

Computers, Materials & Continua CMC, vol.65, no.1, pp.279-308, 2020

CMC. doi:10.32604/cmc.2020.011001 www.techscience.com/journal/cmc

Software Defect Prediction Based on Stacked Contractive
Autoencoder and Multi-Objective Optimization

Nana Zhang1, Kun Zhu1, Shi Ying1, * and Xu Wang2

Abstract: Software defect prediction plays an important role in software quality assurance.
However, the performance of the prediction model is susceptible to the irrelevant and
redundant features. In addition, previous studies mostly regard software defect prediction
as a single objective optimization problem, and multi-objective software defect prediction
has not been thoroughly investigated. For the above two reasons, we propose the following
solutions in this paper: (1) we leverage an advanced deep neural network—Stacked
Contractive AutoEncoder (SCAE) to extract the robust deep semantic features from the
original defect features, which has stronger discrimination capacity for different classes
(defective or non-defective). (2) we propose a novel multi-objective defect prediction
model named SMONGE that utilizes the Multi-Objective NSGAII algorithm to optimize
the advanced neural network—Extreme learning machine (ELM) based on state-of-the-art
Pareto optimal solutions according to the features extracted by SCAE. We mainly consider
two objectives. One objective is to maximize the performance of ELM, which refers to the
benefit of the SMONGE model. Another objective is to minimize the output weight norm
of ELM, which is related to the cost of the SMONGE model. We compare the SCAE with
six state-of-the-art feature extraction methods and compare the SMONGE model with
multiple baseline models that contain four classic defect predictors and the MONGE model
without SCAE across 20 open source software projects. The experimental results verify
that the superiority of SCAE and SMONGE on seven evaluation metrics.

Keywords: Software defect prediction, deep neural network, stacked contractive
autoencoder, multi-objective optimization, extreme learning machine.

1 Introduction
Software defect prediction is a very important software quality assurance technology,
which can predict the defect proneness of new software modules in advance [Zhang,
Zheng, Zou et al. (2016)]. An effective defect prediction model can help developers or

1 School of Computer Science, Wuhan University, Wuhan, 430072, China.
2 Department of Computer Science, Vrije University Amsterdam, Amsterdam, 1081HV, The Netherlands.
* Corresponding Author: Shi Ying. Email: yingshl@whu.edu.cn.
Received: 13 April 2020; Accepted: 28 April 2020.

280 CMC, vol.65, no.1, pp.279-308, 2020

testers to detect the potentially defective modules by reasonably allocating limited
resources [Tantithamthavorn, McIntosh, Hassan et al. (2016)].
When building the software defect datasets, researchers can inspect software defect modules
by designing many software features based on the software development process or code
complexity, so these defect datasets may be high dimensional [Xu, Liu, Luo et al. (2018)].
But not all the features are helpful to the performance of the defect prediction model since
the datasets may contain some irrelevant and redundant features. Jiarpakdee et al.
[Jiarpakdee, Tantithamthavorn, Ihara et al. (2016)] demonstrate that 10%-67% of features in
the 101 open source defect datasets are irrelevant or redundant, and these features seriously
degrade the prediction performance and increase the training time of the model. Therefore,
it is very necessary to conduct feature selection or extraction for defect datasets in software
defect prediction. For the above reason, some feature selection or extraction methods are
proposed to solve the high-dimensional problem of software defect datasets by removing
irrelevant and redundant features [Kondo, Bezemer, Kamei et al. (2019); Xu, Liu, Yang et
al. (2016)]. Feature selection techniques reduce the number of features by selecting an
optimal representative and important feature subset, while feature extraction techniques
decrease the number of features by constructing new, combined features from the original
features [Kondo, Bezemer, Kamei et al. (2019)]. At present, most previous studies mainly
leverage feature selection techniques for defect prediction, feature extraction techniques have
not been thoroughly investigated in software defect prediction. Because feature selection
techniques directly remove some features, which will lead to the loss of some feature
information, we adopt feature extraction technique in this paper. For feature extraction
techniques, most researchers use Principal Component Analysis (PCA) [Kondo, Bezemer,
Kamei et al. (2019)] to conduct software defect prediction. Traditional features extracted by
PCA focus on the statistical features of software modules and these features are easily
affected by the unbalanced data, so the inherent structure information hidden behind the
original defect features may not be represented fully. Currently, deep learning techniques
have been successfully applied in many fields by constructing a deep network architecture
to automatically learn deep semantic feature representation, such as speech recognition
[Mohamed, Dahl and Hinton (2012)], image classification [Krizhevsky, Sutskever and
Hinton (2012)], traffic sign classification [Zhang, Wang, Lu et al. (2019)], concentration
prediction of PM10 [Oh, Song, Kim et al. (2019)] etc. Previous studies [Guo, Cheng and
Cleland-Huang (2017); Wang, Liu and Tan (2016)] have verified that the deep semantic
features have stronger discrimination capacity for different classes (defective or non-
defective). For these reasons above, we leverage an advanced deep neural network-Stacked
Contractive AutoEncoder (SCAE) [Rifai, Vincent, Muller et al. (2011); Ning, Chen, Tie et
al. (2018)] to extract the robust deep semantic features from the original defect features. On
the one hand, SCAE adopts the Frobenius norm of Jacobian matrix as the regularization
penalty term, which can enhance the locally invariant and robust encoding representation.
On the other hand, the unsupervised deep network SCAE is stacked by some unsupervised
contractive autoencoders (CAE), and the hidden layer of each subnetwork serves as the input
layer for the next subnetwork, thereby further improving the robustness and discrimination
capacity of deep feature representation. The SCAE can not only prevent the deep network
from overfitting but also effectively provide a deep combination of basic features with its
excellent nonlinear mapping capability.

Software Defect Prediction Based on Stacked Contractive Autoencoder 281

Currently, most previous studies utilize classical machine learning methods to build defect
prediction models, but these traditional methods have some inevitable flaws. For instance,
traditional machine learning methods usually require complex feature engineering, and the
prediction performance is not good enough, and their adaptability and migration capacity
are not strong enough [Wang, Liu and Tan (2016)]. Based on the above analysis, we adopt
an advanced neural network—Extreme Learning Machine (ELM) to construct defect
prediction model according to the robust deep semantic features extracted by the SCAE in
this paper. The ELM has obvious advantages in classification, including strong
discrimination capacity, good generalization performance and fast training speed [Huang,
Zhu and Siew (2006)].
At present, search-based software engineering has become a research hotspot in the field
of software engineering because it can provide automated or semi-automated solutions for
software engineering problems with large-scale complex problem space, which may have
multiple competing or even conflicting objectives based on state-of-the-art Pareto optimal
solutions [Ni, Chen, Wu et al. (2019)]. Prior studies mostly treat software defect prediction
as a single objective optimization problem, and multi-objective software defect prediction
has not been thoroughly investigated. In this paper, we propose a novel multi-objective
defect prediction model named SMONGE, which leverages the Multi-Objective NSGAII
algorithm to optimize the number of hidden neurons and output weight norm of ELM based
on state-of-the-art Pareto optimal solutions according to the features extracted by SCAE.
We mainly consider two objectives. One objective is to maximize the performance of the
constructed defect prediction model, which refers to the benefit of the prediction model.
Another objective is to minimize the output weight norm, which is related to the cost of
the prediction model. Therefore, we need to make a compromise between these two
contradictory objectives.
The main contributions of this paper are as follows:
(1) We leverage an advanced deep neural network-Stacked Contractive AutoEncoder (SCAE)
to extract the robust deep semantic features from the original defect features, which has
stronger discrimination capacity for different classes (defective or non-defective).
(2) Motivated by the idea of search based software engineering, we propose a novel multi-
objective defect prediction model named SMONGE that utilizes the multi-objective
NSGAII algorithm to optimize two objectives of the advanced ELM predictor based on
state-of-the-art Pareto optimal solutions. One objective is to maximize the model
performance, which refers to the benefit of the prediction model. Another objective is to
minimize the output weight norm, which is related to the cost of the prediction model. To
the best of our knowledge, it is the first time that the multi-objective NSGAII algorithm is
used to optimize the advanced neural network-ELM.
(3) To verify the performance of SCAE and SMONGE, we conduct extensive experiments
for feature extraction and defect prediction across 20 software defect projects from large open
source datasets. We compare the SCAE with six state-of-the-art feature extraction methods,
and compare the SMONGE model with multiple baseline models that contain four classic
defect predictor and the MONGE model without SCAE. The experimental results
demonstrate that the effectiveness of SCAE and SMONGE on seven evaluation metrics.

282 CMC, vol.65, no.1, pp.279-308, 2020

The reminder of this paper is organized as follows. Section 2 describes the background and
related work. Section 3 details feature extraction based on SCAE. Section 4 details the
proposed SMONGE model. Section 5 shows the experimental setup, including benchmark
datasets, evaluation metrics and baseline models. Section 6 evaluates the performance of
SCAE and SMONGE. Section 7 introduces the threats to validity. We conclude this paper
and describe the future work in Section 8.

2 Background and related work
In this section, we introduce the typical software defect prediction models, feature selection
and extraction methods for software defect prediction, and the application of deep learning
techniques in software engineering.

