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Abstract: Software defect prediction plays an important role in software quality assurance. 
However, the performance of the prediction model is susceptible to the irrelevant and 
redundant features. In addition, previous studies mostly regard software defect prediction 
as a single objective optimization problem, and multi-objective software defect prediction 
has not been thoroughly investigated. For the above two reasons, we propose the following 
solutions in this paper: (1) we leverage an advanced deep neural network—Stacked 
Contractive AutoEncoder (SCAE) to extract the robust deep semantic features from the 
original defect features, which has stronger discrimination capacity for different classes 
(defective or non-defective). (2) we propose a novel multi-objective defect prediction 
model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimize 
the advanced neural network—Extreme learning machine (ELM) based on state-of-the-art 
Pareto optimal solutions according to the features extracted by SCAE. We mainly consider 
two objectives. One objective is to maximize the performance of ELM, which refers to the 
benefit of the SMONGE model. Another objective is to minimize the output weight norm 
of ELM, which is related to the cost of the SMONGE model. We compare the SCAE with 
six state-of-the-art feature extraction methods and compare the SMONGE model with 
multiple baseline models that contain four classic defect predictors and the MONGE model 
without SCAE across 20 open source software projects. The experimental results verify 
that the superiority of SCAE and SMONGE on seven evaluation metrics. 
 
Keywords: Software defect prediction, deep neural network, stacked contractive 
autoencoder, multi-objective optimization, extreme learning machine.  

1 Introduction 
Software defect prediction is a very important software quality assurance technology, 
which can predict the defect proneness of new software modules in advance [Zhang, 
Zheng, Zou et al. (2016)]. An effective defect prediction model can help developers or 
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testers to detect the potentially defective modules by reasonably allocating limited 
resources [Tantithamthavorn, McIntosh, Hassan et al. (2016)]. 
When building the software defect datasets, researchers can inspect software defect modules 
by designing many software features based on the software development process or code 
complexity, so these defect datasets may be high dimensional [Xu, Liu, Luo et al. (2018)]. 
But not all the features are helpful to the performance of the defect prediction model since 
the datasets may contain some irrelevant and redundant features. Jiarpakdee et al. 
[Jiarpakdee, Tantithamthavorn, Ihara et al. (2016)] demonstrate that 10%-67% of features in 
the 101 open source defect datasets are irrelevant or redundant, and these features seriously 
degrade the prediction performance and increase the training time of the model. Therefore, 
it is very necessary to conduct feature selection or extraction for defect datasets in software 
defect prediction. For the above reason, some feature selection or extraction methods are 
proposed to solve the high-dimensional problem of software defect datasets by removing 
irrelevant and redundant features [Kondo, Bezemer, Kamei et al. (2019); Xu, Liu, Yang et 
al. (2016)]. Feature selection techniques reduce the number of features by selecting an 
optimal representative and important feature subset, while feature extraction techniques 
decrease the number of features by constructing new, combined features from the original 
features [Kondo, Bezemer, Kamei et al. (2019)]. At present, most previous studies mainly 
leverage feature selection techniques for defect prediction, feature extraction techniques have 
not been thoroughly investigated in software defect prediction. Because feature selection 
techniques directly remove some features, which will lead to the loss of some feature 
information, we adopt feature extraction technique in this paper. For feature extraction 
techniques, most researchers use Principal Component Analysis (PCA) [Kondo, Bezemer, 
Kamei et al. (2019)] to conduct software defect prediction. Traditional features extracted by 
PCA focus on the statistical features of software modules and these features are easily 
affected by the unbalanced data, so the inherent structure information hidden behind the 
original defect features may not be represented fully. Currently, deep learning techniques 
have been successfully applied in many fields by constructing a deep network architecture 
to automatically learn deep semantic feature representation, such as speech recognition 
[Mohamed, Dahl and Hinton (2012)], image classification [Krizhevsky, Sutskever and 
Hinton (2012)], traffic sign classification [Zhang, Wang, Lu et al. (2019)], concentration 
prediction of PM10 [Oh, Song, Kim et al. (2019)] etc. Previous studies [Guo, Cheng and 
Cleland-Huang (2017); Wang, Liu and Tan (2016)] have verified that the deep semantic 
features have stronger discrimination capacity for different classes (defective or non-
defective). For these reasons above, we leverage an advanced deep neural network-Stacked 
Contractive AutoEncoder (SCAE) [Rifai, Vincent, Muller et al. (2011); Ning, Chen, Tie et 
al. (2018)] to extract the robust deep semantic features from the original defect features. On 
the one hand, SCAE adopts the Frobenius norm of Jacobian matrix as the regularization 
penalty term, which can enhance the locally invariant and robust encoding representation. 
On the other hand, the unsupervised deep network SCAE is stacked by some unsupervised 
contractive autoencoders (CAE), and the hidden layer of each subnetwork serves as the input 
layer for the next subnetwork, thereby further improving the robustness and discrimination 
capacity of deep feature representation. The SCAE can not only prevent the deep network 
from overfitting but also effectively provide a deep combination of basic features with its 
excellent nonlinear mapping capability. 
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Currently, most previous studies utilize classical machine learning methods to build defect 
prediction models, but these traditional methods have some inevitable flaws. For instance, 
traditional machine learning methods usually require complex feature engineering, and the 
prediction performance is not good enough, and their adaptability and migration capacity 
are not strong enough [Wang, Liu and Tan (2016)]. Based on the above analysis, we adopt 
an advanced neural network—Extreme Learning Machine (ELM) to construct defect 
prediction model according to the robust deep semantic features extracted by the SCAE in 
this paper. The ELM has obvious advantages in classification, including strong 
discrimination capacity, good generalization performance and fast training speed [Huang, 
Zhu and Siew (2006)].  
At present, search-based software engineering has become a research hotspot in the field 
of software engineering because it can provide automated or semi-automated solutions for 
software engineering problems with large-scale complex problem space, which may have 
multiple competing or even conflicting objectives based on state-of-the-art Pareto optimal 
solutions [Ni, Chen, Wu et al. (2019)]. Prior studies mostly treat software defect prediction 
as a single objective optimization problem, and multi-objective software defect prediction 
has not been thoroughly investigated. In this paper, we propose a novel multi-objective 
defect prediction model named SMONGE, which leverages the Multi-Objective NSGAII 
algorithm to optimize the number of hidden neurons and output weight norm of ELM based 
on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE. 
We mainly consider two objectives. One objective is to maximize the performance of the 
constructed defect prediction model, which refers to the benefit of the prediction model. 
Another objective is to minimize the output weight norm, which is related to the cost of 
the prediction model. Therefore, we need to make a compromise between these two 
contradictory objectives. 
The main contributions of this paper are as follows: 
(1) We leverage an advanced deep neural network-Stacked Contractive AutoEncoder (SCAE) 
to extract the robust deep semantic features from the original defect features, which has 
stronger discrimination capacity for different classes (defective or non-defective). 
(2) Motivated by the idea of search based software engineering, we propose a novel multi-
objective defect prediction model named SMONGE that utilizes the multi-objective 
NSGAII algorithm to optimize two objectives of the advanced ELM predictor based on 
state-of-the-art Pareto optimal solutions. One objective is to maximize the model 
performance, which refers to the benefit of the prediction model. Another objective is to 
minimize the output weight norm, which is related to the cost of the prediction model. To 
the best of our knowledge, it is the first time that the multi-objective NSGAII algorithm is 
used to optimize the advanced neural network-ELM. 
(3) To verify the performance of SCAE and SMONGE, we conduct extensive experiments 
for feature extraction and defect prediction across 20 software defect projects from large open 
source datasets. We compare the SCAE with six state-of-the-art feature extraction methods, 
and compare the SMONGE model with multiple baseline models that contain four classic 
defect predictor and the MONGE model without SCAE. The experimental results 
demonstrate that the effectiveness of SCAE and SMONGE on seven evaluation metrics. 
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The reminder of this paper is organized as follows. Section 2 describes the background and 
related work. Section 3 details feature extraction based on SCAE. Section 4 details the 
proposed SMONGE model. Section 5 shows the experimental setup, including benchmark 
datasets, evaluation metrics and baseline models. Section 6 evaluates the performance of 
SCAE and SMONGE. Section 7 introduces the threats to validity. We conclude this paper 
and describe the future work in Section 8. 

2 Background and related work 
In this section, we introduce the typical software defect prediction models, feature selection 
and extraction methods for software defect prediction, and the application of deep learning 
techniques in software engineering.  

2.1 Software defect prediction 
Software defect prediction is a research hotspot in software engineering domain, which 
can be used to identify potential defective modules in advance by constructing the 
effective prediction model, and then allocate more testing resources on these defective 
modules [Tantithamthavorn, McIntosh, Hassan et al. (2017, 2016)]. The granularity of 
the modules can be classified as component, file, class or code change [Yasutaka, 
Takafumi, Shane et al. (2016)]. 
Existing software defect prediction methods focus on how to use machine learning methods to 
construct effective defect prediction models [Ren, Qin, Ma et al. (2014); Chen and Ma (2015); 
Lu, Kocaguneli and Cukic (2014)]. Chen et al. [Chen and Ma (2015)] conduct extensive 
empirical studies by using six regression algorithms and find that decision tree regression can 
achieve best performance. Lu et al. [Lu, Kocaguneli and Cukic (2014)] use active learning 
method to conduct defect prediction model, and the method can significantly improve the 
prediction effect. Nam et al. [Nam, Pan and Kim (2013)] successfully apply Transfer 
Component Analysis (TCA) technique to software defect prediction. Abaei et al. [Abaei, 
Rezaei and Selamat (2013)] propose the self-organizing mapping (SOM) prediction model 
with the threshold, and it can help testers to mark modules without experts.  
Previous studies mostly regard software defect prediction as a single objective optimization 
problem, and multi-objective software defect prediction has not been thoroughly 
investigated. As far as we know, only the MOFES method proposed by Ni et al. [Ni, Chen, 
Wu et al. (2019)] considers the multi-objective optimization in software defect prediction, 
but their study only considers feature selection as a multi-objective optimization problem. 
Different from the study of Ni et al. [Ni, Chen, Wu et al. (2019)], we regard the optimization 
of the defect prediction model as a multi-objective optimization problem, and the model 
leverages the NSGAII algorithm to optimize two objectives of the advanced ELM predictor. 

