposed technique. We will prove the 
effectiveness of the proposed method with convergence analysis. Alkhudhari et al. 
[Alkhudhari, Sheikh and Tuwairqi (2011)] selected the values of parameters as shown in 
Tab. 1. 
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Table 1: Parameters values 

Parameters Values (values) 
𝝃𝝃 0.15 
𝝆𝝆 0.09 
𝝎𝝎𝟏𝟏 SFE=0.04 

SPE=0.4 
𝝎𝝎𝟐𝟐 0.3 
𝝕𝝕𝟏𝟏 0.08 
𝝕𝝕𝟐𝟐 0.07 
𝝃𝝃 0.08 
𝝕𝝕 0.25 

4.1 Stochastic Euler method 
The Eqs. (10) to (13) in this technique as follows: 
𝑋𝑋1n+1 = 𝑋𝑋1n + h[𝜉𝜉 − 𝜉𝜉𝑋𝑋1n − 𝜔𝜔1𝑋𝑋1n𝑋𝑋2n − 𝑋𝑋1n𝑋𝑋2n𝜛𝜛1∆Bn].          (14) 
𝑋𝑋2n+1 = 𝑋𝑋2n + h[𝜔𝜔1𝑋𝑋1n𝑋𝑋2n − 𝜔𝜔2𝑋𝑋2n𝑋𝑋3n − 𝜉𝜉𝑋𝑋2n + 𝑋𝑋1n𝑋𝑋2n𝜛𝜛1∆Bn].         (15) 
𝑋𝑋3n+1 = 𝑋𝑋3n + h[𝜔𝜔2𝑋𝑋2n𝑋𝑋3n − (𝜉𝜉 + 𝜈𝜈)𝑋𝑋3n + 𝜛𝜛𝑋𝑋4n + 𝜛𝜛2Qt

n∆Bn].         (16) 
𝑋𝑋4n+1 = 𝑋𝑋4n + h[𝜈𝜈𝑋𝑋3n − (𝜉𝜉 +𝜛𝜛)𝑋𝑋4n − 𝜛𝜛2𝑋𝑋4n∆Bn].           (17) 
where ‘h’ represents the step size and ∆Bn means Brownian motion normally distributed 
in the feasible region Ω  i.e., ∆Bn~N(0,1).  Now, we use MATLAB database and 
parameters values presented in Tab. 1 for simulation of the Eqs. (14) to (17). 

 
(a)               (b) 
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(c)                (d) 

Figure 2: (a) Potential smokers at h=1 (b) Potential smokers at h=2 (c) Heavy smokers at 
h=1 (d) Heavy smokers at h=2 

4.2 Stochastic Runge Kutta method 
The Eqs. (10) to (13) in this technique is represented as follows: 
Stage 1 
S1 = h[(𝜉𝜉 − 𝜉𝜉n𝑋𝑋1 − 𝜔𝜔1𝑋𝑋1n𝑋𝑋2n)− 𝑋𝑋1n𝑋𝑋2n𝜛𝜛1∆Bn]. 
U1 = h[(𝜉𝜉 − 𝑋𝑋2n + 𝜔𝜔1𝑋𝑋1n𝑋𝑋2n − 𝜔𝜔2𝑋𝑋2n𝑋𝑋3n) + 𝑋𝑋1n𝑋𝑋2n𝜛𝜛1∆Bn]. 
V1 = h[−(𝜉𝜉 + 𝜈𝜈)𝑋𝑋3n + 𝜔𝜔2𝑋𝑋2n𝑋𝑋3n + 𝜛𝜛𝑋𝑋4n + 𝜛𝜛2𝑋𝑋4n∆Bn]. 
𝑊𝑊1 = h[−(𝜉𝜉 + 𝜛𝜛)𝑋𝑋4n + 𝜈𝜈𝑋𝑋3n − 𝜛𝜛2𝑋𝑋4n∆Bn]. 
Stage 2 

S2 = h ��𝜉𝜉 − 𝜉𝜉 �𝑋𝑋1n + S1
2
� − 𝜔𝜔1 �𝑋𝑋1n + S1

2
� �𝑋𝑋2n + U1

2
�� − �𝑋𝑋1n + S1

2
� �𝑋𝑋2n +

U1
2
�𝜛𝜛1∆Bn�. 

U2 = h ��−𝜉𝜉 �𝑋𝑋2n + U1
2
�+ 𝜔𝜔1 �𝑋𝑋1n + S1

2
� �𝑋𝑋2n + U1

2
� − 𝜔𝜔2 �𝑋𝑋2n + U1

2
� �𝑋𝑋3n + V1

2
�� +

�𝑋𝑋1n + S1
2
� �𝑋𝑋2n + U1

2
�𝜛𝜛1∆Bn�. 