2.1 Software defect prediction
Software defect prediction is a research hotspot in software engineering domain, which
can be used to identify potential defective modules in advance by constructing the
effective prediction model, and then allocate more testing resources on these defective
modules [Tantithamthavorn, McIntosh, Hassan et al. (2017, 2016)]. The granularity of
the modules can be classified as component, file, class or code change [Yasutaka,
Takafumi, Shane et al. (2016)].
Existing software defect prediction methods focus on how to use machine learning methods to
construct effective defect prediction models [Ren, Qin, Ma et al. (2014); Chen and Ma (2015);
Lu, Kocaguneli and Cukic (2014)]. Chen et al. [Chen and Ma (2015)] conduct extensive
empirical studies by using six regression algorithms and find that decision tree regression can
achieve best performance. Lu et al. [Lu, Kocaguneli and Cukic (2014)] use active learning
method to conduct defect prediction model, and the method can significantly improve the
prediction effect. Nam et al. [Nam, Pan and Kim (2013)] successfully apply Transfer
Component Analysis (TCA) technique to software defect prediction. Abaei et al. [Abaei,
Rezaei and Selamat (2013)] propose the self-organizing mapping (SOM) prediction model
with the threshold, and it can help testers to mark modules without experts.
Previous studies mostly regard software defect prediction as a single objective optimization
problem, and multi-objective software defect prediction has not been thoroughly
investigated. As far as we know, only the MOFES method proposed by Ni et al. [Ni, Chen,
Wu et al. (2019)] considers the multi-objective optimization in software defect prediction,
but their study only considers feature selection as a multi-objective optimization problem.
Different from the study of Ni et al. [Ni, Chen, Wu et al. (2019)], we regard the optimization
of the defect prediction model as a multi-objective optimization problem, and the model
leverages the NSGAII algorithm to optimize two objectives of the advanced ELM predictor.

2.2 Feature selection and extraction for software defect prediction
Recently, feature selection and extraction techniques have been applied to software defect
prediction, which can eliminate irrelevant and redundant features in the defect datasets
[Kondo, Bezemer, Kamei et al. (2019); Xu, Liu, Yang et al. (2016)]. Feature selection
methods reduce the number of features in a model by selecting an optimal representative

Software Defect Prediction Based on Stacked Contractive Autoencoder 283

feature subset, while feature extraction methods decrease the number of features by
constructing new, combined features from the original features [Kondo, Bezemer, Kamei
et al. (2019)]. Feature selection methods are mainly divided into two types: filter-based
feature ranking methods or wrapper-based feature subset selection methods [Majdi and
Seyedali (2017)]. Most previous studies mainly use feature selection techniques for defect
prediction, while feature extraction techniques have not been thoroughly investigated in
software defect prediction.
Previous studies have applied many feature selection techniques to software defect prediction
[Liu, Miao and Zhang (2014); Khoshgoftaar, Gao and Napolitano (2012); Gao, Khoshgoftaar
and Wang (2011)]. Liu et al. [Liu, Miao and Zhang (2014)] propose three new cost-sensitive
based feature selection methods, including Cost-Sensitive Variance Score (CSVS), Cost-
Sensitive Laplacian Score (CSLS), and Cost-Sensitive Constraint Score (CSCS), which
incorporate cost information into traditional feature selection methods. Khoshgoftaar et al.
[Khoshgoftaar, Gao and Napolitano (2012)] compare seven filter-based feature ranking
techniques (e.g., information gain (IG), gain ratio (GR)) on sixteen defect datasets. Gao et al.
[Gao, Khoshgoftaar and Wang (2011)] verify the performance of hybrid feature selection
framework based on seven filter-based methods and three feature subset search methods, and
the experimental results show that the reduced features are unable to adversely affect the
performance of the prediction model in most cases. Xu et al. [Xu, Liu, Yang et al. (2016)]
investigate the impact of 32 feature selection techniques on the software defect prediction,
and the experimental results verify that these feature selection techniques have significant
performance differences on each dataset. Ni et al. [Ni, Chen, Wu et al. (2019)] use five
different multi-objective optimization algorithms (i.e., MOCell, SPEA2, NSGA-II, PAES and
SMSEMOA) to conduct feature selection respectively, and the experimental results verify that
the effectiveness of the multi-objective optimization feature selection algorithms. For feature
extraction techniques, most researchers use principal component analysis (PCA) [Kondo,
Bezemer, Kamei et al. (2019)] to conduct feature extraction in software defect prediction.
Marco et al. [Marco, Michele and Romain (2010)] adopt PCA to conduct class-level defect
prediction, which can void the problem of multicollinearity among the independent variables.
Rathore et al. [Rathore and Gupta (2014)] compare PCA with feature selection techniques.
The experimental results prove that PCA is one of the best-performing techniques.
Different the previous studies, we leverage an advanced deep neural network—stacked
contractive autoencoder (SCAE) to effectively learn the robust deep semantic feature
representation from the original defect features, which has stronger discrimination capacity
for different classes.

2.3 The application of deep learning techniques in software engineering
Recently, some researchers adopt deep learning techniques to improve various tasks in the
field of software engineering [Yang, David and Zhang (2015); Wang, Liu and Tan (2016);
Gu, Zhang, Zhang et al. (2016)]. Gu et al. [Gu, Zhang, Zhang et al. (2016)] utilize the RNN
encoder-decoder to address the problem of retrieving API call sequences based on the
user’s natural language query. Wang et al. [Wang, Liu and Tan (2016)] leverage deep belief
network (DBN) to learn deep semantic features automatically. The experimental results
verify that the deep semantic features-based method outperforms traditional software

284 CMC, vol.65, no.1, pp.279-308, 2020

metrics. Yang et al. [Yang, David and Zhang (2015)] propose a novel just-in-time defect
prediction model named Deeper, which can combine initial change features into high-level
features by deep belief network (DBN), and then utilize the new high-level features to
construct the defect prediction model.
Deep learning techniques are also used for software traceability [Guo, Cheng, Cleland-
Huang et al. (2017)], test report classification [Wang, Cui, Wang et al. (2017)], link
prediction in developer online forums [Xu, Ye, Xing et al. (2016)] and so on.

3 Feature extraction based on stacked contractive autoencoder
In this paper, after class imbalance processing (SMOTE) [Chawla, Bowyer, Hall et al.
(2002)] and data normalization (min-max) [Witten, Frank and Hall (2011)] operations, we
utilize an advanced unsupervised deep neural network-stacked contractive autoencoder
(SCAE) to extract the robust deep semantic features from the original defect features with its
nonlinear mapping capability, which can properly characterize the complex data structures
and increase the probability of linear separability of the data. SCAE is a variant of regularized
autoencoder, which adopts the Frobenius norm of Jacobian matrix of encoder activations as
the regularization penalty term, so as to form a localized space contraction and yield robust
features on the activation layer. In addition, SCAE regards the hidden layer of each
subnetwork as the input layer of next subnetwork, which further enhances the robustness and
the discrimination capacity of deep feature representation.
The training process for SCAE is as follows. A basic autoencoder subnetwork consists of
two parts: encoder and decoder. The encoder f(x) is used to output the representation ℎ ∈
𝑅𝑅𝑑𝑑ℎ after feature extraction, while the decoder g(h) reconstructs the original input 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑𝑥𝑥
and output r from the output h of the encoder by minimizing the cost function.
The internal structures of the encoder f(x) and decoder g(h) are all mapping functions with
nonlinear activation functions, as shown in Eqs. (1) and (2):
ℎ = 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑓𝑓(𝑊𝑊𝑥𝑥 + 𝑏𝑏ℎ), (1)
𝑟𝑟 = 𝑔𝑔(ℎ) = 𝑠𝑠𝑔𝑔(𝑊𝑊′ℎ + 𝑏𝑏𝑟𝑟), (2)
where 𝑠𝑠𝑓𝑓 and 𝑠𝑠𝑔𝑔 represent the nonlinear activation functions of encoder and decoder,
respectively.
we adopt the sigmoid() as the nonlinear activation function in this paper, 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧) =
1

1+𝑒𝑒−𝑧𝑧
. W represents the (𝑠𝑠𝑥𝑥 × 𝑠𝑠ℎ)-dimension weight from the input layer to the hidden

layer, and 𝑊𝑊′ represents the (𝑠𝑠ℎ × 𝑠𝑠𝑥𝑥)-dimension weight from the hidden layer to the
reconstruction layer. 𝑏𝑏ℎ ∈ 𝑅𝑅𝑑𝑑ℎ and 𝑏𝑏𝑟𝑟 ∈ 𝑅𝑅𝑑𝑑𝑥𝑥 denote the bias vectors of encoder and
decoder, respectively. The parameters of the autoencoder are shown below: 𝜃𝜃 =
{𝑊𝑊,𝑊𝑊′, 𝑏𝑏ℎ,𝑏𝑏𝑟𝑟}.
In order to improve the robustness of small perturbations around the training points and
learn a mapping with stronger contraction effect on the training instances, we introduce a
penalty term that penalizes the highly sensitive inputs to increase the robustness of the
network in the form of the mapping f(x) of the encoder with respect to the Frobenius norm
of the Jacobian matrix of the input x , and the sensitivity penalty term is the sum of squares
of all partial derivatives for the extracted features according to input dimensions, as shown

Software Defect Prediction Based on Stacked Contractive Autoencoder 285

in Eq. (3):

||𝐽𝐽𝑓𝑓(𝑥𝑥)||𝐹𝐹2 = ∑ (𝜕𝜕ℎ𝑗𝑗(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑖𝑖

)2𝑖𝑖𝑖𝑖 (3)

Assume the training set is Dtr, we learn the parameters of the SCAE by minimizing the
reconstruction error and penalizing the gradient. The entire loss function of SCAE is
as follows:

𝐿𝐿𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝜃𝜃) = � �𝐿𝐿 �𝑥𝑥,𝑔𝑔�𝑓𝑓(𝑥𝑥)�� + 𝜆𝜆||𝐽𝐽𝑓𝑓(𝑥𝑥)||𝐹𝐹2�
𝑥𝑥∈𝐷𝐷𝑡𝑡𝑡𝑡