2.2 Feature selection and extraction for software defect prediction 
Recently, feature selection and extraction techniques have been applied to software defect 
prediction, which can eliminate irrelevant and redundant features in the defect datasets 
[Kondo, Bezemer, Kamei et al. (2019); Xu, Liu, Yang et al. (2016)]. Feature selection 
methods reduce the number of features in a model by selecting an optimal representative 
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feature subset, while feature extraction methods decrease the number of features by 
constructing new, combined features from the original features [Kondo, Bezemer, Kamei 
et al. (2019)]. Feature selection methods are mainly divided into two types: filter-based 
feature ranking methods or wrapper-based feature subset selection methods [Majdi and 
Seyedali (2017)]. Most previous studies mainly use feature selection techniques for defect 
prediction, while feature extraction techniques have not been thoroughly investigated in 
software defect prediction. 
Previous studies have applied many feature selection techniques to software defect prediction 
[Liu, Miao and Zhang (2014); Khoshgoftaar, Gao and Napolitano (2012); Gao, Khoshgoftaar 
and Wang (2011)]. Liu et al. [Liu, Miao and Zhang (2014)] propose three new cost-sensitive 
based feature selection methods, including Cost-Sensitive Variance Score (CSVS), Cost-
Sensitive Laplacian Score (CSLS), and Cost-Sensitive Constraint Score (CSCS), which 
incorporate cost information into traditional feature selection methods. Khoshgoftaar et al. 
[Khoshgoftaar, Gao and Napolitano (2012)] compare seven filter-based feature ranking 
techniques (e.g., information gain (IG), gain ratio (GR)) on sixteen defect datasets. Gao et al. 
[Gao, Khoshgoftaar and Wang (2011)] verify the performance of hybrid feature selection 
framework based on seven filter-based methods and three feature subset search methods, and 
the experimental results show that the reduced features are unable to adversely affect the 
performance of the prediction model in most cases. Xu et al. [Xu, Liu, Yang et al. (2016)] 
investigate the impact of 32 feature selection techniques on the software defect prediction, 
and the experimental results verify that these feature selection techniques have significant 
performance differences on each dataset. Ni et al. [Ni, Chen, Wu et al. (2019)] use five 
different multi-objective optimization algorithms (i.e., MOCell, SPEA2, NSGA-II, PAES and 
SMSEMOA) to conduct feature selection respectively, and the experimental results verify that 
the effectiveness of the multi-objective optimization feature selection algorithms. For feature 
extraction techniques, most researchers use principal component analysis (PCA) [Kondo, 
Bezemer, Kamei et al. (2019)] to conduct feature extraction in software defect prediction. 
Marco et al. [Marco, Michele and Romain (2010)] adopt PCA to conduct class-level defect 
prediction, which can void the problem of multicollinearity among the independent variables. 
Rathore et al. [Rathore and Gupta (2014)] compare PCA with feature selection techniques. 
The experimental results prove that PCA is one of the best-performing techniques. 
Different the previous studies, we leverage an advanced deep neural network—stacked 
contractive autoencoder (SCAE) to effectively learn the robust deep semantic feature 
representation from the original defect features, which has stronger discrimination capacity 
for different classes. 

2.3 The application of deep learning techniques in software engineering 
Recently, some researchers adopt deep learning techniques to improve various tasks in the 
field of software engineering [Yang, David and Zhang (2015); Wang, Liu and Tan (2016); 
Gu, Zhang, Zhang et al. (2016)]. Gu et al. [Gu, Zhang, Zhang et al. (2016)] utilize the RNN 
encoder-decoder to address the problem of retrieving API call sequences based on the 
user’s natural language query. Wang et al. [Wang, Liu and Tan (2016)] leverage deep belief 
network (DBN) to learn deep semantic features automatically. The experimental results 
verify that the deep semantic features-based method outperforms traditional software 
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metrics. Yang et al. [Yang, David and Zhang (2015)] propose a novel just-in-time defect 
prediction model named Deeper, which can combine initial change features into high-level 
features by deep belief network (DBN), and then utilize the new high-level features to 
construct the defect prediction model.  
Deep learning techniques are also used for software traceability [Guo, Cheng, Cleland-
Huang et al. (2017)], test report classification [Wang, Cui, Wang et al. (2017)], link 
prediction in developer online forums [Xu, Ye, Xing et al. (2016)] and so on.  

3 Feature extraction based on stacked contractive autoencoder 
In this paper, after class imbalance processing (SMOTE) [Chawla, Bowyer, Hall et al. 
(2002)] and data normalization (min-max) [Witten, Frank and Hall (2011)] operations, we 
utilize an advanced unsupervised deep neural network-stacked contractive autoencoder 
(SCAE) to extract the robust deep semantic features from the original defect features with its 
nonlinear mapping capability, which can properly characterize the complex data structures 
and increase the probability of linear separability of the data. SCAE is a variant of regularized 
autoencoder, which adopts the Frobenius norm of Jacobian matrix of encoder activations as 
the regularization penalty term, so as to form a localized space contraction and yield robust 
features on the activation layer. In addition, SCAE regards the hidden layer of each 
subnetwork as the input layer of next subnetwork, which further enhances the robustness and 
the discrimination capacity of deep feature representation. 
The training process for SCAE is as follows. A basic autoencoder subnetwork consists of 
two parts: encoder and decoder. The encoder f(x) is used to output the representation ℎ ∈
𝑅𝑅𝑑𝑑ℎ after feature extraction, while the decoder g(h) reconstructs the original input 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑𝑥𝑥 
and output r from the output h of the encoder by minimizing the cost function. 
The internal structures of the encoder f(x) and decoder g(h) are all mapping functions with 
nonlinear activation functions, as shown in Eqs. (1) and (2): 
ℎ = 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑓𝑓(𝑊𝑊𝑥𝑥 + 𝑏𝑏ℎ),                                                                                               (1) 
𝑟𝑟 = 𝑔𝑔(ℎ) = 𝑠𝑠𝑔𝑔(𝑊𝑊′ℎ + 𝑏𝑏𝑟𝑟),                                                                                              (2) 
where 𝑠𝑠𝑓𝑓  and 𝑠𝑠𝑔𝑔  represent the nonlinear activation functions of encoder and decoder, 
respectively.  
we adopt the sigmoid() as the nonlinear activation function in this paper, 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧) =
1

1+𝑒𝑒−𝑧𝑧
. W represents the (𝑠𝑠𝑥𝑥 × 𝑠𝑠ℎ)-dimension weight from the input layer to the hidden 

layer, and 𝑊𝑊′ represents the (𝑠𝑠ℎ × 𝑠𝑠𝑥𝑥)-dimension weight from the hidden layer to the 
reconstruction layer. 𝑏𝑏ℎ ∈ 𝑅𝑅𝑑𝑑ℎ  and 𝑏𝑏𝑟𝑟 ∈ 𝑅𝑅𝑑𝑑𝑥𝑥  denote the bias vectors of encoder and 
decoder, respectively. The parameters of the autoencoder are shown below: 𝜃𝜃 =
{𝑊𝑊,𝑊𝑊′, 𝑏𝑏ℎ,𝑏𝑏𝑟𝑟}. 
In order to improve the robustness of small perturbations around the training points and 
learn a mapping with stronger contraction effect on the training instances, we introduce a 
penalty term that penalizes the highly sensitive inputs to increase the robustness of the 
network in the form of the mapping  f(x) of the encoder with respect to the Frobenius norm 
of the Jacobian matrix of the input x , and the sensitivity penalty term is the sum of squares 
of all partial derivatives for the extracted features according to input dimensions, as shown 
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in Eq. (3): 

||𝐽𝐽𝑓𝑓(𝑥𝑥)||𝐹𝐹2 = ∑ (𝜕𝜕ℎ𝑗𝑗(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

)2𝑖𝑖𝑖𝑖                                                                                                    (3) 

Assume the training set is Dtr, we learn the parameters of the SCAE by minimizing the 
reconstruction error and penalizing the gradient. The entire loss function of SCAE is 
as follows: 

𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃) = � �𝐿𝐿 �𝑥𝑥,𝑔𝑔�𝑓𝑓(𝑥𝑥)�� + 𝜆𝜆||𝐽𝐽𝑓𝑓(𝑥𝑥)||𝐹𝐹2�
𝑥𝑥∈𝐷𝐷𝑡𝑡𝑡𝑡

 

= ∑ (− 1
𝑛𝑛𝑥𝑥∈𝐷𝐷𝑡𝑡𝑡𝑡 ∑ [𝑦𝑦 ln𝑎𝑎 + (1 − 𝑦𝑦) ln(1 − 𝑎𝑎)]𝑥𝑥 + 𝜆𝜆∑ (𝜕𝜕ℎ𝑗𝑗(𝑥𝑥)

𝜕𝜕𝑥𝑥𝑖𝑖
)2𝑖𝑖𝑖𝑖 ),                                    (4) 

where L is the reconstruction error in the form of cross entropy loss (nonlinear error), and 𝜆𝜆 
is a superparameter that controls the intensity of regularization, n presents the number of 
classes, y denotes the true value classification and a denotes the prediction value.  
Multiple contractive autoencoders can be stacked to construct an unsupervised deep neural 
network SCAE with more than one hidden layer. The schematic diagram of SCAE is shown in 
Fig. 1, in which the output of previous hidden layer is the input of next hidden layer. In this 
paper, we train a SCAE with four contractive autoencoders to extract and reconstruct the defect 
features, where the output of the hidden layer for first contractive autoencoder is extracted as 
first-order feature representation, and then the first-order feature representation is regarded as 
the input of the hidden layer for second contractive autoencoder, and the same strategy is also 
used for the subsequent contractive autoencoders. Based on the above strategy, the SCAE can 
learn the first-order feature, second-order feature, third-order feature and fourth-order 
representations from the original defect features. 
Through the continuous stacking process, the SCAE can extract more robust and abstract 
deep semantic features from the original defect features than a single contractive 
autoencoder. In addition, since the SCAE is an unsupervised model, it not only can prevent 
the training network from overfitting when the number of labeled defect instances is 
relatively small, but also can effectively achieve a deep combination of defect features with 
its nonlinear mapping capacity. 