V2 = h �−(𝜉𝜉 + 𝜈𝜈) �𝑋𝑋3n + V1
2
� + 𝜔𝜔2 �𝑋𝑋2n + U1

2
� �𝑋𝑋3n + V1

2
� + 𝜛𝜛�𝑋𝑋4n + W1

2
�+

𝜛𝜛2 �𝑋𝑋4n + W1
2
�∆Bn�. 

W2 = h �−(𝜉𝜉 + 𝜛𝜛) �𝑋𝑋4n + W1
2
�+ 𝜈𝜈 �𝑋𝑋3n + V1

2
� − 𝜛𝜛2 �𝑋𝑋4n + W1

2
�∆Bn�. 

Stage 3 

S3 = h ��𝜉𝜉 − 𝜉𝜉 �𝑋𝑋1n + S2
2
� − 𝜔𝜔1 �𝑋𝑋1n + S2

2
� �𝑋𝑋2n + U2

2
�� − �𝑋𝑋1n + S2

2
� �𝑋𝑋2n +

U2
2
�𝜛𝜛1∆Bn�. 
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U3 = h ��−𝜉𝜉 �𝑋𝑋2n + U2
2
�+ 𝜔𝜔1 �𝑋𝑋1n + S2

2
� �𝑋𝑋2n + U2

2
� − 𝜔𝜔2 �𝑋𝑋2n + U2

2
� �𝑋𝑋3n + V2

2
�� +

�𝑋𝑋1n + S2
2
� �𝑋𝑋2n + U2

2
�𝜛𝜛1∆Bn�. 

V3 = h �−(𝜉𝜉 + 𝜈𝜈) �𝑋𝑋3n + V2
2
� + 𝜔𝜔2 �𝑋𝑋2n + U2

2
� �𝑋𝑋3n + V2

2
� + 𝜛𝜛�𝑋𝑋4n + W2

2
�+

𝜛𝜛2 �𝑋𝑋4n + W2
2
�∆Bn�. 

W3 = h �−(𝜉𝜉 + 𝜛𝜛) �𝑋𝑋4n + W2
2
�+ 𝜈𝜈 �𝑋𝑋3n + V2

2
� − 𝜛𝜛2 �𝑋𝑋4n + W2

2
�∆Bn�. 

Stage 4 
S4 = h��𝜉𝜉 − 𝜉𝜉(𝑋𝑋1n + S3)−𝜔𝜔1(𝑋𝑋1n + S3)(𝑋𝑋2n + U3)� − (𝑋𝑋1n + S3)(𝑋𝑋2n +
U3)𝜛𝜛1∆Bn�. 
U4 = h��−𝜉𝜉(𝑋𝑋2n + U3) + 𝜔𝜔1(𝑋𝑋1n + S3)(𝑋𝑋2n + U3)−𝜔𝜔2(𝑋𝑋2n + U3)(𝑋𝑋3n + V3)� +
(𝑋𝑋1n + S3)(𝑋𝑋2n + U3)𝜛𝜛1∆Bn�. 
V4 = h[−(𝜉𝜉 + 𝜈𝜈)(𝑋𝑋3n + V3) + 𝜔𝜔2(𝑋𝑋2n + U3)(𝑋𝑋3n + V3) +𝜛𝜛(𝑋𝑋4n + W3) +
𝜛𝜛2(𝑋𝑋4n + W3)∆Bn]. 
W4 = h[−(𝜉𝜉 +𝜛𝜛)(𝑋𝑋4n + W3) + 𝜈𝜈(𝑋𝑋3n + V3)−𝜛𝜛2(𝑋𝑋4n + W3)∆Bn]. 
Final stage 

𝑋𝑋1n+1 = 𝑋𝑋1n + 1
6

[S1 + 2S2 + 2S3 + S4].            (18) 

𝑋𝑋2n+1 = 𝑋𝑋2n + 1
6

[U1 + 2U2 + 2U3 + U4].            (19) 

𝑋𝑋3n+1 = 𝑋𝑋3n + 1
6

[V1 + 2V2 + 2V3 + V4].            (20) 

𝑋𝑋4n+1 = 𝑋𝑋4n + 1
6

[W1 + 2W2 + 2W3 + W4].            (21) 

where ‘h’ represents the step size and ∆Bn~𝑁𝑁(0,1).  Now, we shall use MATLAB 
database and parameters values presented in Tab.1 for simulation of the Eqs. (18) to (21). 