= ∑ (− 1
𝑛𝑛𝑥𝑥∈𝐷𝐷𝑡𝑡𝑡𝑡 ∑ [𝑦𝑦 ln𝑎𝑎 + (1 − 𝑦𝑦) ln(1 − 𝑎𝑎)]𝑥𝑥 + 𝜆𝜆∑ (𝜕𝜕ℎ𝑗𝑗(𝑥𝑥)

𝜕𝜕𝑥𝑥𝑖𝑖
)2𝑖𝑖𝑖𝑖), (4)

where L is the reconstruction error in the form of cross entropy loss (nonlinear error), and 𝜆𝜆
is a superparameter that controls the intensity of regularization, n presents the number of
classes, y denotes the true value classification and a denotes the prediction value.
Multiple contractive autoencoders can be stacked to construct an unsupervised deep neural
network SCAE with more than one hidden layer. The schematic diagram of SCAE is shown in
Fig. 1, in which the output of previous hidden layer is the input of next hidden layer. In this
paper, we train a SCAE with four contractive autoencoders to extract and reconstruct the defect
features, where the output of the hidden layer for first contractive autoencoder is extracted as
first-order feature representation, and then the first-order feature representation is regarded as
the input of the hidden layer for second contractive autoencoder, and the same strategy is also
used for the subsequent contractive autoencoders. Based on the above strategy, the SCAE can
learn the first-order feature, second-order feature, third-order feature and fourth-order
representations from the original defect features.
Through the continuous stacking process, the SCAE can extract more robust and abstract
deep semantic features from the original defect features than a single contractive
autoencoder. In addition, since the SCAE is an unsupervised model, it not only can prevent
the training network from overfitting when the number of labeled defect instances is
relatively small, but also can effectively achieve a deep combination of defect features with
its nonlinear mapping capacity.

4 The proposed multi-objective SMONGE model
In this section, we propose a novel multi-objective defect prediction model called
SMONGE that leverages the multi-objective NSGAII algorithm to optimize the number of
hidden neurons and output weight norm of extreme learning machine (ELM). We first
derive the training process of ELM, and then present the multi-objective optimization
problem and our multi-objective SMONGE model.

4.1 Extreme learning machine
Different from traditional single hidden-layer feedforward neural network (SLFN), for
ELM, the connection weights of the input layer and the hidden layer and the biases of the
hidden layer can be assigned randomly, and need not be adjusted after setting. The
connection weights between the hidden layer and the output layer do not need to be tuned

286 CMC, vol.65, no.1, pp.279-308, 2020

iteratively through the back propagation process of network error, which can be determined
once by solving a linear model [Huang, Zhou, Ding et al. (2012)]. In addition, ELM has
obvious advantages in classification, including strong classification capacity, fast training
speed and easily adjust parameters. The network structure of ELM is shown in Fig. 2.

Figure 1: The schematic diagram of SCAE

Figure 2: The network structure of ELM

Given a training dataset consisting of N arbitrary instances {(𝑥𝑥𝑖𝑖, 𝑙𝑙𝑖𝑖)}𝑖𝑖=1𝑁𝑁 , where 𝑥𝑥𝑖𝑖 =
[𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑛𝑛]𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 contains n input features and 𝑙𝑙𝑖𝑖 = [𝑙𝑙𝑖𝑖1, 𝑙𝑙𝑖𝑖2, … , 𝑙𝑙𝑖𝑖𝑗𝑗]𝑇𝑇 ∈ 𝑅𝑅𝑗𝑗contains
m output labels. For a standard SLFN with K hidden neurons, its output can be expressed
as follows:
∑ 𝛽𝛽𝑖𝑖𝑔𝑔�𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖� = 𝜊𝜊𝑖𝑖 , 𝑗𝑗 = 1, 2, … ,𝑁𝑁K
𝑖𝑖=1 , (5)

where g(.) denotes the activation function, 𝑤𝑤𝑖𝑖 = [𝑤𝑤𝑖𝑖1,𝑤𝑤𝑖𝑖2, … ,𝑤𝑤𝑖𝑖𝑛𝑛]𝑇𝑇 ∈ 𝑅𝑅𝑛𝑛 , i=1,2,...,K
represents the input weight vector between the input neurons and ith hidden neuron, bi
denotes the bias of the ith hidden neuron, 𝛽𝛽𝑖𝑖 = [𝛽𝛽𝑖𝑖1,𝛽𝛽𝑖𝑖2, … ,𝛽𝛽𝑖𝑖𝑗𝑗]𝑇𝑇 ∈ 𝑅𝑅𝑗𝑗 denotes the output

Software Defect Prediction Based on Stacked Contractive Autoencoder 287

weight vector between the ith hidden neuron and output neurons, 𝑠𝑠𝑖𝑖 = [𝑠𝑠𝑖𝑖1, 𝑠𝑠𝑖𝑖2, … , 𝑠𝑠𝑖𝑖𝑗𝑗]𝑇𝑇 ∈
𝑅𝑅𝑗𝑗 represents the network output value.
The learning goal of SLFN is to minimize the output error, which can be expressed as follows:
∑ ||𝑠𝑠𝑖𝑖 − 𝑙𝑙𝑖𝑖||𝑁𝑁
𝑖𝑖=1 = 0. (6)

The Eq. (6) can approximate zero error if there are suitable 𝛽𝛽𝑖𝑖, 𝑤𝑤𝑖𝑖, and 𝑏𝑏𝑖𝑖, which has been
proved in Huang et al. [Huang, Chen and Siew (2006)]. Therefore, the Eq. (5) can be
rewritten as Eq. (7):
∑ 𝛽𝛽𝑖𝑖𝑔𝑔�𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖� = 𝑙𝑙𝑖𝑖 , 𝑗𝑗 = 1, 2, … ,𝑁𝑁K
𝑖𝑖=1 . (7)

The Eq. (7) can be transformed into a matrix form, as shown in Eq. (8):
𝐻𝐻𝛽𝛽 = 𝐿𝐿, (8)
where H is the output of the hidden neurons, 𝛽𝛽 is the output weight, and L is the expected
output.
H, 𝛽𝛽, L can be expressed respectively as follows:

H = �
𝑔𝑔(𝑤𝑤1 ∙ 𝑥𝑥1 + 𝑏𝑏1) ⋯ 𝑔𝑔(𝑤𝑤𝐾𝐾 ∙ 𝑥𝑥1 + 𝑏𝑏𝐾𝐾)

⋮ ⋱ ⋮
𝑔𝑔(𝑤𝑤1 ∙ 𝑥𝑥𝑁𝑁 + 𝑏𝑏1) ⋯ 𝑔𝑔(𝑤𝑤𝐾𝐾 ∙ 𝑥𝑥𝑁𝑁 + 𝑏𝑏K)

�
𝑁𝑁×𝐾𝐾

. (9)

𝛽𝛽 = �
𝛽𝛽1𝑇𝑇
⋮
𝛽𝛽𝐾𝐾𝑇𝑇
�

𝐾𝐾×𝑗𝑗

. (10)

𝐿𝐿 = �
𝐿𝐿1𝑇𝑇
⋮
𝐿𝐿𝑁𝑁𝑇𝑇
�

𝑁𝑁×𝑗𝑗

. (11)

The output weight 𝛽𝛽 can be computed by solving the linear least squares problem.
𝛽𝛽 = H+L, (12)
where H+ represents the Moore-Penrose generalized inverse of the matrix H.

4.2 Multi-objective NSGAII optimization based extreme learning machine
In this paper, we adopt extreme learning machine based on multi-objective NSGAII
optimization to construct our defect prediction model, so as to transform software defect
prediction into a multi-objective optimization problem based on state-of-the-art Pareto
optimal solutions. We mainly consider two objectives. One objective is to maximize the
performance (i.e., accuracy) of the constructed defect prediction model, which refers to the
benefit of the prediction model. Another objective is to minimize the output weight norm
as much as possible, which is related to the cost of the prediction model. There is a serious
contradiction between these two objectives in most cases. The smaller the output weight
norm, the smaller the influence of each feature component, which is equivalent to reducing
the number of parameters, thus realizing the limitation of the model space. The simpler the
model, the lower the cost, and the less likely it is to produce overfitting phenomenon.
However, the performance of the prediction model may reduce to some extent as the weight

288 CMC, vol.65, no.1, pp.279-308, 2020

output norm decreases, and vice versa. Therefore, we should make a compromise between
these two contradictory objectives.
In this section, we first give some definitions for multi-objective optimization. Then, we
define the multi-objective optimization problem for software defect prediction. Finally, we
introduce extreme learning machine based on multi-objective NSGAII optimization.

4.2.1 Definitions for multi-objective optimization
We give the following five definitions for multi-objective optimization based on Pareto
optimal solutions. Since there are two optimization objectives in this paper, we take two
optimization objectives as example.
Definition 1 (Multi-objective Optimization Problem)
𝐹𝐹(𝑥𝑥) = �𝑓𝑓1(𝑥𝑥),𝑓𝑓2(𝑥𝑥)�, (13)
𝑠𝑠. 𝑡𝑡. 𝑥𝑥 ∈ Ω
where x is the decision vector and Ω is the decision space. 𝐹𝐹(𝑥𝑥): Ω⟶ 𝑅𝑅2 contains two
objective functions and 𝑅𝑅2 represents the objective space.
Definition 2 (Pareto Dominance) Suppose x can dominate y, then 𝑥𝑥 ≺ 𝑦𝑦, if and only if
∀𝑠𝑠 ∈ {1,2},𝑓𝑓1(𝑥𝑥) ≤ 𝑓𝑓2(𝑦𝑦),𝑎𝑎𝑎𝑎𝑠𝑠 ∃𝑗𝑗 ∈ {1,2}, 𝑠𝑠. 𝑡𝑡.𝑓𝑓𝑖𝑖(𝑥𝑥) < 𝑓𝑓𝑖𝑖(𝑦𝑦).
Definition 3 (Pareto Optimal Solution and Pareto Optimal Vector) If and only if x* is not
dominated by other solutions, the solution x* is called Pareto optimal solution. F(x*) is
called a Pareto optimal vector.
Definition 4 (Pareto Optimal Set) The Pareto optimal set is composed by all the Pareto
optimal solutions.
Definition 5 (Pareto Front) In the objective space, the surface composed by the target value
vectors corresponding to all the Pareto optimal solutions is called Pareto front.