4 The proposed multi-objective SMONGE model 
In this section, we propose a novel multi-objective defect prediction model called 
SMONGE that leverages the multi-objective NSGAII algorithm to optimize the number of 
hidden neurons and output weight norm of extreme learning machine (ELM). We first 
derive the training process of ELM, and then present the multi-objective optimization 
problem and our multi-objective SMONGE model. 

4.1 Extreme learning machine 
Different from traditional single hidden-layer feedforward neural network (SLFN), for 
ELM, the connection weights of the input layer and the hidden layer and the biases of the 
hidden layer can be assigned randomly, and need not be adjusted after setting. The 
connection weights between the hidden layer and the output layer do not need to be tuned 
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iteratively through the back propagation process of network error, which can be determined 
once by solving a linear model [Huang, Zhou, Ding et al. (2012)]. In addition, ELM has 
obvious advantages in classification, including strong classification capacity, fast training 
speed and easily adjust parameters. The network structure of ELM is shown in Fig. 2. 

          

Figure 1: The schematic diagram of SCAE 

 

Figure 2: The network structure of ELM 

Given a training dataset consisting of N arbitrary instances {(𝑥𝑥𝑖𝑖, 𝑙𝑙𝑖𝑖)}𝑖𝑖=1𝑁𝑁 , where 𝑥𝑥𝑖𝑖 =
[𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑛𝑛]𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 contains n input features and 𝑙𝑙𝑖𝑖 = [𝑙𝑙𝑖𝑖1, 𝑙𝑙𝑖𝑖2, … , 𝑙𝑙𝑖𝑖𝑗𝑗]𝑇𝑇 ∈ 𝑅𝑅𝑗𝑗contains 
m output labels. For a standard SLFN with K hidden neurons, its output can be expressed 
as follows: 
∑ 𝛽𝛽𝑖𝑖𝑔𝑔�𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖� = 𝜊𝜊𝑖𝑖 , 𝑗𝑗 = 1, 2, … ,𝑁𝑁K
𝑖𝑖=1 ,                                                                      (5) 

where g(.) denotes the activation function, 𝑤𝑤𝑖𝑖 = [𝑤𝑤𝑖𝑖1,𝑤𝑤𝑖𝑖2, … ,𝑤𝑤𝑖𝑖𝑛𝑛]𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , i=1,2,...,K 
represents the input weight vector between the input neurons and ith hidden neuron, bi 
denotes the bias of the ith hidden neuron, 𝛽𝛽𝑖𝑖 = [𝛽𝛽𝑖𝑖1,𝛽𝛽𝑖𝑖2, … ,𝛽𝛽𝑖𝑖𝑗𝑗]𝑇𝑇 ∈ 𝑅𝑅𝑗𝑗 denotes the output 
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weight vector between the ith hidden neuron and output neurons, 𝑠𝑠𝑖𝑖 = [𝑠𝑠𝑖𝑖1, 𝑠𝑠𝑖𝑖2, … , 𝑠𝑠𝑖𝑖𝑗𝑗]𝑇𝑇 ∈
𝑅𝑅𝑗𝑗 represents the network output value. 
The learning goal of SLFN is to minimize the output error, which can be expressed as follows: 
∑ ||𝑠𝑠𝑖𝑖 − 𝑙𝑙𝑖𝑖||𝑁𝑁
𝑖𝑖=1 = 0.                                                                                                           (6) 

The Eq. (6) can approximate zero error if there are suitable 𝛽𝛽𝑖𝑖, 𝑤𝑤𝑖𝑖, and 𝑏𝑏𝑖𝑖, which has been 
proved in Huang et al. [Huang, Chen and Siew (2006)]. Therefore, the Eq. (5) can be 
rewritten as Eq. (7):  
∑ 𝛽𝛽𝑖𝑖𝑔𝑔�𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖� = 𝑙𝑙𝑖𝑖 , 𝑗𝑗 = 1, 2, … ,𝑁𝑁K
𝑖𝑖=1 .                                                                       (7) 

The Eq. (7) can be transformed into a matrix form, as shown in Eq. (8): 
𝐻𝐻𝛽𝛽 = 𝐿𝐿,                                                                                                                              (8)                                                                  
where H is the output of the hidden neurons, 𝛽𝛽 is the output weight, and L is the expected 
output. 
H, 𝛽𝛽, L can be expressed respectively as follows:  

H = �
𝑔𝑔(𝑤𝑤1 ∙ 𝑥𝑥1 + 𝑏𝑏1) ⋯ 𝑔𝑔(𝑤𝑤𝐾𝐾 ∙ 𝑥𝑥1 + 𝑏𝑏𝐾𝐾)

⋮ ⋱ ⋮
𝑔𝑔(𝑤𝑤1 ∙ 𝑥𝑥𝑁𝑁 + 𝑏𝑏1) ⋯ 𝑔𝑔(𝑤𝑤𝐾𝐾 ∙ 𝑥𝑥𝑁𝑁 + 𝑏𝑏K)

�
𝑁𝑁×𝐾𝐾

.                                                        (9) 

𝛽𝛽 = �
𝛽𝛽1𝑇𝑇
⋮
𝛽𝛽𝐾𝐾𝑇𝑇
�

𝐾𝐾×𝑗𝑗

.                                                                                                                  (10) 

𝐿𝐿 = �
𝐿𝐿1𝑇𝑇
⋮
𝐿𝐿𝑁𝑁𝑇𝑇
�

𝑁𝑁×𝑗𝑗

.                                                                                                                  (11)                                                                

The output weight 𝛽𝛽 can be computed by solving the linear least squares problem. 
𝛽𝛽 = H+L,                                                                                                                          (12) 
where H+ represents the Moore-Penrose generalized inverse of the matrix H. 

4.2 Multi-objective NSGAII optimization based extreme learning machine 
In this paper, we adopt extreme learning machine based on multi-objective NSGAII 
optimization to construct our defect prediction model, so as to transform software defect 
prediction into a multi-objective optimization problem based on state-of-the-art Pareto 
optimal solutions. We mainly consider two objectives. One objective is to maximize the 
performance (i.e., accuracy) of the constructed defect prediction model, which refers to the 
benefit of the prediction model. Another objective is to minimize the output weight norm 
as much as possible, which is related to the cost of the prediction model. There is a serious 
contradiction between these two objectives in most cases. The smaller the output weight 
norm, the smaller the influence of each feature component, which is equivalent to reducing 
the number of parameters, thus realizing the limitation of the model space. The simpler the 
model, the lower the cost, and the less likely it is to produce overfitting phenomenon. 
However, the performance of the prediction model may reduce to some extent as the weight 
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output norm decreases, and vice versa. Therefore, we should make a compromise between 
these two contradictory objectives.  
In this section, we first give some definitions for multi-objective optimization. Then, we 
define the multi-objective optimization problem for software defect prediction. Finally, we 
introduce extreme learning machine based on multi-objective NSGAII optimization. 

4.2.1 Definitions for multi-objective optimization 
We give the following five definitions for multi-objective optimization based on Pareto 
optimal solutions. Since there are two optimization objectives in this paper, we take two 
optimization objectives as example. 
Definition 1 (Multi-objective Optimization Problem) 
𝐹𝐹(𝑥𝑥) = �𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥)�,                                                                                                   (13) 
𝑠𝑠. 𝑡𝑡. 𝑥𝑥 ∈ Ω 
where x is the decision vector and Ω is the decision space. 𝐹𝐹(𝑥𝑥): Ω⟶ 𝑅𝑅2 contains two 
objective functions and 𝑅𝑅2 represents the objective space. 
Definition 2 (Pareto Dominance) Suppose x can dominate y, then 𝑥𝑥 ≺ 𝑦𝑦, if and only if 
∀𝑠𝑠 ∈ {1,2},𝑓𝑓1(𝑥𝑥) ≤ 𝑓𝑓2(𝑦𝑦),𝑎𝑎𝑎𝑎𝑠𝑠 ∃𝑗𝑗 ∈ {1,2}, 𝑠𝑠. 𝑡𝑡.𝑓𝑓𝑖𝑖(𝑥𝑥) < 𝑓𝑓𝑖𝑖(𝑦𝑦). 
Definition 3 (Pareto Optimal Solution and Pareto Optimal Vector) If and only if x* is not 
dominated by other solutions, the solution x* is called Pareto optimal solution. F(x*) is 
called a Pareto optimal vector. 
Definition 4 (Pareto Optimal Set) The Pareto optimal set is composed by all the Pareto 
optimal solutions.  
Definition 5 (Pareto Front) In the objective space, the surface composed by the target value 
vectors corresponding to all the Pareto optimal solutions is called Pareto front. 