 
           (e)            (f) 
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        (g)             (h) 
Figure 3: (e) Potential smokers at h=1 (f) Potential smokers at h=6 (g) Light smokers at 
h=1 (h) Light smokers at h=6 

4.3 Stochastic NSFD method 
In this technique, the Eqs. (10) to (13) is take the form, 

𝑋𝑋1n+1 = 𝑋𝑋1n+h𝜉𝜉
1+h𝜉𝜉+h𝜔𝜔1𝑋𝑋2n+h𝑋𝑋2n𝜛𝜛1∆Bn

.             (22) 

𝑋𝑋2n+1 = 𝑋𝑋2n+h𝜔𝜔1𝑋𝑋1n𝑋𝑋2n+h𝑋𝑋1n𝑋𝑋2n𝜛𝜛1∆Bn
1+h𝜔𝜔2𝑋𝑋3n+h𝜉𝜉

.             (23) 

𝑋𝑋3n+1 = 𝑋𝑋3n+h𝜔𝜔2𝑋𝑋2n𝑋𝑋3n+h𝜛𝜛𝑋𝑋4n+h𝜛𝜛2𝑋𝑋4n∆Bn
1+h(𝜉𝜉+𝜈𝜈) .            (24) 

𝑋𝑋4n+1 = 𝑋𝑋4n+h𝜈𝜈𝑋𝑋3n

1+h(𝜉𝜉+𝜛𝜛)+h𝜛𝜛2∆Bn
.              (25) 

where ‘h’ represents the step size and ∆Bn~𝑁𝑁(0,1). 

4.4 Convergence analysis 
In this section, we shall verify the following theorems: 
Theorem: The Eqs. (22) to (25) has a unique positive solution (Sn, In, Rn) ∈ R+

3  with 
n≥0, with any given initial value (𝑋𝑋1n(0), 𝑋𝑋2n(0), 𝑋𝑋3n(0), 𝑋𝑋4n(0)) ∈ R+

4 . 
Theorem: The section Ω = {( 𝑋𝑋1n ,𝑋𝑋2n , 𝑋𝑋3n,𝑋𝑋4n) ∈  R+

4 :   𝑋𝑋1n ≥ 0,𝑋𝑋2n ≥ 0,𝑋𝑋3n ≥
0,𝑋𝑋4n ≥ 0,𝑋𝑋1n + 𝑋𝑋2n + 𝑋𝑋3n + 𝑋𝑋4n ≤ 1} for all 𝑛𝑛 ≥ 0 is a translation-invariant for Eqs. 
(22) to (25). 
Proof: Rewriting the Eqs. (22) to (25) as below: 
𝑋𝑋1n+1−𝑋𝑋1n

ℎ
= 𝜉𝜉 − 𝜉𝜉𝑋𝑋1n − 𝜔𝜔1𝑋𝑋1n𝑋𝑋2n − 𝑋𝑋1n𝑋𝑋2n𝜛𝜛1∆Bn. 

𝑋𝑋2n+1−𝑋𝑋2n

ℎ
= 𝜔𝜔1𝑋𝑋1n𝑋𝑋2n − 𝜔𝜔2𝑋𝑋2n𝑋𝑋3n − 𝜉𝜉𝑋𝑋2n + 𝑋𝑋1

𝑛𝑛𝑋𝑋2n𝜛𝜛1∆Bn. 
𝑋𝑋3n+1−𝑋𝑋3n

ℎ
= 𝜔𝜔2𝑋𝑋2n𝑋𝑋3n − (𝜉𝜉 + 𝜈𝜈)𝑋𝑋3n + 𝜛𝜛𝑋𝑋4n + 𝜛𝜛2𝑋𝑋4n∆Bn. 

𝑋𝑋4n+1−𝑋𝑋4n

ℎ
=  𝜈𝜈𝑋𝑋3n − (𝜉𝜉 + 𝜛𝜛)𝑋𝑋4n −𝜛𝜛2𝑋𝑋4n∆Bn. 