4.2.2 The multi-objective optimization problem
In this paper, we leverage the multi-objective NSGAII algorithm to optimize the number
of hidden neurons and output weight norm of ELM. Therefore, the individual of the multi-
objective optimization model includes the number of hidden neurons H and the control
parameter 𝜆𝜆 of output weight norm. We define the initialized individual and population as
follows:
𝐼𝐼𝑘𝑘,𝐺𝐺 = [𝐻𝐻𝑘𝑘,𝐺𝐺 ,𝜆𝜆𝑘𝑘,𝐺𝐺], (14)
𝜙𝜙𝐺𝐺 = {𝐼𝐼1,𝐺𝐺 , 𝐼𝐼2,𝐺𝐺 , … , 𝐼𝐼𝑁𝑁𝑁𝑁,𝐺𝐺}, (15)
where 𝐼𝐼𝑘𝑘,𝐺𝐺 is the kth individual of the Gth evolution generation and 𝜙𝜙𝐺𝐺 is the population
with NP individuals. NP denotes the size of population. The output weight norm adopts
the L2 norm, 𝜆𝜆 ∈ (0,1].
In the multi-objective SMONGE model, the mean square error (MSE) and the control of
output weight norm are regarded as two computable objectives. For each evolution
generation of the SMONGE model, we utilize the parameter vector of each individual to

Software Defect Prediction Based on Stacked Contractive Autoencoder 289

calculate the corresponding output weight according to the Eq. (12). The individual vector
is generated by real encoding.
The objective function for the training MSE is defined as follows:

𝑓𝑓1(𝐻𝐻) = 1
𝐻𝐻
∑ (𝑓𝑓(𝑥𝑥) − 𝑦𝑦)2𝐻𝐻
ℎ=1 . (16)

Another objective is the control of output weight norm, as shown in Eq. (17):

𝑓𝑓2(𝜆𝜆) = 𝜆𝜆
2
∑ ∑ ∑ (𝑤𝑤𝑖𝑖,𝑖𝑖𝑙𝑙)2𝑆𝑆𝑙𝑙+1

𝑖𝑖=1
𝑆𝑆𝑙𝑙
𝑖𝑖=1

𝑛𝑛𝑙𝑙−1
𝑙𝑙=1 , (17)

where 𝑆𝑆𝑙𝑙 denotes the number of neurons in lth layer, 𝑎𝑎𝑙𝑙 denotes the number of network
layers (ELM has three network layers), 𝑤𝑤𝑖𝑖,𝑖𝑖𝑙𝑙 denotes the parameter between the jth neuron
in (l+1)th layer and the ith neuron in lth layer, and 𝜆𝜆 denotes the weight decay parameter.
Considering the minimization of the above two objectives, we propose the multi-objective
SMONGE model for software defect prediction, which is defined as follows:
min
𝐻𝐻,𝜆𝜆

𝐹𝐹(𝐻𝐻, 𝜆𝜆) = {𝑓𝑓1(𝐻𝐻),𝑓𝑓2(𝜆𝜆)}𝑇𝑇 . (18)

𝑠𝑠. 𝑡𝑡. 𝜆𝜆 ∈ (0,1]
The training MSE is used to enhance the classification accuracy while the control of output
weight norm aims to make the cost of the ELM as low as possible and prevent overfitting.
In the multi-objective SMONGE model, these two contradictory objectives are optimized
simultaneously, thereby finding the Pareto optimal solutions.

4.2.3 The multi-objective SMONGE model
Since the ELM has strong classification capacity, we adopt ELM for software defect
prediction. In order to further improve the prediction capacity of ELM, we utilize the multi-
objective NSGAII algorithm to optimize number of hidden neurons and output weight
norm of ELM, which is the above multi-objective optimization problem.
The learning process of the proposed SMONGE model is shown in Algorithm 1. In Algorithm
1, we first randomly initialize the population 𝜙𝜙0 = {𝐼𝐼𝑘𝑘,0|𝑘𝑘 = 1, 2, … ,𝑁𝑁𝑁𝑁} and calculate the
fitness values (multi-objective functions) of the initialized population by Eq. (18) in Steps 1
and 2. We can combine NSGAII and ELM closely to form a multi-objective optimization
problem for software defect prediction by minimizing the multi-objective functions. Since
ELM is used for software defect prediction in this paper, we need to calculate the output
weight 𝛽𝛽𝑘𝑘,𝐺𝐺 of ELM by Eq. (12) in Step 5. Next, we adopt the generateNewPop() function to
produce new population Qk by continuous selection, crossover and mutation in Step 6, and
combine parent 𝜙𝜙𝑘𝑘 and offspring population 𝑄𝑄𝑘𝑘 to generate the 𝑝𝑝𝑘𝑘 in Step 7. By the non-
dominated sorting for Fi, we can obtain a set of classification subsets (all nondominated fronts
of 𝑝𝑝𝑘𝑘) 𝐹𝐹 = (𝐹𝐹1,𝐹𝐹2, …) in Step 8. We calculate crowding-distance for Fi (a measure of
solutions density in the neighborhood), and select part of the individual Fi to merge into the
new population 𝜙𝜙𝑘𝑘+1 until the population size reaches NP in Steps 11-15. Then, we establish
a partial order relationship for Fi, and choose the first (𝑁𝑁𝑁𝑁 − |𝜙𝜙𝑘𝑘+1|) elements of Fi until
𝜙𝜙𝑘𝑘+1 is filled in Steps 16-17.
After enough population evolution, SMONGE will meet the termination criteria and
converge to a stable solutions. Finally, SMONGE can return all Pareto optimal solutions

290 CMC, vol.65, no.1, pp.279-308, 2020

in the current population, thereby obtaining software defect prediction results. In this
process, in order to comprehensively reflect the performance of the defect prediction model,
we also implement other prediction metrics, including accuracy, precision, recall, F1, pf,
G-measure and MCC.

Algorithm 1 The multi-objective SMONGE model
Input:

Population size: NP, maximum evolution generation: MAXGEN, evolving population: 𝜙𝜙𝐺𝐺
Output:

Pareto optimal solutions: R
1: Randomly initialize the population: 𝜙𝜙0 = {𝐼𝐼𝑘𝑘,0|𝑘𝑘 = 1, 2, … ,𝑁𝑁𝑁𝑁};
2: Calculate the fitness values of the initialized population by Eq. (18);
3: while 𝐺𝐺 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀𝐺𝐺𝑀𝑀𝑁𝑁 do
4: for k=1, 2, …, NP do
5: Calculate the output weight 𝛽𝛽𝑘𝑘,𝐺𝐺 by Eq. (12);
6: 𝑄𝑄𝑘𝑘 ⟵ 𝑔𝑔𝑔𝑔𝑎𝑎𝑔𝑔𝑟𝑟𝑎𝑎𝑡𝑡𝑔𝑔𝑁𝑁𝑔𝑔𝑤𝑤𝑁𝑁𝑠𝑠𝑝𝑝(𝜙𝜙𝑘𝑘);
7: 𝑝𝑝𝑘𝑘 ⟵ 𝜙𝜙𝑘𝑘 ∪ 𝑄𝑄𝑘𝑘;
8: 𝐹𝐹 ⟵ 𝑓𝑓𝑎𝑎𝑠𝑠𝑡𝑡 − 𝑠𝑠𝑠𝑠𝑎𝑎 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎𝑎𝑎𝑡𝑡𝑔𝑔𝑠𝑠 − 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡(𝑝𝑝𝑘𝑘);
9: 𝜙𝜙𝑘𝑘+1 ⟵ 𝑎𝑎𝑛𝑛𝑙𝑙𝑙𝑙;
10: 𝑠𝑠 ⟵ 0;
11: while � 𝜙𝜙𝑘𝑘+1� + |𝐹𝐹𝑖𝑖| ≤ 𝑁𝑁𝑁𝑁 do
12: crowing-distance-assignment (Fi);
13: 𝜙𝜙𝑘𝑘+1 ⟵ 𝜙𝜙𝑘𝑘+1 ∪ 𝐹𝐹𝑖𝑖;
14: 𝑠𝑠 ⟵ 𝑠𝑠 + 1;
15: end while
16: 𝑠𝑠𝑠𝑠𝑟𝑟𝑡𝑡(𝐹𝐹𝑖𝑖, ≺ 𝑎𝑎);
17: 𝜙𝜙𝑘𝑘+1 ⟵ 𝜙𝜙𝑘𝑘+1 ∪ 𝐹𝐹𝑖𝑖[1: (𝑁𝑁𝑁𝑁− �𝜙𝜙𝑘𝑘+1�)];
18: end for
19: 𝐺𝐺 ⟵ 𝐺𝐺 + 1;
20: end while
21: return Pareto optimal solutions: R

5 Experimental setup
In this section, we introduce the experimental setup, including benchmark datasets,
evaluation metrics and baseline methods. We conduct the experiments on a 3.6 GHz i7-
4790 CPU machine with 8 GB RAM.