4.2.2 The multi-objective optimization problem 
In this paper, we leverage the multi-objective NSGAII algorithm to optimize the number 
of hidden neurons and output weight norm of ELM. Therefore, the individual of the multi-
objective optimization model includes the number of hidden neurons H and the control 
parameter 𝜆𝜆 of output weight norm. We define the initialized individual and population as 
follows: 
𝐼𝐼𝑘𝑘,𝐺𝐺 = [𝐻𝐻𝑘𝑘,𝐺𝐺 ,𝜆𝜆𝑘𝑘,𝐺𝐺],                                                                                                           (14) 
𝜙𝜙𝐺𝐺 = {𝐼𝐼1,𝐺𝐺 , 𝐼𝐼2,𝐺𝐺 , … , 𝐼𝐼𝑁𝑁𝑁𝑁,𝐺𝐺},                                                                                                (15) 
where 𝐼𝐼𝑘𝑘,𝐺𝐺  is the kth individual of the Gth evolution generation and 𝜙𝜙𝐺𝐺 is the population 
with NP individuals. NP denotes the size of population. The output weight norm adopts 
the L2 norm, 𝜆𝜆 ∈ (0,1]. 
In the multi-objective SMONGE model, the mean square error (MSE) and the control of 
output weight norm are regarded as two computable objectives. For each evolution 
generation of the SMONGE model, we utilize the parameter vector of each individual to 
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calculate the corresponding output weight according to the Eq. (12). The individual vector 
is generated by real encoding.  
The objective function for the training MSE is defined as follows: 

𝑓𝑓1(𝐻𝐻) = 1
𝐻𝐻
∑ (𝑓𝑓(𝑥𝑥) − 𝑦𝑦)2𝐻𝐻
ℎ=1 .                                                                                         (16) 

Another objective is the control of output weight norm, as shown in Eq. (17): 

𝑓𝑓2(𝜆𝜆) = 𝜆𝜆
2
∑ ∑ ∑ (𝑤𝑤𝑖𝑖,𝑖𝑖𝑙𝑙 )2𝑆𝑆𝑙𝑙+1

𝑖𝑖=1
𝑆𝑆𝑙𝑙
𝑖𝑖=1

𝑛𝑛𝑙𝑙−1
𝑙𝑙=1 ,                                                                                (17) 

where 𝑆𝑆𝑙𝑙 denotes the number of neurons in lth layer, 𝑎𝑎𝑙𝑙 denotes the number of network 
layers (ELM has three network layers), 𝑤𝑤𝑖𝑖,𝑖𝑖𝑙𝑙  denotes the parameter between the jth neuron 
in (l+1)th layer and the ith neuron in lth layer, and 𝜆𝜆 denotes the weight decay parameter. 
Considering the minimization of the above two objectives, we propose the multi-objective 
SMONGE model for software defect prediction, which is defined as follows: 
min
𝐻𝐻,𝜆𝜆

𝐹𝐹(𝐻𝐻, 𝜆𝜆) = {𝑓𝑓1(𝐻𝐻),𝑓𝑓2(𝜆𝜆)}𝑇𝑇 .                                                                                     (18) 

𝑠𝑠. 𝑡𝑡. 𝜆𝜆 ∈ (0,1] 
The training MSE is used to enhance the classification accuracy while the control of output 
weight norm aims to make the cost of the ELM as low as possible and prevent overfitting. 
In the multi-objective SMONGE model, these two contradictory objectives are optimized 
simultaneously, thereby finding the Pareto optimal solutions. 

4.2.3 The multi-objective SMONGE model 
Since the ELM has strong classification capacity, we adopt ELM for software defect 
prediction. In order to further improve the prediction capacity of ELM, we utilize the multi-
objective NSGAII algorithm to optimize number of hidden neurons and output weight 
norm of ELM, which is the above multi-objective optimization problem. 
The learning process of the proposed SMONGE model is shown in Algorithm 1. In Algorithm 
1, we first randomly initialize the population 𝜙𝜙0 = {𝐼𝐼𝑘𝑘,0|𝑘𝑘 = 1, 2, … ,𝑁𝑁𝑁𝑁} and calculate the 
fitness values (multi-objective functions) of the initialized population by Eq. (18) in Steps 1 
and 2. We can combine NSGAII and ELM closely to form a multi-objective optimization 
problem for software defect prediction by minimizing the multi-objective functions. Since 
ELM is used for software defect prediction in this paper, we need to calculate the output 
weight 𝛽𝛽𝑘𝑘,𝐺𝐺 of ELM by Eq. (12) in Step 5. Next, we adopt the generateNewPop() function to 
produce new population Qk by continuous selection, crossover and mutation in Step 6, and 
combine parent 𝜙𝜙𝑘𝑘  and offspring population 𝑄𝑄𝑘𝑘  to generate the 𝑝𝑝𝑘𝑘  in Step 7. By the non-
dominated sorting for Fi, we can obtain a set of classification subsets (all nondominated fronts 
of 𝑝𝑝𝑘𝑘 ) 𝐹𝐹 = (𝐹𝐹1,𝐹𝐹2, … ) in Step 8. We calculate crowding-distance for Fi (a measure of 
solutions density in the neighborhood), and select part of the individual Fi to merge into the 
new population 𝜙𝜙𝑘𝑘+1 until the population size reaches NP in Steps 11-15. Then, we establish 
a partial order relationship for Fi, and choose the first (𝑁𝑁𝑁𝑁 − |𝜙𝜙𝑘𝑘+1|) elements of Fi until 
𝜙𝜙𝑘𝑘+1 is filled in Steps 16-17. 
After enough population evolution, SMONGE will meet the termination criteria and 
converge to a stable solutions. Finally, SMONGE can return all Pareto optimal solutions 
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in the current population, thereby obtaining software defect prediction results. In this 
process, in order to comprehensively reflect the performance of the defect prediction model, 
we also implement other prediction metrics, including accuracy, precision, recall, F1, pf, 
G-measure and MCC. 

Algorithm 1 The multi-objective SMONGE model 
Input: 

Population size: NP, maximum evolution generation: MAXGEN, evolving population: 𝜙𝜙𝐺𝐺 
Output: 

Pareto optimal solutions: R 
1: Randomly initialize the population: 𝜙𝜙0 = {𝐼𝐼𝑘𝑘,0|𝑘𝑘 = 1, 2, … ,𝑁𝑁𝑁𝑁}; 
2: Calculate the fitness values of the initialized population by Eq. (18); 
3: while 𝐺𝐺 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝐺𝐺𝑀𝑀𝑁𝑁 do 
4:     for k=1, 2, …, NP do 
5:        Calculate the output weight 𝛽𝛽𝑘𝑘,𝐺𝐺 by Eq. (12);   
6:        𝑄𝑄𝑘𝑘 ⟵ 𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔𝑟𝑟𝑎𝑎𝑡𝑡𝑔𝑔𝑁𝑁𝑔𝑔𝑤𝑤𝑁𝑁𝑠𝑠𝑝𝑝(𝜙𝜙𝑘𝑘); 
7:         𝑝𝑝𝑘𝑘 ⟵ 𝜙𝜙𝑘𝑘 ∪ 𝑄𝑄𝑘𝑘; 
8:         𝐹𝐹 ⟵ 𝑓𝑓𝑎𝑎𝑠𝑠𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑎𝑎 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑡𝑡𝑔𝑔𝑠𝑠 − 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡(𝑝𝑝𝑘𝑘); 
9:         𝜙𝜙𝑘𝑘+1 ⟵ 𝑎𝑎𝑛𝑛𝑙𝑙𝑙𝑙; 
10:       𝑠𝑠 ⟵ 0; 
11:        while � 𝜙𝜙𝑘𝑘+1� + |𝐹𝐹𝑖𝑖| ≤ 𝑁𝑁𝑁𝑁 do 
12:            crowing-distance-assignment (Fi); 
13:            𝜙𝜙𝑘𝑘+1 ⟵ 𝜙𝜙𝑘𝑘+1 ∪ 𝐹𝐹𝑖𝑖; 
14:            𝑠𝑠 ⟵ 𝑠𝑠 + 1; 
15:       end while 
16:       𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡(𝐹𝐹𝑖𝑖, ≺ 𝑎𝑎); 
17:       𝜙𝜙𝑘𝑘+1 ⟵ 𝜙𝜙𝑘𝑘+1 ∪ 𝐹𝐹𝑖𝑖[1: (𝑁𝑁𝑁𝑁− �𝜙𝜙𝑘𝑘+1�)]; 
18:    end for 
19:   𝐺𝐺 ⟵ 𝐺𝐺 + 1; 
20: end while 
21: return Pareto optimal solutions: R 

5 Experimental setup 
In this section, we introduce the experimental setup, including benchmark datasets, 
evaluation metrics and baseline methods. We conduct the experiments on a 3.6 GHz i7-
4790 CPU machine with 8 GB RAM. 