𝑋𝑋1n+1+𝑋𝑋2n+1+𝑋𝑋3n+1+𝑋𝑋4n+1)−(𝑋𝑋1n+𝑋𝑋2n+𝑋𝑋3n+𝑋𝑋4n)
ℎ

= 𝜉𝜉 − 𝜉𝜉(𝑋𝑋1n + 𝑋𝑋2n + 𝑋𝑋3n + 𝑋𝑋4n). 
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(𝑋𝑋1n+1 + 𝑋𝑋2n+1 + 𝑋𝑋3n+1 + 𝑋𝑋4n+1)− (𝑋𝑋1n + 𝑋𝑋2n + 𝑋𝑋3n + 𝑋𝑋4n) = 𝜉𝜉 − 𝜉𝜉. 
(𝑋𝑋1n+1 + 𝑋𝑋2n+1 + 𝑋𝑋3n+1 + 𝑋𝑋4n+1) ≤ 1 + 0 ⨯ ℎ. 
(𝑋𝑋1n+1 + 𝑋𝑋2n+1 + 𝑋𝑋3n+1 + 𝑋𝑋4n+1) ≤ 1. 
Theorem: The Eqs. (22) to (25) has identical equilibria as that of the Eqs. (10) to (13) for 
all 𝑛𝑛 ≥ 0. 
Proof: Resolving the Eqs. (22) to (25) as follows: 
Smoking free equilibrium is D3 = (1,0,0,0). 
Smoking present equilibrium is E3 = (𝑋𝑋1n,𝑋𝑋2n,𝑋𝑋3n,𝑋𝑋4n). 

where,  𝑋𝑋1n = 𝝃𝝃
𝝃𝝃+𝜔𝜔1𝑋𝑋2n+𝑋𝑋2n𝜛𝜛1∆Bn

,𝑋𝑋3n = (𝜔𝜔1+𝜛𝜛1∆Bn)𝑋𝑋1n−𝝃𝝃
𝜔𝜔2

, 

𝑋𝑋2n = (𝝃𝝃+𝜈𝜈)(𝝃𝝃+𝜛𝜛+𝜛𝜛2∆Bn−𝜈𝜈𝜛𝜛−𝜈𝜈𝜛𝜛2∆Bn)
𝜔𝜔2(𝝃𝝃+𝜛𝜛+𝜛𝜛2∆Bn)

 and 𝑋𝑋4n = 𝜈𝜈𝑋𝑋3n

𝝃𝝃+𝜛𝜛+𝜛𝜛2∆Bn
. 

Theorem: For stability of proposed stochastic NSFD, the eigen values of Eqs. (22) to (25) 
should lie in the unit circle. 
Proof: We consider F, G, H and K from Eqs. (22) to (25) as follows: 

F = 𝑋𝑋1
1+h𝜉𝜉+h𝜔𝜔1𝑋𝑋2+h𝑋𝑋2𝜛𝜛1ΔBn

. 

G = 𝑋𝑋2+h𝜔𝜔1𝑋𝑋1𝑋𝑋2+h𝑋𝑋1𝑋𝑋2𝜛𝜛1ΔBn
1+h𝜉𝜉+h𝜔𝜔2𝑋𝑋2

. 

H = 𝑋𝑋3+h𝜔𝜔2𝑋𝑋2𝑋𝑋3+h𝑋𝑋4𝜛𝜛+h𝜛𝜛2𝑋𝑋4ΔBn
1+h(𝜉𝜉+𝜈𝜈) . 