5.1 Benchmark datasets
To verify the effectiveness of SCAE and SMONGE, we conduct extensive experiments on
20 real software projects (i.e., 5 projects from the NASA data repository and 15 projects
from the PROMISE data repository), which are open source and commonly used
benchmark datasets in software defect prediction studies [Tantithamthavorn, McIntosh,
Hassan et al. (2016)]; Chen and Ma (2015); Hosseini, Turhan and Gunarathna (2019);
Peters, Menzies and Layman (2015)]. The basic attributes of NASA (the first five rows)
and PROMISE (the latter fifteen rows) are shown in Tab. 1, including project name, the
number of features, the number of instances, the number of defective instances, the number

Software Defect Prediction Based on Stacked Contractive Autoencoder 291

of non-defective instances, defective ratio, and imbalance ratio. For the NASA dataset, we
can observe that the defect ratio of PC2 is the smallest with 2.15%, and the defect ratio of
KC2 is the largest with 20.50%. The imbalance ratio varies from 3.88 to 45.56. Tab. 2
describes the features of 5 projects from the NASA data repository, which tabulates the 20
common features among the 5 projects and other 19 specific features for each project (The
symbol ✓ represents that the project has a certain feature, while the symbol ✘ represents
that the project does not have a certain feature). For the PROMISE dataset, we can
observe that the defect ratio of jedit-4.3 is the smallest with 2.24%, and the defect ratio of
xerces-init is the largest with 47.53%. The imbalance ratio varies from 1.10 to 43.73. Tab.
3 describes all features of 15 projects from the PROMISE data repository. Each instance
in any project contains 20 object-oriented features and a dependent variable that presents
the number of defects.
For all these software defect projects, we adopt the SMOTE (Synthetic Minority
Oversampling Technique) algorithm [Chawla, Bowyer, Hall et al. (2002)] for class
imbalance processing and the min-max method [Witten, Frank and Hall (2011)] for data
normalization in this paper. In addition, we perform 10 times 10-fold cross-validation to
evaluate the performance of these models in this paper.

Table 1: The statistics of 20 projects from the NASA and PROMISE data repository

Projects #features #instances #defective
instances

#non-
defective
instances

Defective
ratio
(%)

Imbalance
ratio

KC2 21 522 107 415 20.50 3.88
MC1 38 1988 46 1942 2.31 42.22
MC2 39 125 16 109 12.80 6.81
PC1 37 705 61 644 8.65 10.56
PC2 36 745 16 729 2.15 45.56

ant-1.4 20 178 40 138 22.47 3.45
ant-1.5 20 293 32 261 10.92 8.16
ant-1.6 20 351 92 259 26.21 2.82
ant-1.7 20 745 166 579 22.28 3.49
ivy-1.4 20 241 16 225 6.64 14.06
ivy-2.0 20 352 40 312 11.36 7.80
jedit-4.0 20 306 75 231 24.51 3.08
jedit-4.1 20 312 79 233 25.32 2.95
jedit-4.2 20 367 48 319 13.08 6.65
jedit-4.3 20 492 11 481 2.24 43.73
poi-2.0 20 314 37 277 11.78 7.49
prop-6 20 660 66 594 10.00 9.00

xerces-1.2 20 440 71 369 16.14 5.20
xerces-1.3 20 453 69 384 15.23 5.57
xerces-init 20 162 77 85 47.53 1.10

292 CMC, vol.65, no.1, pp.279-308, 2020

Table 2: The feature description of 5 projects from the NASA data repository
Features KC2 MC1 MC2 PC1 PC2

1. LOC_EXECUTABLE
2. LOC_CODE_AND_COMMENT
3. LOC_COMMENTS
4. LOC_TOTAL

5. DESIGN_COMPLEXITY

6. ESSENTIAL_COMPLEXITY

7. BRANCH_COUNT

8. HALSTEAD_ERROR_EST
9. HALSTEAD_DIFFICULTY
10. HALSTEAD_EFFORT
11. HALSTEAD_CONTENT

12. HALSTEAD_LENGTH

13. HALSTEAD_LEVEL
14. HALSTEAD_PROG_TIME
15. HALSTEAD_VOLUME
16. NUM_OPERANDS
17. NUM_OPERATORS
18. NUM_UNIQUE_OPERANDS
19. NUM_UNIQUE_OPERATORS
20. CYCLOMATIC_COMPLEXITY
21. GLOBAL_DATA_DENSITY ✘ ✘
22. LOC_BLANK ✘
23. CALL_PAIRS ✘
24. CYCLOMATIC_DENSITY ✘
25. DECISION_COUNT ✘
26. DESIGN_DENSITY ✘
27. EDGE_COUNT ✘
28. ESSENTIAL_DENSITY ✘
29. CONDITION_COUNT ✘
30. GLOBAL_DATA_COMPLEXITY ✘ ✘ ✘
31. DECISION_DENSITY ✘ ✘
32. MAINTENANCE_SEVERITY ✘
33. MODIFIED_CONDITION_COUNT ✘
34. NUMBER_OF_LINES ✘
35. MULTIPLE_CONDITION_COUNT ✘
36. NORMALIZED_CYLOMATIC_COMPLEXITY ✘
37. NODE_COUNT ✘
38. PERCENT_COMMENTS ✘
39. PARAMETER_COUNT ✘

Software Defect Prediction Based on Stacked Contractive Autoencoder 293

Table 3: The feature description of 15 projects from the PROMISE data repository
1. Lines of Code (LOC) 11. Lack of Cohesion in Methods (LOCM)
2. Weighted Methods per Class (WMC) 12. Inheritance Coupling (IC)
3. Depth of Inheritance Tree (DIT) 13. Afferent Couplings (Ca)
4. Data Access Metric (DAM) 14. Coupling Between Methods (CBM)
5. Number of Children (NOC) 15. Efferent Couplings (Ce)
6. Measure of Aggregation (MOA) 16. Average Method Complexity (AMC)
7. Coupling between Object Classes (CBO) 17. Arithmetic mean value of CC (Avg_CC)
8. Measure of Functional Abstraction (MFA) 18. Greatest Value of CC (Max_CC)
9. Response for a Class (RFC) 19. Lack of Cohesion in Methods (LOCM3)
10. Cohesion Among Methods of Class (CAM) 20. Number of Public Methods (NPM)

5.2 Evaluation metrics
In this paper, we adopt seven widely used evaluation metrics–accuracy, precision, recall, F1,
pf, G-measure and MCC [Kondo, Bezemer, Kamei et al. (2019); Nam, Pan and Kim (2013);
He, Shu, Yang et al. (2012); Herbold, Trautsch and Grabowski (2018)] to evaluate the
models. These evaluation metrics can be defined based on confusion matrix, which lists all
four possible classification results, i.e., TP, FP, FN and TN, as shown in Tab. 4.

Table 4: Confusion matrix
 Positive (Predicted) Negative (Predicted)

True (Actual) TP FN
Flase (Actual) FP TN

Accuracy: The ratio of correctly predicted defect files to all files.

𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑟𝑟𝑎𝑎𝑎𝑎𝑦𝑦 = 𝑇𝑇𝑁𝑁+𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁+𝐹𝐹𝑁𝑁+𝑇𝑇𝑁𝑁

 . (19)

Precision: The ratio of correctly predicted defect files to all files predicted to be defective.

𝑝𝑝𝑟𝑟𝑔𝑔𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑎𝑎 = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁

 . (20)

Recall or pd (probability of detection): The ratio of correctly predicted defect files to all
truly defective files.

𝑟𝑟𝑔𝑔𝑎𝑎𝑎𝑎𝑙𝑙𝑙𝑙(𝑝𝑝𝑠𝑠) = 𝑇𝑇𝑁𝑁
𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁

 . (21)

F1: The harmonic means between precision and recall.

𝐹𝐹1 = 2×𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛×𝑟𝑟𝑒𝑒𝑝𝑝𝑟𝑟𝑙𝑙𝑙𝑙
𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛+𝑟𝑟𝑒𝑒𝑝𝑝𝑟𝑟𝑙𝑙𝑙𝑙

 . (22)

pf (probability of false alarm): The ratio of the number of non-defective instances that
are wrongly classified as defective to the total number of non-defective instances.

𝑝𝑝𝑓𝑓 = 𝐹𝐹𝑁𝑁
𝐹𝐹𝑁𝑁+𝑇𝑇𝑁𝑁

 . (23)

G-measure: The harmonic means of pd and 1-pf.

𝐺𝐺 −𝑠𝑠𝑔𝑔𝑎𝑎𝑠𝑠𝑛𝑛𝑟𝑟𝑔𝑔 = 2×𝑝𝑝𝑑𝑑×(1−𝑝𝑝𝑓𝑓)
𝑝𝑝𝑑𝑑+(1−𝑝𝑝𝑓𝑓) . (24)

294 CMC, vol.65, no.1, pp.279-308, 2020

MCC (Matthews correlation coefficient): The correlation between the actual and predicted
outputs which is a comprehensive evaluation by considering TP, TN, FP and FN.

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑇𝑇𝑁𝑁×𝑇𝑇𝑁𝑁−𝐹𝐹𝑁𝑁×𝐹𝐹𝑁𝑁
�(𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)(𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)(𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)(𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)

 . (25)

Except for pf, the larger the values of these metrics, the better the prediction performance.