5.1 Benchmark datasets 
To verify the effectiveness of SCAE and SMONGE, we conduct extensive experiments on 
20 real software projects (i.e., 5 projects from the NASA data repository and 15 projects 
from the PROMISE data repository), which are open source and commonly used 
benchmark datasets in software defect prediction studies [Tantithamthavorn, McIntosh, 
Hassan et al. (2016)]; Chen and Ma (2015); Hosseini, Turhan and Gunarathna (2019); 
Peters, Menzies and Layman (2015)]. The basic attributes of NASA (the first five rows) 
and PROMISE (the latter fifteen rows) are shown in Tab. 1, including project name, the 
number of features, the number of instances, the number of defective instances, the number 
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of non-defective instances, defective ratio, and imbalance ratio. For the NASA dataset, we 
can observe that the defect ratio of PC2 is the smallest with 2.15%, and the defect ratio of 
KC2 is the largest with 20.50%. The imbalance ratio varies from 3.88 to 45.56. Tab. 2 
describes the features of 5 projects from the NASA data repository, which tabulates the 20 
common features among the 5 projects and other 19 specific features for each project (The 
symbol ✓ represents that the project has a certain feature, while the symbol ✘ represents 
that the project does not have a certain feature). For the PROMISE dataset, we can 
observe that the defect ratio of jedit-4.3 is the smallest with 2.24%, and the defect ratio of 
xerces-init is the largest with 47.53%. The imbalance ratio varies from 1.10 to 43.73. Tab. 
3 describes all features of 15 projects from the PROMISE data repository. Each instance 
in any project contains 20 object-oriented features and a dependent variable that presents 
the number of defects. 
For all these software defect projects, we adopt the SMOTE (Synthetic Minority 
Oversampling Technique) algorithm [Chawla, Bowyer, Hall et al. (2002)] for class 
imbalance processing and the min-max method [Witten, Frank and Hall (2011)] for data 
normalization in this paper. In addition, we perform 10 times 10-fold cross-validation to 
evaluate the performance of these models in this paper.  

Table 1: The statistics of 20 projects from the NASA and PROMISE data repository 

Projects #features #instances #defective 
instances 

#non-
defective 
instances 

Defective 
ratio 
(%) 

Imbalance 
ratio 

KC2 21 522 107 415 20.50 3.88 
MC1 38 1988 46 1942 2.31 42.22 
MC2 39 125 16 109 12.80 6.81 
PC1 37 705 61 644 8.65 10.56 
PC2 36 745 16 729 2.15 45.56 

ant-1.4 20 178 40 138 22.47 3.45 
ant-1.5 20 293 32 261 10.92 8.16 
ant-1.6 20 351 92 259 26.21 2.82 
ant-1.7 20 745 166 579 22.28 3.49 
ivy-1.4 20 241 16 225 6.64 14.06 
ivy-2.0 20 352 40 312 11.36 7.80 
jedit-4.0 20 306 75 231 24.51 3.08 
jedit-4.1 20 312 79 233 25.32 2.95 
jedit-4.2 20 367 48 319 13.08 6.65 
jedit-4.3 20 492 11 481 2.24 43.73 
poi-2.0 20 314 37 277 11.78 7.49 
prop-6 20 660 66 594 10.00 9.00 

xerces-1.2 20 440 71 369 16.14 5.20 
xerces-1.3 20 453 69 384 15.23 5.57 
xerces-init 20 162 77 85 47.53 1.10 
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Table 2: The feature description of 5 projects from the NASA data repository 
Features KC2 MC1 MC2 PC1 PC2 

1. LOC_EXECUTABLE      
2. LOC_CODE_AND_COMMENT      
3. LOC_COMMENTS      
4. LOC_TOTAL       

5. DESIGN_COMPLEXITY      

6. ESSENTIAL_COMPLEXITY      

7. BRANCH_COUNT       

8. HALSTEAD_ERROR_EST      
9. HALSTEAD_DIFFICULTY      
10. HALSTEAD_EFFORT      
11. HALSTEAD_CONTENT      

12. HALSTEAD_LENGTH      

13. HALSTEAD_LEVEL      
14. HALSTEAD_PROG_TIME      
15. HALSTEAD_VOLUME      
16. NUM_OPERANDS      
17. NUM_OPERATORS      
18. NUM_UNIQUE_OPERANDS      
19. NUM_UNIQUE_OPERATORS      
20. CYCLOMATIC_COMPLEXITY      
21. GLOBAL_DATA_DENSITY ✘ ✘    
22. LOC_BLANK     ✘ 
23. CALL_PAIRS ✘     
24. CYCLOMATIC_DENSITY ✘     
25. DECISION_COUNT ✘     
26. DESIGN_DENSITY ✘     
27. EDGE_COUNT ✘     
28. ESSENTIAL_DENSITY ✘     
29. CONDITION_COUNT ✘     
30. GLOBAL_DATA_COMPLEXITY ✘   ✘ ✘ 
31. DECISION_DENSITY ✘ ✘    
32. MAINTENANCE_SEVERITY ✘     
33. MODIFIED_CONDITION_COUNT ✘     
34. NUMBER_OF_LINES ✘     
35. MULTIPLE_CONDITION_COUNT ✘     
36. NORMALIZED_CYLOMATIC_COMPLEXITY ✘     
37. NODE_COUNT ✘     
38. PERCENT_COMMENTS ✘     
39. PARAMETER_COUNT ✘     
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Table 3: The feature description of 15 projects from the PROMISE data repository 
1. Lines of Code (LOC) 11. Lack of Cohesion in Methods (LOCM) 
2. Weighted Methods per Class (WMC) 12. Inheritance Coupling (IC) 
3. Depth of Inheritance Tree (DIT) 13. Afferent Couplings (Ca) 
4. Data Access Metric (DAM) 14. Coupling Between Methods (CBM) 
5. Number of Children (NOC) 15. Efferent Couplings (Ce) 
6. Measure of Aggregation (MOA) 16. Average Method Complexity (AMC) 
7. Coupling between Object Classes (CBO) 17. Arithmetic mean value of CC (Avg_CC) 
8. Measure of Functional Abstraction (MFA) 18. Greatest Value of CC (Max_CC) 
9. Response for a Class (RFC) 19. Lack of Cohesion in Methods (LOCM3) 
10. Cohesion Among Methods of Class (CAM) 20. Number of Public Methods (NPM) 

5.2 Evaluation metrics 
In this paper, we adopt seven widely used evaluation metrics–accuracy, precision, recall, F1, 
pf, G-measure and MCC [Kondo, Bezemer, Kamei et al. (2019); Nam, Pan and Kim (2013); 
He, Shu, Yang et al. (2012); Herbold, Trautsch and Grabowski (2018)] to evaluate the 
models. These evaluation metrics can be defined based on confusion matrix, which lists all 
four possible classification results, i.e., TP, FP, FN and TN, as shown in Tab. 4. 

Table 4: Confusion matrix 
 Positive (Predicted) Negative (Predicted) 

True (Actual) TP FN 
Flase (Actual) FP TN 

Accuracy: The ratio of correctly predicted defect files to all files. 

𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑟𝑟𝑎𝑎𝑎𝑎𝑦𝑦 = 𝑇𝑇𝑁𝑁+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑁𝑁

 .                                                                                             (19) 

Precision: The ratio of correctly predicted defect files to all files predicted to be defective. 

𝑝𝑝𝑟𝑟𝑔𝑔𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁

 .                                                                                                         (20) 

Recall or pd (probability of detection): The ratio of correctly predicted defect files to all 
truly defective files. 

𝑟𝑟𝑔𝑔𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙(𝑝𝑝𝑠𝑠) = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁

 .                                                                                                      (21) 

F1: The harmonic means between precision and recall. 

𝐹𝐹1 = 2×𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛×𝑟𝑟𝑒𝑒𝑝𝑝𝑟𝑟𝑙𝑙𝑙𝑙
𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛+𝑟𝑟𝑒𝑒𝑝𝑝𝑟𝑟𝑙𝑙𝑙𝑙

 .                                                                                                  (22) 

pf (probability of false alarm): The ratio of the number of non-defective instances that 
are wrongly classified as defective to the total number of non-defective instances. 

𝑝𝑝𝑓𝑓 = 𝐹𝐹𝑁𝑁
𝐹𝐹𝑁𝑁+𝑇𝑇𝑁𝑁

 .                                                                                                                               (23) 

G-measure: The harmonic means of pd and 1-pf. 

𝐺𝐺 −𝑠𝑠𝑔𝑔𝑎𝑎𝑠𝑠𝑛𝑛𝑟𝑟𝑔𝑔 = 2×𝑝𝑝𝑑𝑑×(1−𝑝𝑝𝑓𝑓)
𝑝𝑝𝑑𝑑+(1−𝑝𝑝𝑓𝑓)  .                                                                                       (24) 
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MCC (Matthews correlation coefficient): The correlation between the actual and predicted 
outputs which is a comprehensive evaluation by considering TP, TN, FP and FN. 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑁𝑁×𝑇𝑇𝑁𝑁−𝐹𝐹𝑁𝑁×𝐹𝐹𝑁𝑁
�(𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)(𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)(𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)(𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)

 .                                                                     (25) 

Except for pf, the larger the values of these metrics, the better the prediction performance.  

5.3 Baseline methods 
To verify the performance of SCAE and SMONGE, we conduct extensive experiments for 
feature extraction and software defect prediction. 
For feature extraction, we compare the deep neural network SCAE with six state-of-the-art 
feature extraction methods, including Maximally Collapsing Metric Learning (MCML) 
[Globerson and Roweis (2005)], Stochastic Neighbor Embedding (SNE) [Parviainen (2016)], 
Manifold Charting (MC) [Saini, Rambli, Sulaiman et al. (2013)], Locality Preserving 
Projection (LPP) [Lu, Wang, Zou et al. (2018)], Locally Linear Embedding (LLE) [Ji, Liu, 
Cao et al. (2017)], Locally Linear Coordination (LLC) [Huang, Wang, Xu et al. (2009)]. 
For software defect prediction, we compare the SMONGE model with four classic defect 
predictor, include Decision Tree (DT), K-Nearest Neighbor (KNN), Naive Bayes (NB), 
Support Vector Machine (SVM). Since these four defect predictors all use features 
extracted by SCAE, they are named as SDT, SKNN, SNB and SSVM respectively in this 
paper, where S denotes SCAE. 
In addition, we also compare SMONGE with the multi-objective NSGAII optimization 
based the ELM predictor that does not use features extracted by SCAE, and the method is 
named MONGE.  