K = 𝑋𝑋4+h𝜈𝜈𝑋𝑋3
1+h(𝜉𝜉+𝜛𝜛)+h𝜛𝜛2ΔBn

. 
∂F
∂𝑋𝑋1

= 1
1+h𝜉𝜉+h𝜔𝜔1𝑋𝑋2+h𝑋𝑋2𝜛𝜛1ΔBn

, ∂F
∂𝑋𝑋2

= −(𝑋𝑋1+h𝜉𝜉)(h𝜔𝜔1+h𝜛𝜛1ΔBn)
(1+h𝜉𝜉+h𝜔𝜔1𝑋𝑋2+h𝑋𝑋2𝜛𝜛1ΔBn)2, 

∂F
∂𝑋𝑋3

= 0, ∂F
∂𝑋𝑋4

= 0,  
∂G
∂𝑋𝑋1

= h𝜔𝜔1𝑋𝑋2+h𝑋𝑋2𝜛𝜛1ΔBn
1+h𝜉𝜉+h𝜔𝜔2𝑋𝑋3

,  ∂G
∂𝑋𝑋2

= 1+h𝜔𝜔1𝑋𝑋1+h𝑋𝑋1𝜛𝜛1ΔBn
1+h𝜉𝜉+h𝜔𝜔1𝑋𝑋3

, ∂G
∂𝑋𝑋3

= −[𝑋𝑋2+h𝜔𝜔1𝑋𝑋1𝑋𝑋2+h𝑋𝑋1𝑋𝑋2𝜛𝜛1ΔBn](h𝜔𝜔2)
(1+h𝜉𝜉+h𝜔𝜔2)2  

∂G
∂𝑋𝑋4

= 0 , ∂H
∂𝑋𝑋1

= 0 , ∂H
∂𝑋𝑋2

= h𝜔𝜔2𝑋𝑋3
1+h(𝜉𝜉+𝜈𝜈) , ∂H

∂𝑋𝑋3
= 1+h𝜔𝜔2𝑋𝑋2

1+h(𝜉𝜉+𝜈𝜈) , ∂H
∂𝑋𝑋4

= h𝜛𝜛+h𝜛𝜛2ΔBn
1+h(𝜉𝜉+𝜈𝜈) , ∂K

∂𝑋𝑋1
= 0 , ∂K

∂𝑋𝑋2
= 0 , 

∂K
∂𝑋𝑋3

= h𝜈𝜈
1+h(𝜉𝜉+𝜛𝜛)+h𝜛𝜛2ΔBn

,  ∂K
∂𝑋𝑋4

= 1
1+h(𝜉𝜉+𝜛𝜛)+h𝜛𝜛2ΔBn

. 

The Jacobean matrix “J” is defined as 

Ј =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
∂F
∂𝑋𝑋1

∂F
∂𝑋𝑋2

∂F
∂𝑋𝑋3

∂F
∂𝑋𝑋4

∂G
∂𝑋𝑋1

∂G
∂𝑋𝑋2

∂G
∂𝑋𝑋3

∂G
∂𝑋𝑋4

∂H
∂𝑋𝑋1
∂K
∂𝑋𝑋1

∂H
∂𝑋𝑋2
∂K
∂𝑋𝑋2

∂H
∂𝑋𝑋3

∂H
∂𝑋𝑋4

∂K
∂𝑋𝑋3

∂K
∂𝑋𝑋4⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Put D2 = (1,0,0,0) and Ro
S<1, we have 



 

A Structure Preserving Numerical Method for Solution                                       273 

 Ј =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1
1+h𝝃𝝃

−(h𝜔𝜔1+h𝜛𝜛1ΔBn)
(1+h𝝃𝝃) 0                       0

0 1+h𝜔𝜔1+h𝜛𝜛1ΔBn
1+h𝝃𝝃 0                       0

0
0

0
0

1
1+h(𝝃𝝃+𝜈𝜈)        h𝜛𝜛+h𝜛𝜛2ΔBn

1+h(𝝃𝝃+𝜈𝜈)
h𝜈𝜈

1+h(𝝃𝝃+𝜛𝜛)+h𝜛𝜛2ΔBn

1
1+h(𝝃𝝃+𝜛𝜛)+h𝜛𝜛2ΔBn⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

The eigen values are λ1 = 1
1+h𝝃𝝃

< 1, λ2 = 1+h𝜔𝜔1+h𝜛𝜛1ΔBn
1+h𝝃𝝃

< 1 , if Ro
S  < 1. 

 𝐽𝐽 = �

1
1+h(𝝃𝝃+𝜈𝜈)

h𝜛𝜛+h𝜛𝜛2ΔBn
1+h(𝝃𝝃+𝜈𝜈)

h𝜈𝜈
1+h(𝝃𝝃+𝜛𝜛)+h𝜛𝜛2ΔBn

1
1+h(𝝃𝝃+𝜛𝜛)+h𝜛𝜛2ΔBn

� 

U1 = Trace of J. 
U2 = Determinant of J. 

U1 =
1

1 + h(𝝃𝝃 + 𝜈𝜈) +
1

1 + h(𝝃𝝃 +𝜛𝜛) + h𝜛𝜛2ΔBn
. 

 U2 = � 1
1+h(𝝃𝝃+𝜈𝜈)� �

1
1+h(𝝃𝝃+𝜛𝜛)+h𝜛𝜛2ΔBn

� − h2𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)
�1+h(𝝃𝝃+𝜈𝜈)�(1+h(𝝃𝝃+𝜛𝜛)+h𝜛𝜛2ΔBn). 

Lemma: For the quadratic equation λ2– U1λ+ U2 = 0 , |λi| < 1, i = 1, 2; if and only if 
subsequent situations are fulfilled as follows: 
(i) 1 −  U1 +  U2 >  0 
(ii) 1 +  U1 +  U2 >  0 
(iii) U2 < 1. 
Proof: (i). 1 −  U1 + U2 <  0 
�1 + h(𝜉𝜉 + 𝜈𝜈)�(1 + h(𝜉𝜉 + 𝜛𝜛) + h𝜛𝜛2ΔBn) − �1 + h(𝜉𝜉 + 𝜈𝜈)� − (1 + h(𝜉𝜉 + 𝜛𝜛) +
h𝜛𝜛2ΔBn) + h2𝜈𝜈(𝜛𝜛 + 𝜛𝜛2ΔBn) < 0. 
h2�𝜈𝜈(𝜛𝜛 + 𝜛𝜛2ΔBn) + (𝜉𝜉 + 𝜈𝜈)(𝜉𝜉 + 𝜛𝜛)� < 1. 

h2 < 1
�𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)(𝜉𝜉+𝜛𝜛)�

. 

h2 − 2h � 1
2ℎ�𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)(𝜉𝜉+𝜛𝜛)�

� + � 1
2ℎ�𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)(𝜉𝜉+𝜛𝜛)�

�
2

<

� 1
2ℎ�𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)(𝜉𝜉+𝜛𝜛)�

�
2
. 