5.3 Baseline methods
To verify the performance of SCAE and SMONGE, we conduct extensive experiments for
feature extraction and software defect prediction.
For feature extraction, we compare the deep neural network SCAE with six state-of-the-art
feature extraction methods, including Maximally Collapsing Metric Learning (MCML)
[Globerson and Roweis (2005)], Stochastic Neighbor Embedding (SNE) [Parviainen (2016)],
Manifold Charting (MC) [Saini, Rambli, Sulaiman et al. (2013)], Locality Preserving
Projection (LPP) [Lu, Wang, Zou et al. (2018)], Locally Linear Embedding (LLE) [Ji, Liu,
Cao et al. (2017)], Locally Linear Coordination (LLC) [Huang, Wang, Xu et al. (2009)].
For software defect prediction, we compare the SMONGE model with four classic defect
predictor, include Decision Tree (DT), K-Nearest Neighbor (KNN), Naive Bayes (NB),
Support Vector Machine (SVM). Since these four defect predictors all use features
extracted by SCAE, they are named as SDT, SKNN, SNB and SSVM respectively in this
paper, where S denotes SCAE.
In addition, we also compare SMONGE with the multi-objective NSGAII optimization
based the ELM predictor that does not use features extracted by SCAE, and the method is
named MONGE.

6 Experimental results
We introduce the experimental results by the following three research questions (RQ) in
the section.
RQ1: How about the performance of the deep neural network SCAE compared to six
state-of-the-art feature extraction methods in software defect prediction?
To validate the effectiveness of the deep semantic features extracted by SCAE, we compare
the SCAE with six state-of-the-art feature extraction methods with the same defect
predictor-the multi-objective NSGAII optimization based ELM, including MCML, SNE,
MC, LPP, LLE and LLC. We conduct extensive experiments across 20 projects in terms
of F1, pf, G-measure and MCC.
Tabs. 5-8 show the F1, pf, G-measure and MCC of SCAE and six state-of-the-art feature
extraction methods across all 20 projects. Note that the best value of each project is in bold
font. From Tabs. 5, 7 and 8, we can observe that our method SCAE achieves the best
average performance in terms of F1, G-measure and MCC. More specifically, the average
F1 (0.8088) by SCAE achieves improvements between 4.62% (for SNE) and 28.75% (for
LLC) with an average improvement of 13.25%, the average G-measure (0.7675) by SCAE
yields improvements between 2.51% (for SNE) and 42.95% (for MC) with an average
improvement of 21.99% and the average MCC (0.5694) by SCAE gains improvements
between 6.61% (for SNE) and 87.73% (for MC) with an average improvement of 43.39%.

Software Defect Prediction Based on Stacked Contractive Autoencoder 295

In addition, from Tab. 6, we can find that our method SCAE is not ideal in terms of pf, but
it is better than MCML, MC and LLE (the smaller the pf, the better the performance).
Fig. 3 depicts the box-plots of four metrics for our method SCAE and six feature extraction
methods across all 20 projects. From Figs. 3(a), 3(c) and 3(d), we can find that the median
values achieved by SCAE are higher than those achieved by six feature extraction methods
from the point of F1, G-measure and MCC, respectively, which can fully demonstrate the
superiority of our method SCAE, and the cases are consistent with the observations in
Tabs. 5, 7 and 8. Moreover, the lowest F1, G-measure and MCC by SCAE are higher than
the median values by MCML, MC, LLE and LLC, respectively.

Conclusion: Our method SCAE outperforms six state-of-the-art feature extraction
methods in terms of F1, G-measure and MCC. The SCAE yields the average 13.25%,
21.99% and 43.39% performance improvements compared with six feature extraction
methods across all 20 projects in terms of F1, G-measure and MCC.

Table 5: The F1 for our method SCAE compared with six feature extraction methods
Datasets MCML SNE MC LPP LLE LLC SCAE

KC2 0.7368 0.7848 0.4727 0.8293 0.6667 0.5806 0.7857
MC1 0.7098 0.6000 0.6957 0.7939 0.8868 0.7219 0.7867
MC2 0.6957 0.7619 0.7692 0.6667 0.7000 0.5000 0.7273
PC1 0.8834 0.8662 0.7536 0.6667 0.8929 0.4554 0.8606
PC2 0.7727 0.9221 0.8917 0.6000 0.915 0.661 0.8659

ant-1.4 0.6857 0.7879 0.7500 0.7273 0.7273 0.7179 0.7647
ant-1.5 0.7385 0.9180 0.7273 0.7500 0.8000 0.6957 0.8197
ant-1.6 0.8060 0.8254 0.7595 0.6792 0.7606 0.7467 0.8438
ant-1.7 0.6719 0.7742 0.7114 0.7778 0.6957 0.7000 0.8472
ivy-1.4 0.6500 0.7317 0.5263 0.6471 0.7568 0.6486 0.8000
ivy-2.0 0.7385 0.7931 0.4545 0.7241 0.7826 0.7077 0.7797
jedit-4.0 0.7018 0.7500 0.6875 0.7241 0.7273 0.3636 0.7719
jedit-4.1 0.7660 0.6522 0.5833 0.7111 0.7742 0.5143 0.8163
jedit-4.2 0.7945 0.8205 0.5000 0.7353 0.8605 0.2917 0.8354
jedit-4.3 0.8807 0.9204 0.9369 0.9174 0.8548 0.8932 0.8952
poi-2.0 0.5965 0.7692 0.5217 0.8525 0.7500 0.7606 0.8308
prop-6 0.6569 0.7869 0.7344 0.8305 0.6667 0.8130 0.7759

xerces-1.2 0.6301 0.8276 0.7257 0.7765 0.7273 0.5867 0.8471
xerces-1.3 0.7619 0.8378 0.6383 0.8611 0.6667 0.6190 0.7857
xerces-init 0.6316 0.3333 0.5882 0.7000 0.6364 0.5882 0.7368

Avg 0.7254 0.7731 0.6713 0.7485 0.7624 0.6282 0.8088

296 CMC, vol.65, no.1, pp.279-308, 2020

Table 6: The pf for our method SCAE compared with six feature extraction methods
Datasets MCML SNE MC LPP LLE LLC SCAE

KC2 0.4651 0.1860 0.0465 0.186 0.8837 0.0930 0.2558
MC1 0.4872 0.6250 0.2359 0.2205 0.2154 0.2308 0.3179
MC2 0.6667 0.3333 0.8333 0.1667 0.3333 0.1667 0.5000
PC1 0.2830 0.2453 0.1887 0.6250 0.3208 0.0377 0.3396
PC2 0.4865 0.1486 0.2027 0.6250 0.1486 0.0946 0.2838

ant-1.4 0.6154 0.3846 0.3846 0.4615 0.6250 0.7692 0.4615
ant-1.5 0.5000 0.1667 0.8333 0.2500 0.4167 0.0417 0.2917
ant-1.6 0.4000 0.2500 0.8500 0.1500 0.6000 0.7500 0.2500
ant-1.7 0.3673 0.1837 0.5918 0.2041 0.7500 0.2245 0.3265
ivy-1.4 0.3333 0.2963 0.3704 0.1852 0.1852 0.2593 0.2222
ivy-2.0 0.3889 0.2222 0.1944 0.2778 0.4167 0.4167 0.2500

jedit-4.0 0.5455 0.2273 0.7727 0.5455 0.7727 0.0909 0.4545
jedit-4.1 0.1818 0.2727 0.4091 0.1818 0.5909 0.0455 0.1818
jedit-4.2 0.1667 0.2500 0.2083 0.1250 0.3750 0.0417 0.2500
jedit-4.3 0.1818 0.1818 0.1364 0.1364 0.4091 0.0909 0.1136
poi-2.0 0.3846 0.3846 0.1538 0.1923 0.7692 0.5385 0.3077
prop-6 0.5574 0.2623 0.3770 0.1803 0.6250 0.2459 0.2131

xerces-1.2 0.2500 0.2813 0.9375 0.3125 0.6250 0.3438 0.2188
xerces-1.3 0.4048 0.1905 0.6905 0.1429 0.8750 0.5476 0.3810
xerces-init 0.5000 0.1250 0.3750 0.5000 0.7500 0.3750 0.3750

Avg 0.4083 0.2608 0.4395 0.2834 0.5343 0.2702 0.2997

RQ2: How about the prediction performance of the proposed multi-objective
SMONGE model compared to four classic defect predictors with the same feature
extraction method SCAE?
Our multi-objective SMONGE model combines the feature extraction method SCAE and
the ELM optimized by the multi-objective NSGAII algorithm. Since we adopt the ELM
optimized by the multi-objective NSGAII algorithm as the defect predictor in this paper,
this question is designed to evaluate the effectiveness of the SMONGE model compared
with four classic defect predictors with the same feature extraction method SCAE,
including SDT, SKNN, SNB and SSVM.
Tabs. 9-12 show the F1, pf, G-measure and MCC of the SMONGE model compared with
those of four classic predictors across all 20 projects, respectively. Note that the best value
of each project is in bold font. From Tabs. 9, 11 and 12, we can find that the SMONGE model
can achieve the best average performance in terms of F1, G-measure and MCC (expect for
SSVM) across all 20 projects. More specifically, the average F1 (0.8088) by SMONGE
achieves improvements between 3.75% (for SKNN) and 19.88% (for SNB) with an average
improvement of 9.09% and the average G-measure (0.7675) by SMONGE yields
improvements between 0.67% (for SDT) and 16.87% (for SNB) with an average
improvement of 4.84% compared with four classic predictors with the same feature

Software Defect Prediction Based on Stacked Contractive Autoencoder 297

extraction method SCAE. From the point of MCC, the SMONGE model can gain an
average improvement of 14.79% compared with four classic predictors, and it is only 0.2%
worse than SSVM. Moreover, from Tab. 10, the SMONGE is not the best predictor from
the point of pf, but it is only worse than SDT and SSVM.