6 Experimental results 
We introduce the experimental results by the following three research questions (RQ) in 
the section. 
RQ1: How about the performance of the deep neural network SCAE compared to six 
state-of-the-art feature extraction methods in software defect prediction? 
To validate the effectiveness of the deep semantic features extracted by SCAE, we compare 
the SCAE with six state-of-the-art feature extraction methods with the same defect 
predictor-the multi-objective NSGAII optimization based ELM, including MCML, SNE, 
MC, LPP, LLE and LLC. We conduct extensive experiments across 20 projects in terms 
of F1, pf, G-measure and MCC.  
Tabs. 5-8 show the F1, pf, G-measure and MCC of SCAE and six state-of-the-art feature 
extraction methods across all 20 projects. Note that the best value of each project is in bold 
font. From Tabs. 5, 7 and 8, we can observe that our method SCAE achieves the best 
average performance in terms of F1, G-measure and MCC. More specifically, the average 
F1 (0.8088) by SCAE achieves improvements between 4.62% (for SNE) and 28.75% (for 
LLC) with an average improvement of 13.25%, the average G-measure (0.7675) by SCAE 
yields improvements between 2.51% (for SNE) and 42.95% (for MC) with an average 
improvement of 21.99% and the average MCC (0.5694) by SCAE gains improvements 
between 6.61% (for SNE) and 87.73% (for MC) with an average improvement of 43.39%. 
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In addition, from Tab. 6, we can find that our method SCAE is not ideal in terms of pf, but 
it is better than MCML, MC and LLE (the smaller the pf, the better the performance). 
Fig. 3 depicts the box-plots of four metrics for our method SCAE and six feature extraction 
methods across all 20 projects. From Figs. 3(a), 3(c) and 3(d), we can find that the median 
values achieved by SCAE are higher than those achieved by six feature extraction methods 
from the point of F1, G-measure and MCC, respectively, which can fully demonstrate the 
superiority of our method SCAE, and the cases are consistent with the observations in 
Tabs. 5, 7 and 8. Moreover, the lowest F1, G-measure and MCC by SCAE are higher than 
the median values by MCML, MC, LLE and LLC, respectively. 

Conclusion: Our method SCAE outperforms six state-of-the-art feature extraction 
methods in terms of F1, G-measure and MCC. The SCAE yields the average 13.25%, 
21.99% and 43.39% performance improvements compared with six feature extraction 
methods across all 20 projects in terms of F1, G-measure and MCC. 

Table 5: The F1 for our method SCAE compared with six feature extraction methods 
Datasets MCML  SNE  MC LPP LLE LLC SCAE 

KC2 0.7368 0.7848 0.4727 0.8293 0.6667 0.5806 0.7857 
MC1 0.7098 0.6000 0.6957 0.7939 0.8868 0.7219 0.7867 
MC2 0.6957 0.7619 0.7692 0.6667 0.7000 0.5000 0.7273 
PC1 0.8834 0.8662 0.7536 0.6667 0.8929 0.4554 0.8606 
PC2 0.7727 0.9221 0.8917 0.6000 0.915 0.661 0.8659 

ant-1.4 0.6857 0.7879 0.7500 0.7273 0.7273 0.7179 0.7647 
ant-1.5 0.7385 0.9180 0.7273 0.7500 0.8000 0.6957 0.8197 
ant-1.6 0.8060 0.8254 0.7595 0.6792 0.7606 0.7467 0.8438 
ant-1.7 0.6719 0.7742 0.7114 0.7778 0.6957 0.7000 0.8472 
ivy-1.4 0.6500 0.7317 0.5263 0.6471 0.7568 0.6486 0.8000 
ivy-2.0 0.7385 0.7931 0.4545 0.7241 0.7826 0.7077 0.7797 
jedit-4.0 0.7018 0.7500 0.6875 0.7241 0.7273 0.3636 0.7719 
jedit-4.1 0.7660 0.6522 0.5833 0.7111 0.7742 0.5143 0.8163 
jedit-4.2 0.7945 0.8205 0.5000 0.7353 0.8605 0.2917 0.8354 
jedit-4.3 0.8807 0.9204 0.9369 0.9174 0.8548 0.8932 0.8952 
poi-2.0 0.5965 0.7692 0.5217 0.8525 0.7500 0.7606 0.8308 
prop-6 0.6569 0.7869 0.7344 0.8305 0.6667 0.8130 0.7759 

xerces-1.2 0.6301 0.8276 0.7257 0.7765 0.7273 0.5867 0.8471 
xerces-1.3 0.7619 0.8378 0.6383 0.8611 0.6667 0.6190 0.7857 
xerces-init 0.6316 0.3333 0.5882 0.7000 0.6364 0.5882 0.7368 

Avg 0.7254 0.7731 0.6713 0.7485 0.7624 0.6282 0.8088 
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Table 6: The pf for our method SCAE compared with six feature extraction methods 
Datasets MCML SNE MC LPP LLE LLC SCAE 

KC2 0.4651 0.1860 0.0465 0.186 0.8837 0.0930 0.2558 
MC1 0.4872 0.6250 0.2359 0.2205 0.2154 0.2308 0.3179 
MC2 0.6667 0.3333 0.8333 0.1667 0.3333 0.1667 0.5000 
PC1 0.2830 0.2453 0.1887 0.6250 0.3208 0.0377 0.3396 
PC2 0.4865 0.1486 0.2027 0.6250 0.1486 0.0946 0.2838 

ant-1.4 0.6154 0.3846 0.3846 0.4615 0.6250 0.7692 0.4615 
ant-1.5 0.5000 0.1667 0.8333 0.2500 0.4167 0.0417 0.2917 
ant-1.6 0.4000 0.2500 0.8500 0.1500 0.6000 0.7500 0.2500 
ant-1.7 0.3673 0.1837 0.5918 0.2041 0.7500 0.2245 0.3265 
ivy-1.4 0.3333 0.2963 0.3704 0.1852 0.1852 0.2593 0.2222 
ivy-2.0 0.3889 0.2222 0.1944 0.2778 0.4167 0.4167 0.2500 

jedit-4.0 0.5455 0.2273 0.7727 0.5455 0.7727 0.0909 0.4545 
jedit-4.1 0.1818 0.2727 0.4091 0.1818 0.5909 0.0455 0.1818 
jedit-4.2 0.1667 0.2500 0.2083 0.1250 0.3750 0.0417 0.2500 
jedit-4.3 0.1818 0.1818 0.1364 0.1364 0.4091 0.0909 0.1136 
poi-2.0 0.3846 0.3846 0.1538 0.1923 0.7692 0.5385 0.3077 
prop-6 0.5574 0.2623 0.3770 0.1803 0.6250 0.2459 0.2131 

xerces-1.2 0.2500 0.2813 0.9375 0.3125 0.6250 0.3438 0.2188 
xerces-1.3 0.4048 0.1905 0.6905 0.1429 0.8750 0.5476 0.3810 
xerces-init 0.5000 0.1250 0.3750 0.5000 0.7500 0.3750 0.3750 

Avg 0.4083 0.2608 0.4395 0.2834 0.5343 0.2702 0.2997 

RQ2: How about the prediction performance of the proposed multi-objective 
SMONGE model compared to four classic defect predictors with the same feature 
extraction method SCAE? 
Our multi-objective SMONGE model combines the feature extraction method SCAE and 
the ELM optimized by the multi-objective NSGAII algorithm. Since we adopt the ELM 
optimized by the multi-objective NSGAII algorithm as the defect predictor in this paper, 
this question is designed to evaluate the effectiveness of the SMONGE model compared 
with four classic defect predictors with the same feature extraction method SCAE, 
including SDT, SKNN, SNB and SSVM. 
Tabs. 9-12 show the F1, pf, G-measure and MCC of the SMONGE model compared with 
those of four classic predictors across all 20 projects, respectively. Note that the best value 
of each project is in bold font. From Tabs. 9, 11 and 12, we can find that the SMONGE model 
can achieve the best average performance in terms of F1, G-measure and MCC (expect for 
SSVM) across all 20 projects. More specifically, the average F1 (0.8088) by SMONGE 
achieves improvements between 3.75% (for SKNN) and 19.88% (for SNB) with an average 
improvement of 9.09% and the average G-measure (0.7675) by SMONGE yields 
improvements between 0.67% (for SDT) and 16.87% (for SNB) with an average 
improvement of 4.84% compared with four classic predictors with the same feature 
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extraction method SCAE. From the point of MCC, the SMONGE model can gain an 
average improvement of 14.79% compared with four classic predictors, and it is only 0.2% 
worse than SSVM. Moreover, from Tab. 10, the SMONGE is not the best predictor from 
the point of pf, but it is only worse than SDT and SSVM. 