[ 1
2ℎ�𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)(𝜉𝜉+𝜛𝜛)�

− h]2 < � 1
2ℎ�𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)(𝜉𝜉+𝜛𝜛)�

�
2
. 

This inequality always holds because all parameters are, always positive and h > 0 , 
where “h” is any time step size. 
(ii). 1 + U1 + U2 > 0 
Since 1 > 0 and U1 > 0 so it is enough to show U2 > 0. 
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� 1
1+h(𝜉𝜉+𝜈𝜈)� �

1
1+h(𝜉𝜉+𝜛𝜛)+h𝜛𝜛2ΔBn

� − h2𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)
�1+h(𝜉𝜉+𝜈𝜈)�(1+h(𝜉𝜉+𝜛𝜛)+h𝜛𝜛2ΔBn) > 0. 

� 1
1+h(𝜉𝜉+𝜈𝜈)� �

1
1+h(𝜉𝜉+𝜛𝜛)+h𝜛𝜛2ΔBn

� > h2𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)
�1+h(𝜉𝜉+𝜈𝜈)�(1+h(𝜉𝜉+𝜛𝜛)+h𝜛𝜛2ΔBn). 

1 > h2𝜈𝜈(𝜛𝜛 + 𝜛𝜛2ΔBn) 

h2 < 1
𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)

. 

h2 − 2h � 1
2ℎ𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)

� + � 1
2ℎ𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)

�
2

< � 1
2ℎ𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)

�
2
. 

[ 1
2ℎ𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)

− h]2 < � 1
2ℎ𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)

�
2
. 

This inequality always holds because all parameters are certainly positive and h > 0, 
where “h” is any time step size. 
(iii). U2 < 1 

� 1
1+h(𝜉𝜉+𝜈𝜈)� �

1
1+h(𝜉𝜉+𝜛𝜛)+h𝜛𝜛2ΔBn

� − h2𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)
�1+h(𝜉𝜉+𝜈𝜈)�(1+h(𝜉𝜉+𝜛𝜛)+h𝜛𝜛2ΔBn) < 1. 

1 − h2𝜈𝜈(𝜛𝜛 + 𝜛𝜛2ΔBn) < �1 + h(𝜉𝜉 + 𝜈𝜈)�(1 + h(𝜉𝜉 +𝜛𝜛) + h𝜛𝜛2ΔBn). 
h2(𝜈𝜈(𝜛𝜛 + 𝜛𝜛2ΔBn) + (𝜉𝜉 + 𝜈𝜈)((𝜉𝜉 + 𝜛𝜛) + 𝜛𝜛2ΔBn)) + h(2𝜉𝜉 + 𝜈𝜈 +𝜛𝜛 + 𝜛𝜛2ΔBn) > 0. 

h2 + h( (2𝜉𝜉+𝜈𝜈+𝜛𝜛+𝜛𝜛2ΔBn)
(𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)((𝜉𝜉+𝜛𝜛)+𝜛𝜛2ΔBn))) > 0. 

h2 + 2h � (2𝜉𝜉+𝜈𝜈+𝜛𝜛+𝜛𝜛2ΔBn)
2(𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)((𝜉𝜉+𝜛𝜛)+𝜛𝜛2ΔBn))� + � (2𝜉𝜉+𝜈𝜈+𝜛𝜛+𝜛𝜛2ΔBn)

2(𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)((𝜉𝜉+𝜛𝜛)+𝜛𝜛2ΔBn))�
2

>

� (2𝜉𝜉+𝜈𝜈+𝜛𝜛+𝜛𝜛2ΔBn)
2(𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)((𝜉𝜉+𝜛𝜛)+𝜛𝜛2ΔBn))�

2
. 