Table 7: The G-measure for our method SCAE compared with six feature extraction methods
Datasets MCML SNE MC LPP LLE LLC SCAE

KC2 0.6639 0.7940 0.4848 0.8316 0.2078 0.6015 0.7825
MC1 0.6309 0.4800 0.7081 0.7916 0.8671 0.7307 0.7591
MC2 0.4571 0.6957 0.2817 0.6593 0.6512 0.5063 0.5926
PC1 0.8162 0.8188 0.7424 0.506 0.8046 0.4605 0.7738
PC2 0.6653 0.9138 0.8761 0.4800 0.9078 0.6778 0.8298

ant-1.4 0.5195 0.7197 0.6957 0.6437 0.5275 0.3700 0.6642
ant-1.5 0.6234 0.8946 0.2843 0.7368 0.7068 0.7003 0.7777
ant-1.6 0.7013 0.7800 0.2586 0.6770 0.5427 0.3889 0.7941
ant-1.7 0.6372 0.7631 0.5385 0.7623 0.3902 0.6933 0.7742
ivy-1.4 0.6933 0.7631 0.5903 0.6984 0.7959 0.7018 0.8296
ivy-2.0 0.7243 0.8131 0.5074 0.7490 0.7368 0.6925 0.7977
jedit-4.0 0.5797 0.7454 0.3612 0.5899 0.3675 0.3797 0.6735
jedit-4.1 0.7660 0.6575 0.5750 0.7182 0.5737 0.5228 0.8090
jedit-4.2 0.7754 0.7742 0.5089 0.7292 0.7460 0.2960 0.7857
jedit-4.3 0.8597 0.8923 0.9186 0.9018 0.7429 0.8880 0.8866
poi-2.0 0.5900 0.7080 0.5432 0.8361 0.3750 0.6102 0.7826
prop-6 0.5637 0.7801 0.7044 0.8321 0.5060 0.8045 0.7813

xerces-1.2 0.6330 0.7819 0.1175 0.7333 0.5275 0.5826 0.8174
xerces-1.3 0.7210 0.8459 0.4548 0.8712 0.2192 0.5623 0.7474
xerces-init 0.5714 0.3544 0.5882 0.6087 0.3784 0.5882 0.6931

Avg 0.6596 0.7487 0.5369 0.7178 0.5787 0.5878 0.7675

Fig. 4 shows the box-plots of four metrics for our SMONGE model and four classic
predictors with the same feature extraction method SCAE across all 20 projects. In Figs. 4
(a), 4(c) and 4(d), the median value by SMONGE is higher than that of four predictors in
terms of F1, G-measure and MCC (expect for SSVM in terms of G-measure and MCC),
respectively. In particular, the median value by SMONGE is higher than the maximum
value of SNB in terms of F1, G-measure and MCC. In addition, we can observe that the
median pf by SMONGE is only higher than that of SKNN and SNB respectively from Fig.
4(b), which also shows that the SMONGE is not good enough in terms of pf.
Conclusion: Our multi-objective SMONGE model performs better than four classic
predictors in terms of F1, G-measure and MCC (expect for SSVM) on average. The
SMONGE achieves the average 9.09%, 4.84% and 14.79% performance improvements
compared with four classic defect predictors across all 20 projects in terms of F1, G-
measure and MCC.

298 CMC, vol.65, no.1, pp.279-308, 2020

Table 8: The MCC for our method SCAE compared with six feature extraction methods
Datasets MCML SNE MC LPP LLE LLC SCAE

KC2 0.4332 0.5896 0.3616 0.6636 0.1761 0.4041 0.5698
MC1 0.3491 0.0435 0.4263 0.5838 0.7666 0.4664 0.5459
MC2 0.0636 0.3825 0.1124 0.3678 0.2901 0.2066 0.2273
PC1 0.6975 0.6610 0.4880 0.1674 0.7246 0.3297 0.6325
PC2 0.5058 0.8438 0.7801 0.0435 0.8285 0.4812 0.7273

ant-1.4 0.2038 0.5017 0.4242 0.3523 0.3105 0.2339 0.4326
ant-1.5 0.3493 0.8130 0.2251 0.4721 0.5118 0.5439 0.5805
ant-1.6 0.4602 0.5577 0.1444 0.409 0.2739 0.1607 0.5938
ant-1.7 0.2715 0.5264 0.2162 0.521 0.1818 0.399 0.6105
ivy-1.4 0.3811 0.5263 0.1826 0.4359 0.5878 0.4041 0.6534
ivy-2.0 0.5058 0.6233 0.1961 0.4949 0.6124 0.4402 0.5958

jedit-4.0 0.2725 0.4918 0.1424 0.3214 0.2800 0.1979 0.4554
jedit-4.1 0.5382 0.3285 0.1506 0.4624 0.4500 0.3835 0.6171
jedit-4.2 0.5409 0.5422 0.1741 0.4880 0.5922 0.1952 0.5706
jedit-4.3 0.7295 0.8192 0.8577 0.8133 0.6642 0.7740 0.7718
poi-2.0 0.1817 0.4623 0.2717 0.6765 0.3721 0.4072 0.6102
prop-6 0.2312 0.5667 0.4401 0.6643 0.1674 0.6186 0.5627

xerces-1.2 0.2988 0.5844 0.0972 0.4752 0.3105 0.1795 0.6410
xerces-1.3 0.5274 0.6924 0.1961 0.7403 0.0215 0.2021 0.5816
xerces-init 0.1690 0.1273 0.1806 0.2901 0.0327 0.1806 0.4085

Avg 0.3855 0.5341 0.3033 0.4721 0.4077 0.3604 0.5694

RQ2a: For the novel multi-objective SMONGE model, what is the minimum output
weight norm of ELM while achieving the best accuracy on each project?
For the proposed multi-objective SMONGE model, the model utilizes the multi-objective
NSGAII algorithm to optimize two objectives of the advanced ELM predictor based on
state-of-the-art Pareto optimal solutions. One objective is to maximize the model
performance, which refers to the benefit of the prediction model. Another objective is to
minimize the output weight norm, which is related to the cost of the prediction model.
Therefore, we show the best classification accuracy and the minimum output weight norm
of ELM gained by the multi-objective SMONGE model on each project in Tab. 13.

Software Defect Prediction Based on Stacked Contractive Autoencoder 299

(a) F1 (b) pf

(c) G-measure (d) MCC

Figure 3: The box-plots (the traditional mode) for our method SCAE compared with six
feature extraction methods in terms of four metrics

300 CMC, vol.65, no.1, pp.279-308, 2020

Table 9: The F1 for SMONGE compared with four classic defect predictors
Datasets SDT SKNN SNB SSVM SMONGE

KC2 0.7752 0.7757 0.7708 0.8177 0.7857
MC1 0.7510 0.7928 0.6405 0.7000 0.7867
MC2 0.7663 0.7023 0.5000 0.6666 0.7273
PC1 0.7766 0.7325 0.6521 0.8167 0.8606
PC2 0.7735 0.7567 0.6041 0.7999 0.8659

ant-1.4 0.7647 0.7500 0.6666 0.8162 0.7647
ant-1.5 0.7927 0.8372 0.7428 0.8165 0.8197
ant-1.6 0.7183 0.8157 0.7341 0.8275 0.8438
ant-1.7 0.7531 0.8134 0.7613 0.8279 0.8472
ivy-1.4 0.7959 0.7914 0.7422 0.8045 0.8000
ivy-2.0 0.8135 0.8015 0.7333 0.6700 0.7797

jedit-4.0 0.7353 0.7520 0.7594 0.6419 0.7719
jedit-4.1 0.7472 0.7173 0.7123 0.7916 0.8163
jedit-4.2 0.8000 0.8259 0.6666 0.8223 0.8354
jedit-4.3 0.7288 0.8915 0.6046 0.8162 0.8952
poi-2.0 0.8108 0.8108 0.6041 0.5688 0.8308
prop-6 0.7637 0.7141 0.5322 0.4904 0.7759

xerces-1.2 0.8375 0.8345 0.6212 0.7967 0.8471
xerces-1.3 0.7750 0.7734 0.7654 0.7732 0.7857
xerces-init 0.7766 0.7023 0.6800 0.7000 0.7368

Avg 0.7728 0.7796 0.6747 0.7482 0.8088

RQ3: Do the deep semantic features extracted by the deep neural network SCAE (for
SMONGE) have advantage in prediction performance compared with the original
defect features without SCAE (for MONGE)?
Prior researches demonstrate that the performance of a prediction model is usually
determined by only a few features [Menzies, Greenwald and Frank (2007)]. Feature
extraction technique is an effective means to alleviate this problem by constructing new,
combined features from the original features. We adopt the deep neural network SCAE to
extract deep semantic features of software defects in this paper. In this experiment, we
compare the deep semantic features extracted by SCAE (for SMONGE) with the original
defect features without SCAE (for MONGE), so as to validate the effect of the SCAE on
ELM based on the multi-objective NSGAII optimization.
Fig. 5 presents the average precision, recall, F1, pf, G-measure and MCC of the features
extracted by SCAE (for SMONGE) compared with the original features without feature
extraction method SCAE (for MONGE) with the same defect predictor-the multi-objective
NSGAII optimization based ELM on the NASA and PROMISE, respectively. From Fig. 5,
we can observe that the features extracted by SCAE perform better than the original features
without SCAE on all evaluation indicators. More specifically, the average precision
(0.7550), recall (0.8657), F1 (0.8052), pf (0.3394), G-measure (0.7476) and MCC (0.5406)
by SCAE yield improvement 3.20%, 0.16%, 1.86%, 10.57%, 3.85% and 7.03% compared

Software Defect Prediction Based on Stacked Contractive Autoencoder 301

with the original features without feature extraction method SCAE on NASA respectively,
and the average precision (0.7718), recall (0.8580), F1 (0.8100), pf (0.2865), G-measure
(0.7743) and MCC (0.5790) by SCAE achieve improvement 4.23%, 7.67%, 6.03%, 8.60%,
5.94% and 19.06% compared with the original features without feature extraction method
SCAE on PROMISE respectively.
Conclusion: Deep semantic features extracted by deep neural network SCAE (for SMONGE)
can boost the prediction performance of ELM based on the multi-objective NSGAII
optimization compared with the original defect features without SCAE (for MONGE).