Table 7: The G-measure for our method SCAE compared with six feature extraction methods 
Datasets MCML SNE MC LPP LLE LLC SCAE 

KC2 0.6639 0.7940 0.4848 0.8316 0.2078 0.6015 0.7825 
MC1 0.6309 0.4800 0.7081 0.7916 0.8671 0.7307 0.7591 
MC2 0.4571 0.6957 0.2817 0.6593 0.6512 0.5063 0.5926 
PC1 0.8162 0.8188 0.7424 0.506 0.8046 0.4605 0.7738 
PC2 0.6653 0.9138 0.8761 0.4800 0.9078 0.6778 0.8298 

ant-1.4 0.5195 0.7197 0.6957 0.6437 0.5275 0.3700 0.6642 
ant-1.5 0.6234 0.8946 0.2843 0.7368 0.7068 0.7003 0.7777 
ant-1.6 0.7013 0.7800 0.2586 0.6770 0.5427 0.3889 0.7941 
ant-1.7 0.6372 0.7631 0.5385 0.7623 0.3902 0.6933 0.7742 
ivy-1.4 0.6933 0.7631 0.5903 0.6984 0.7959 0.7018 0.8296 
ivy-2.0 0.7243 0.8131 0.5074 0.7490 0.7368 0.6925 0.7977 
jedit-4.0 0.5797 0.7454 0.3612 0.5899 0.3675 0.3797 0.6735 
jedit-4.1 0.7660 0.6575 0.5750 0.7182 0.5737 0.5228 0.8090 
jedit-4.2 0.7754 0.7742 0.5089 0.7292 0.7460 0.2960 0.7857 
jedit-4.3 0.8597 0.8923 0.9186 0.9018 0.7429 0.8880 0.8866 
poi-2.0 0.5900 0.7080 0.5432 0.8361 0.3750 0.6102 0.7826 
prop-6 0.5637 0.7801 0.7044 0.8321 0.5060 0.8045 0.7813 

xerces-1.2 0.6330 0.7819 0.1175 0.7333 0.5275 0.5826 0.8174 
xerces-1.3 0.7210 0.8459 0.4548 0.8712 0.2192 0.5623 0.7474 
xerces-init 0.5714 0.3544 0.5882 0.6087 0.3784 0.5882 0.6931 

Avg 0.6596 0.7487 0.5369 0.7178 0.5787 0.5878 0.7675 

Fig. 4 shows the box-plots of four metrics for our SMONGE model and four classic 
predictors with the same feature extraction method SCAE across all 20 projects. In Figs. 4 
(a), 4(c) and 4(d), the median value by SMONGE is higher than that of four predictors in 
terms of F1, G-measure and MCC (expect for SSVM in terms of G-measure and MCC), 
respectively. In particular, the median value by SMONGE is higher than the maximum 
value of SNB in terms of F1, G-measure and MCC. In addition, we can observe that the 
median pf by SMONGE is only higher than that of SKNN and SNB respectively from Fig. 
4(b), which also shows that the SMONGE is not good enough in terms of pf. 
Conclusion: Our multi-objective SMONGE model performs better than four classic 
predictors in terms of F1, G-measure and MCC (expect for SSVM) on average. The 
SMONGE achieves the average 9.09%, 4.84% and 14.79% performance improvements 
compared with four classic defect predictors across all 20 projects in terms of F1, G-
measure and MCC. 
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Table 8: The MCC for our method SCAE compared with six feature extraction methods 
Datasets MCML SNE MC LPP LLE LLC SCAE 

KC2 0.4332 0.5896 0.3616 0.6636 0.1761 0.4041 0.5698 
MC1 0.3491 0.0435 0.4263 0.5838 0.7666 0.4664 0.5459 
MC2 0.0636 0.3825 0.1124 0.3678 0.2901 0.2066 0.2273 
PC1 0.6975 0.6610 0.4880 0.1674 0.7246 0.3297 0.6325 
PC2 0.5058 0.8438 0.7801 0.0435 0.8285 0.4812 0.7273 

ant-1.4 0.2038 0.5017 0.4242 0.3523 0.3105 0.2339 0.4326 
ant-1.5 0.3493 0.8130 0.2251 0.4721 0.5118 0.5439 0.5805 
ant-1.6 0.4602 0.5577 0.1444 0.409 0.2739 0.1607 0.5938 
ant-1.7 0.2715 0.5264 0.2162 0.521 0.1818 0.399 0.6105 
ivy-1.4 0.3811 0.5263 0.1826 0.4359 0.5878 0.4041 0.6534 
ivy-2.0 0.5058 0.6233 0.1961 0.4949 0.6124 0.4402 0.5958 

jedit-4.0 0.2725 0.4918 0.1424 0.3214 0.2800 0.1979 0.4554 
jedit-4.1 0.5382 0.3285 0.1506 0.4624 0.4500 0.3835 0.6171 
jedit-4.2 0.5409 0.5422 0.1741 0.4880 0.5922 0.1952 0.5706 
jedit-4.3 0.7295 0.8192 0.8577 0.8133 0.6642 0.7740 0.7718 
poi-2.0 0.1817 0.4623 0.2717 0.6765 0.3721 0.4072 0.6102 
prop-6 0.2312 0.5667 0.4401 0.6643 0.1674 0.6186 0.5627 

xerces-1.2 0.2988 0.5844 0.0972 0.4752 0.3105 0.1795 0.6410 
xerces-1.3 0.5274 0.6924 0.1961 0.7403 0.0215 0.2021 0.5816 
xerces-init 0.1690 0.1273 0.1806 0.2901 0.0327 0.1806 0.4085 

Avg 0.3855 0.5341 0.3033 0.4721 0.4077 0.3604 0.5694 

RQ2a: For the novel multi-objective SMONGE model, what is the minimum output 
weight norm of ELM while achieving the best accuracy on each project? 
For the proposed multi-objective SMONGE model, the model utilizes the multi-objective 
NSGAII algorithm to optimize two objectives of the advanced ELM predictor based on 
state-of-the-art Pareto optimal solutions. One objective is to maximize the model 
performance, which refers to the benefit of the prediction model. Another objective is to 
minimize the output weight norm, which is related to the cost of the prediction model. 
Therefore, we show the best classification accuracy and the minimum output weight norm 
of ELM gained by the multi-objective SMONGE model on each project in Tab. 13. 
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(a) F1                                                                       (b) pf 

 
(c) G-measure                                                          (d) MCC 

Figure 3: The box-plots (the traditional mode) for our method SCAE compared with six 
feature extraction methods in terms of four metrics 
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Table 9: The F1 for SMONGE compared with four classic defect predictors 
Datasets SDT SKNN SNB SSVM SMONGE  

KC2 0.7752 0.7757 0.7708 0.8177 0.7857 
MC1 0.7510 0.7928 0.6405 0.7000 0.7867 
MC2 0.7663 0.7023 0.5000 0.6666 0.7273 
PC1 0.7766 0.7325 0.6521 0.8167 0.8606 
PC2 0.7735 0.7567 0.6041 0.7999 0.8659 

ant-1.4 0.7647 0.7500 0.6666 0.8162 0.7647 
ant-1.5 0.7927 0.8372 0.7428 0.8165 0.8197 
ant-1.6 0.7183 0.8157 0.7341 0.8275 0.8438 
ant-1.7 0.7531 0.8134 0.7613 0.8279 0.8472 
ivy-1.4 0.7959 0.7914 0.7422 0.8045 0.8000 
ivy-2.0 0.8135 0.8015 0.7333 0.6700 0.7797 

jedit-4.0 0.7353 0.7520 0.7594 0.6419 0.7719 
jedit-4.1 0.7472 0.7173 0.7123 0.7916 0.8163 
jedit-4.2 0.8000 0.8259 0.6666 0.8223 0.8354 
jedit-4.3 0.7288 0.8915 0.6046 0.8162 0.8952 
poi-2.0 0.8108 0.8108 0.6041 0.5688 0.8308 
prop-6 0.7637 0.7141 0.5322 0.4904 0.7759 

xerces-1.2 0.8375 0.8345 0.6212 0.7967 0.8471 
xerces-1.3 0.7750 0.7734 0.7654 0.7732 0.7857 
xerces-init 0.7766 0.7023 0.6800 0.7000 0.7368 

Avg 0.7728 0.7796 0.6747 0.7482 0.8088 

RQ3: Do the deep semantic features extracted by the deep neural network SCAE (for 
SMONGE) have advantage in prediction performance compared with the original 
defect features without SCAE (for MONGE)? 
Prior researches demonstrate that the performance of a prediction model is usually 
determined by only a few features [Menzies, Greenwald and Frank (2007)]. Feature 
extraction technique is an effective means to alleviate this problem by constructing new, 
combined features from the original features. We adopt the deep neural network SCAE to 
extract deep semantic features of software defects in this paper. In this experiment, we 
compare the deep semantic features extracted by SCAE (for SMONGE) with the original 
defect features without SCAE  (for MONGE), so as to validate the effect of the SCAE on 
ELM based on the multi-objective NSGAII optimization.  
Fig. 5 presents the average precision, recall, F1, pf, G-measure and MCC of the features 
extracted by SCAE (for SMONGE) compared with the original features without feature 
extraction method SCAE (for MONGE) with the same defect predictor-the multi-objective 
NSGAII optimization based ELM on the NASA and PROMISE, respectively. From Fig. 5, 
we can observe that the features extracted by SCAE perform better than the original features 
without SCAE on all evaluation indicators. More specifically, the average precision 
(0.7550), recall (0.8657), F1 (0.8052), pf (0.3394), G-measure (0.7476) and MCC (0.5406) 
by SCAE yield improvement 3.20%, 0.16%, 1.86%, 10.57%, 3.85% and 7.03% compared 



 
 
 
Software Defect Prediction Based on Stacked Contractive Autoencoder                   301 

with the original features without feature extraction method SCAE on NASA respectively, 
and the average precision (0.7718), recall (0.8580), F1 (0.8100), pf (0.2865), G-measure 
(0.7743) and MCC (0.5790) by SCAE achieve improvement 4.23%, 7.67%, 6.03%, 8.60%, 
5.94% and 19.06% compared with the original features without feature extraction method 
SCAE on PROMISE respectively. 
Conclusion: Deep semantic features extracted by deep neural network SCAE (for SMONGE) 
can boost the prediction performance of ELM based on the multi-objective NSGAII 
optimization compared with the original defect features without SCAE (for MONGE). 