[h + (2𝜉𝜉+𝜈𝜈+𝜛𝜛+𝜛𝜛2ΔBn)
2(𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)((𝜉𝜉+𝜛𝜛)+𝜛𝜛2ΔBn))]

2 > � (2𝜉𝜉+𝜈𝜈+𝜛𝜛+𝜛𝜛2ΔBn)
2(𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)((𝜉𝜉+𝜛𝜛)+𝜛𝜛2ΔBn))�

2
. 

h + (2𝜉𝜉+𝜈𝜈+𝜛𝜛+𝜛𝜛2ΔBn)
2(𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)((𝜉𝜉+𝜛𝜛)+𝜛𝜛2ΔBn)) > (2𝜉𝜉+𝜈𝜈+𝜛𝜛+𝜛𝜛2ΔBn)

2(𝜈𝜈(𝜛𝜛+𝜛𝜛2ΔBn)+(𝜉𝜉+𝜈𝜈)((𝜉𝜉+𝜛𝜛)+𝜛𝜛2ΔBn)). 

h > 0, where “h” is any time step size. 
The lemma is satisfied around the point D2 and Ro

S  < 1. Thus, SNSFD is linearizable 
about equilibria of model. 
Now, we shall use MATLAB database and parameters values presented in Tab. 1 for 
simulation of the Eqs. (22) to (25). 
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          (i)        (j) 

 
         (k)         (l) 
Figure 4: (i) Potential smokers at h=1 (j) Potential smokers at h=1000 (k) Light smokers 
at h=1 (l) Light smokers at h=1000 

4.5 Contrast section 
Now, we make the contrast between explicit techniques and our proposed technique as 
follows: 

 
(m)       (n) 



 
 
 
276                                                                              CMC, vol.65, no.1, pp.263-278, 2020 

  
(p)                   (q) 

Figure 5: Contrast in solutions of stochastic techniques and its mean (average) (m) 
Occasional smokers at h=1 (n) Occasional smokers at h=5 (p) Occasional smokers at h=1 
(q) Occasional smokers at h=6 

4.6 Covariance of smoking model 
For this, we will calculate the correlation coefficients in the smoking model 
compartments. The result reported in the Tab. 2. 

Table 2: Correlation coefficient 
Sub-Populations Correlation Coefficient (𝝆𝝆) Relationship 

(𝑿𝑿𝟏𝟏,𝑿𝑿𝟐𝟐) −0.9525 Inverse 
(𝑿𝑿𝟐𝟐,𝑿𝑿𝟑𝟑) −0.9734 Inverse 
(𝑿𝑿𝟑𝟑,𝑿𝑿𝟒𝟒) 0.9687 Direct 
(𝑿𝑿𝟒𝟒,𝑿𝑿𝟏𝟏) 0.7261 Direct 
(𝑿𝑿𝟏𝟏,𝑿𝑿𝟑𝟑) 0.8581 Direct 
(𝑿𝑿𝟐𝟐,𝑿𝑿𝟒𝟒) −0.8988 Inverse 

Results in Tab. 2, an inverse relationship between occasional smokers and others. This 
means that the number of occasional smokers increase with the decrease in other 
compartments of the model. Therefore, the model will achieve smoking free equilibrium 
(SFE). Heavy smokers are directly related to potential smokers and those who left 
smoking temporarily. There is also a direct relationship between potential smokers and 
those who quit smoking temporarily. 

4.7 Results and discussion 
In Fig. 2, we have developed the behaviour of a subpopulation of the smoking model 
using the stochastic Euler technique. The stochastic Euler technique converges towards 
the equilibria of the model under certain conditions over time steps. In Figs. 2(b) and 
2(d), we can observe that this method is conditionally convergent. In Fig. 3, we have 
developed the behaviour of a subpopulation of the smoking model using the stochastic 
Runge Kutta technique. This method converges to the equilibria of the model under 
certain conditions over time steps. In Figs. 3(f) and 3(h), we can observe that the method 
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is conditionally convergent. These explicit stochastic methods rely on time parameters 
and may lose dynamical properties of the model. In Fig. 4, we have developed the 
behaviour of a subpopulation of the smoking model using the proposed method. The 
proposed method converges towards equilibrium. In Fig. 5, contrast is planned between 
the stochastic methods of different compartments.  

5 Conclusion and directions 
The researchers of the paper have analysed that the study of stochastic differential 
equations (SDEs) is more realistic as compared to the ordinary differential equations 
(ODEs) for physical systems. The discrete stochastic and continues models have the same 
solutions under certain conditions. It is the first time when the new method named as 
stochastic nonstandard finite difference method is constructed for the smoking model. By 
using this method, we can study the smoking dynamics in human population over a long 
period of time. This method is unconditionally convergent unlike the other explicit 
stochastic methods. This scheme preserves all the dynamic properties of stochastic 
models such as, consistency, stability, positivity and boundedness. In future, we will 
extend this stochastic analysis to the other epidemiological models of humans, animals 
and plants. Also, we will expand this idea in the modelling of neural networking with 
fixed time intervals as presented in Yu et al. [Yu, Liu, Xiao et al. (2019)]. 

Funding Statement: We have no funding for this research article.  

Conflicts of Interest: The authors declare that they have no conflicts of interest to report 
regarding the present study. 

References 
Alkhudhari, Z.; Sheikh, A. S.; Tuwairqi, A. S. (2011): The effect of occasional 
smokers on the dynamics of a smoking model. International Mathematical Forum, vol. 9, 
no. 25, pp. 1207-1222.  
Allen, E. J.; Allen, L. J. S.; Arciniega, A.; Greenwood, P. E. (2008): Construction of 
equivalent stochastic differential equation models. Stochastic Analysis and Applications, 
vol. 26, no. 2, pp. 274-297. 
Arif, M. S.; Raza, A.; Rafiq, M.; Bibi, M.; Fayyaz, R. et al. (2019): A reliable 
stochastic numerical analysis for typhoid fever incorporating with protection against 
infection. Computers, Materials & Continua, vol. 59, no. 3, pp. 787-804. 
Bassiony, M. M. (2009): Smoking in Saudi Arabia. Saudi Med Journal, vol. 30, no. 7, pp. 
876-881. 
Chen, Y. T.; Xu, W. H.; Zuo, J. W.; Yang, K. (2019): The fire recognition algorithm 
using dynamic feature fusion and IV-SVM classifier. Cluster Computing, vol. 22, no. 3, 
pp. 7665-7675. 
Cresson, J.; Pierret, F. (2014): Nonstandard finite difference scheme preserving 
dynamical properties. Journal of Computational and Applied Mathematics, vol. 303, no. 
5, pp. 15-30. 



 
 
 
278                                                                              CMC, vol.65, no.1, pp.263-278, 2020 

Jeong, S.; Kuk, S.; Kim, H. (2019): A smartphone magnetometer based diagnostic test 
for automatic infectious disease epidemic. IEEE Access, vol. 4, no. 1, pp. 410-413.  
Mickens, R. E. (2005): A fundamental principle for constructing nonstandard finite 
difference schemes for differential equations. Journal of Difference Equations and 
Applications, vol. 11, no. 4, pp. 645-653. 
Raza, A.; Arif, M. S.; Rafiq, M.; (2019): A reliable numerical analysis for stochastic 
gonorrhea epidemic model with treatment effect. International Journal of 
Biomathematics, vol. 12, no. 6, pp. 445-465. 
Selya, A. S.; Lvanov, O.; Bachman, A.; Wheat, D. (2019): Youth smoking and anti-
smoking policies in North Dakota: a system dynamics simulation study. Substance Abuse 
Treatment, Prevention and Policy, vol. 14, no. 34, pp. 1-10. 
Sharomi, O.; Gumel, A. B. (2008): Curtailing smoking dynamics a mathematical 
modeling approach. Applied Mathematics and Computation, vol. 195, no. 2, pp. 475-499. 
Xiong, B.; Yang, K.; Zhao, J. Y.; Li, K. Q. (2017): Robust dynamic network traffic 
partitioning against malicious attacks. Journal of Network and Computer Applications, 
vol. 87, no. 2, pp. 20-31. 
Yu, F.; Liu, L.; Xiao, L.; Li, K. L.; Cai, S. (2019): A robust and fixed-time zeroing 
neural dynamics for computing time-variant nonlinear equation using a novel nonlinear 
activation function. Neurocomputing, vol. 350, no. 1, pp. 108-116. 
Zaman, G. (2011): Qualitative behaviour of giving up smoking models. Bulletin of the 
Malaysian Mathematical Sciences Society, vol. 34, no. 2, pp. 403-415.  
Zeb, A.; Bano, A.; Alzahrani, E.; Zaman, G. (2018): Dynamical analysis of cigarette 
smoking model with a saturated incidence rate. AIP Advances, vol. 8, no. 1, pp. 317-328. 
Zeb, A.; Zaman, G.; Momani, S. (2013): Square root dynamics of a giving up smoking 
model. Applied Mathematical Modelling, vol. 37, no. 1, pp. 5326-5334. 
Zheng, C.; Wang, Z.; Xia, C. (2018): A novel epidemic model coupling the infection 
disease with awareness diffusion on multiplex networks. Chinese Control and Decision 
Conference, vol. 1, no. 3, pp. 3824-3830. 


	Ali Raza0F , Muhammad Rafiq2, Nauman Ahmed3, Ilyas Khan4, *, Kottakkaran Sooppy Nisar5 and Zafar Iqbal3
	References