Table 10: The pf for SMONGE compared with four classic defect predictors 
Datasets SDT SKNN SNB SSVM SMONGE 

KC2 0.1895 0.1975 0.5000 0.2526 0.2558 
MC1 0.3259 0.3109 0.3393 0.1339 0.3179 
MC2 0.2340 0.3875 0.1250 0.2500 0.5000 
PC1 0.1702 0.3875 0.1489 0.1422 0.3396 
PC2 0.2127 0.3888 0.1333 0.1087 0.2838 

ant-1.4 0.1702 0.3809 0.1772 0.1450 0.4615 
ant-1.5 0.3151 0.3090 0.3389 0.0852 0.2917 
ant-1.6 0.3238 0.2772 0.2500 0.0535 0.2500 
ant-1.7 0.2966 0.2520 0.2222 0.1016 0.3265 
ivy-1.4 0.3260 0.3025 0.6562 0.1739 0.2222 
ivy-2.0 0.2737 0.3218 0.5102 0.1399 0.2500 
jedit-4.0 0.3285 0.3582 0.3421 0.1363 0.4545 
jedit-4.1 0.2745 0.3269 0.3000 0.1290 0.1818 
jedit-4.2 0.3050 0.3121 0.2181 0.1082 0.2500 
jedit-4.3 0.3089 0.1908 0.1898 0.1450 0.1136 
poi-2.0 0.2241 0.2372 0.5000 0.0815 0.3077 
prop-6 0.2139 0.3715 0.3658 0.0706 0.2131 

xerces-1.2 0.2361 0.1518 0.4615 0.2146 0.2188 
xerces-1.3 0.2577 0.2676 0.3584 0.1433 0.3810 
xerces-init 0.1702 0.3875 0.1612 0.3846 0.3750 

Avg 0.2578 0.3060 0.3149 0.1500 0.2997 

Table 11: The G-measure for SMONGE compared with four classic defect predictors 
Datasets SDT SKNN SNB SSVM SMONGE 

KC2 0.7801 0.7769 0.6527 0.8017 0.7825 
MC1 0.7300 0.7650 0.6457 0.7155 0.7591 
MC2 0.7555 0.6768 0.5308 0.75 0.5926 
PC1 0.7751 0.6966 0.6648 0.8191 0.7738 
PC2 0.7657 0.7196 0.6272 0.8060 0.8298 

ant-1.4 0.7647 0.7188 0.6903 0.8197 0.6642 
ant-1.5 0.7725 0.8057 0.7428 0.8217 0.7777 
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ant-1.6 0.7125 0.7892 0.7467 0.8368 0.7941 
ant-1.7 0.7439 0.8060 0.7739 0.8353 0.7742 
ivy-1.4 0.7656 0.7771 0.4974 0.8104 0.8296 
ivy-2.0 0.7862 0.7644 0.6248 0.6878 0.7977 

jedit-4.0 0.7196 0.7388 0.7352 0.6573 0.6735 
jedit-4.1 0.7566 0.7250 0.7207 0.8117 0.8090 
jedit-4.2 0.7608 0.7862 0.6946 0.8273 0.7857 
jedit-4.3 0.7233 0.8789 0.6334 0.8197 0.8866 
poi-2.0 0.8108 0.8108 0.5631 0.5855 0.7826 
prop-6 0.7676 0.6870 0.5838 0.5060 0.7813 

xerces-1.2 0.8185 0.8443 0.5728 0.7997 0.8174 
xerces-1.3 0.7644 0.7639 0.7292 0.7804 0.7474 
xerces-init 0.7751 0.6768 0.7043 0.7225 0.6931 

Avg 0.7624 0.7604 0.6567 0.7607 0.7675 

7 Threats to validity 
In this section, we introduce the potential threats to validity of our method, including 
internal validity, external validity and construct validity.  

7.1 Internal validity 
Internal validity is mainly concerned with uncontrolled internal factors that may affect our 
experimental results, such as errors in the experiment. We check all experiment process 
carefully, but there may still be errors in the experiment that we don’t notice. 

7.2 External validity 
External validity involves that whether our experimental results can be generalized to other 
software subjects. To guarantee the representative of software subjects used in this paper, we 
use 15 projects from the PROMISE data repository and 5 projects from the NASA data 
repository, which are commonly used projects in previous software defect prediction studies 
[Tantithamthavorn, McIntosh, Hassan et al. (2016)]; Chen and Ma (2015); Hosseini, Turhan 
and Gunarathna (2019); Peters, Menzies and Layman (2015)]. Moreover, these software 
projects belong to different application fields and cover a long time. 

Table 12: The MCC for SMONGE compared with four classic defect predictors 
Datasets SDT SKNN SNB SSVM SMONGE 

KC2 0.5633 0.5556 0.4899 0.6164 0.5698 
MC1 0.4739 0.5573 0.2922 0.4916 0.5459 
MC2 0.5099 0.3725 0.2971 0.4780 0.2273 
PC1 0.5563 0.4279 0.4110 0.6425 0.6325 
PC2 0.5310 0.4992 0.3869 0.6331 0.7273 

ant-1.4 0.5388 0.4862 0.4299 0.6434 0.4326 
ant-1.5 0.5786 0.6766 0.5088 0.6683 0.5805 
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ant-1.6 0.4298 0.5997 0.4930 0.7171 0.5938 
ant-1.7 0.4942 0.6243 0.5472 0.6846 0.6105 
ivy-1.4 0.5716 0.5801 0.2982 0.6220 0.6534 
ivy-2.0 0.5901 0.5664 0.3810 0.4516 0.5958 
jedit-4.0 0.4490 0.5170 0.4976 0.4143 0.4554 
jedit-4.1 0.5144 0.4571 0.4419 0.6375 0.6171 
jedit-4.2 0.5434 0.6231 0.4129 0.6672 0.5706 
jedit-4.3 0.4504 0.7790 0.3458 0.6434 0.7718 
poi-2.0 0.6249 0.6280 0.1460 0.3988 0.6102 
prop-6 0.5364 0.3896 0.1744 0.3402 0.5627 

xerces-1.2 0.6512 0.6881 0.1498 0.5995 0.6410 
xerces-1.3 0.5311 0.5319 0.4962 0.5777 0.5816 
xerces-init 0.5563 0.3725 0.4604 0.4812 0.4085 

Avg 0.5347 0.5466 0.3830 0.5704 0.5694 

Table 13: The best classification accuracy and the minimum output weight norm of ELM 
achieved by the multi-objective SMONGE model 

Datasets Accuracy Norm Datasets Accuracy Norm 
KC2 0.7831 3.9937 ivy-2.0 0.7937 14.0805 
MC1 0.7686 34.4994 jedit-4.0 0.7234 23.3308 
MC2 0.6471 145.5707 jedit-4.1 0.8085 60.2265 
PC1 0.8217 1.7726e+05 jedit-4.2 0.7969 136.0188 
PC2 0.8493 1.3278e+03 jedit-4.3 0.8866 93.3310 

ant-1.4 0.7143 731.5775 poi-2.0 0.8036 299.3705 
ant-1.5 0.7925 9.9551 prop-6 0.7815 1.2676e+03 
ant-1.6 0.8077 3.9052 xerces-1.2 0.8243 61.6106 
ant-1.7 0.8103 3.6909 xerces-1.3 0.7662 43.7408 
ivy-1.4 0.8222 4.6603 xerces-init 0.7059 2.6412 

 
(a) F1                                                   (b) pf 
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(c) G-measure                                                     (d) MCC 

Figure 4: The box-plots (the compact mode) for our proposed SMONGE compared with 
four classic predictors in terms of four metrics 

 
(a) NASA                                                                 (b) PROMISE  

Figure 5: The average performance comparison of SMONGE with SCAE and without 
SCAE on NASA and PROMISE datasets 

7.3 Construct validity 
Construct validity is related to whether the evaluation metrics used in our study reflect the 
real-world situation. To minimize the threat, we use seven evaluation metrics, including 
accuracy, precision, recall, F1, pf, G-measure and MCC which have been widely used in 
recent software defect prediction studies [Kondo, Bezemer, Kamei et al. (2019); Nam, Pan 
and Kim (2013); He, Shu, Yang et al. (2012); Herbold, Trautsch and Grabowski (2018); Zhu, 
Zhang, Ying et al. (2020)], so we believe that the construct validity should be acceptable. 

8 Conclusion 
In this work, we apply an advanced feature extraction method and a novel multi-objective 
optimization model to software defect prediction. First, we utilize an advanced deep neural 
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network SCAE to extract the robust deep semantic features, which has stronger 
discrimination capacity for different classes. Second, we propose a novel multi-objective 
defect prediction model called SMONGE, which leverages the multi-objective NSGAII 
algorithm to optimize two objectives of the advanced ELM predictor based on state-of-the-
art Pareto optimal solutions. One objective is to maximize the model performance, which 
refers to the benefit of the prediction model. Another objective is to minimize the output 
weight norm, which is related to the cost of the prediction model. We conduct extensive 
experiments for feature extraction and defect prediction across 20 software defect projects 
from large open source datasets, and the experimental results verify that the effectiveness 
of SCAE and SMONGE. 
In future work, to verify generalization capability and practicability of SCAE and 
SMONGE, we will evaluate SCAE and SMONGE in more open source and commercial 
projects. In addition, we plan to leverage the multi-objective NSGAII algorithm to 
optimize more classifiers in software defect prediction. 
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