Table 10: The pf for SMONGE compared with four classic defect predictors
Datasets SDT SKNN SNB SSVM SMONGE

KC2 0.1895 0.1975 0.5000 0.2526 0.2558
MC1 0.3259 0.3109 0.3393 0.1339 0.3179
MC2 0.2340 0.3875 0.1250 0.2500 0.5000
PC1 0.1702 0.3875 0.1489 0.1422 0.3396
PC2 0.2127 0.3888 0.1333 0.1087 0.2838

ant-1.4 0.1702 0.3809 0.1772 0.1450 0.4615
ant-1.5 0.3151 0.3090 0.3389 0.0852 0.2917
ant-1.6 0.3238 0.2772 0.2500 0.0535 0.2500
ant-1.7 0.2966 0.2520 0.2222 0.1016 0.3265
ivy-1.4 0.3260 0.3025 0.6562 0.1739 0.2222
ivy-2.0 0.2737 0.3218 0.5102 0.1399 0.2500
jedit-4.0 0.3285 0.3582 0.3421 0.1363 0.4545
jedit-4.1 0.2745 0.3269 0.3000 0.1290 0.1818
jedit-4.2 0.3050 0.3121 0.2181 0.1082 0.2500
jedit-4.3 0.3089 0.1908 0.1898 0.1450 0.1136
poi-2.0 0.2241 0.2372 0.5000 0.0815 0.3077
prop-6 0.2139 0.3715 0.3658 0.0706 0.2131

xerces-1.2 0.2361 0.1518 0.4615 0.2146 0.2188
xerces-1.3 0.2577 0.2676 0.3584 0.1433 0.3810
xerces-init 0.1702 0.3875 0.1612 0.3846 0.3750

Avg 0.2578 0.3060 0.3149 0.1500 0.2997

Table 11: The G-measure for SMONGE compared with four classic defect predictors
Datasets SDT SKNN SNB SSVM SMONGE

KC2 0.7801 0.7769 0.6527 0.8017 0.7825
MC1 0.7300 0.7650 0.6457 0.7155 0.7591
MC2 0.7555 0.6768 0.5308 0.75 0.5926
PC1 0.7751 0.6966 0.6648 0.8191 0.7738
PC2 0.7657 0.7196 0.6272 0.8060 0.8298

ant-1.4 0.7647 0.7188 0.6903 0.8197 0.6642
ant-1.5 0.7725 0.8057 0.7428 0.8217 0.7777

302 CMC, vol.65, no.1, pp.279-308, 2020

ant-1.6 0.7125 0.7892 0.7467 0.8368 0.7941
ant-1.7 0.7439 0.8060 0.7739 0.8353 0.7742
ivy-1.4 0.7656 0.7771 0.4974 0.8104 0.8296
ivy-2.0 0.7862 0.7644 0.6248 0.6878 0.7977

jedit-4.0 0.7196 0.7388 0.7352 0.6573 0.6735
jedit-4.1 0.7566 0.7250 0.7207 0.8117 0.8090
jedit-4.2 0.7608 0.7862 0.6946 0.8273 0.7857
jedit-4.3 0.7233 0.8789 0.6334 0.8197 0.8866
poi-2.0 0.8108 0.8108 0.5631 0.5855 0.7826
prop-6 0.7676 0.6870 0.5838 0.5060 0.7813

xerces-1.2 0.8185 0.8443 0.5728 0.7997 0.8174
xerces-1.3 0.7644 0.7639 0.7292 0.7804 0.7474
xerces-init 0.7751 0.6768 0.7043 0.7225 0.6931

Avg 0.7624 0.7604 0.6567 0.7607 0.7675

7 Threats to validity
In this section, we introduce the potential threats to validity of our method, including
internal validity, external validity and construct validity.

7.1 Internal validity
Internal validity is mainly concerned with uncontrolled internal factors that may affect our
experimental results, such as errors in the experiment. We check all experiment process
carefully, but there may still be errors in the experiment that we don’t notice.

7.2 External validity
External validity involves that whether our experimental results can be generalized to other
software subjects. To guarantee the representative of software subjects used in this paper, we
use 15 projects from the PROMISE data repository and 5 projects from the NASA data
repository, which are commonly used projects in previous software defect prediction studies
[Tantithamthavorn, McIntosh, Hassan et al. (2016)]; Chen and Ma (2015); Hosseini, Turhan
and Gunarathna (2019); Peters, Menzies and Layman (2015)]. Moreover, these software
projects belong to different application fields and cover a long time.

Table 12: The MCC for SMONGE compared with four classic defect predictors
Datasets SDT SKNN SNB SSVM SMONGE

KC2 0.5633 0.5556 0.4899 0.6164 0.5698
MC1 0.4739 0.5573 0.2922 0.4916 0.5459
MC2 0.5099 0.3725 0.2971 0.4780 0.2273
PC1 0.5563 0.4279 0.4110 0.6425 0.6325
PC2 0.5310 0.4992 0.3869 0.6331 0.7273

ant-1.4 0.5388 0.4862 0.4299 0.6434 0.4326
ant-1.5 0.5786 0.6766 0.5088 0.6683 0.5805

Software Defect Prediction Based on Stacked Contractive Autoencoder 303

ant-1.6 0.4298 0.5997 0.4930 0.7171 0.5938
ant-1.7 0.4942 0.6243 0.5472 0.6846 0.6105
ivy-1.4 0.5716 0.5801 0.2982 0.6220 0.6534
ivy-2.0 0.5901 0.5664 0.3810 0.4516 0.5958
jedit-4.0 0.4490 0.5170 0.4976 0.4143 0.4554
jedit-4.1 0.5144 0.4571 0.4419 0.6375 0.6171
jedit-4.2 0.5434 0.6231 0.4129 0.6672 0.5706
jedit-4.3 0.4504 0.7790 0.3458 0.6434 0.7718
poi-2.0 0.6249 0.6280 0.1460 0.3988 0.6102
prop-6 0.5364 0.3896 0.1744 0.3402 0.5627

xerces-1.2 0.6512 0.6881 0.1498 0.5995 0.6410
xerces-1.3 0.5311 0.5319 0.4962 0.5777 0.5816
xerces-init 0.5563 0.3725 0.4604 0.4812 0.4085

Avg 0.5347 0.5466 0.3830 0.5704 0.5694

Table 13: The best classification accuracy and the minimum output weight norm of ELM
achieved by the multi-objective SMONGE model

Datasets Accuracy Norm Datasets Accuracy Norm
KC2 0.7831 3.9937 ivy-2.0 0.7937 14.0805
MC1 0.7686 34.4994 jedit-4.0 0.7234 23.3308
MC2 0.6471 145.5707 jedit-4.1 0.8085 60.2265
PC1 0.8217 1.7726e+05 jedit-4.2 0.7969 136.0188
PC2 0.8493 1.3278e+03 jedit-4.3 0.8866 93.3310

ant-1.4 0.7143 731.5775 poi-2.0 0.8036 299.3705
ant-1.5 0.7925 9.9551 prop-6 0.7815 1.2676e+03
ant-1.6 0.8077 3.9052 xerces-1.2 0.8243 61.6106
ant-1.7 0.8103 3.6909 xerces-1.3 0.7662 43.7408
ivy-1.4 0.8222 4.6603 xerces-init 0.7059 2.6412

(a) F1 (b) pf

304 CMC, vol.65, no.1, pp.279-308, 2020

(c) G-measure (d) MCC

Figure 4: The box-plots (the compact mode) for our proposed SMONGE compared with
four classic predictors in terms of four metrics

(a) NASA (b) PROMISE

Figure 5: The average performance comparison of SMONGE with SCAE and without
SCAE on NASA and PROMISE datasets

7.3 Construct validity
Construct validity is related to whether the evaluation metrics used in our study reflect the
real-world situation. To minimize the threat, we use seven evaluation metrics, including
accuracy, precision, recall, F1, pf, G-measure and MCC which have been widely used in
recent software defect prediction studies [Kondo, Bezemer, Kamei et al. (2019); Nam, Pan
and Kim (2013); He, Shu, Yang et al. (2012); Herbold, Trautsch and Grabowski (2018); Zhu,
Zhang, Ying et al. (2020)], so we believe that the construct validity should be acceptable.

8 Conclusion
In this work, we apply an advanced feature extraction method and a novel multi-objective
optimization model to software defect prediction. First, we utilize an advanced deep neural

Software Defect Prediction Based on Stacked Contractive Autoencoder 305

network SCAE to extract the robust deep semantic features, which has stronger
discrimination capacity for different classes. Second, we propose a novel multi-objective
defect prediction model called SMONGE, which leverages the multi-objective NSGAII
algorithm to optimize two objectives of the advanced ELM predictor based on state-of-the-
art Pareto optimal solutions. One objective is to maximize the model performance, which
refers to the benefit of the prediction model. Another objective is to minimize the output
weight norm, which is related to the cost of the prediction model. We conduct extensive
experiments for feature extraction and defect prediction across 20 software defect projects
from large open source datasets, and the experimental results verify that the effectiveness
of SCAE and SMONGE.
In future work, to verify generalization capability and practicability of SCAE and
SMONGE, we will evaluate SCAE and SMONGE in more open source and commercial
projects. In addition, we plan to leverage the multi-objective NSGAII algorithm to
optimize more classifiers in software defect prediction.

Funding Statement: This work is supported in part by the National Science Foundation
of China (Grant Nos. 61672392, 61373038), and in part by the National Key Research and
Development Program of China (Grant No. 2016YFC1202204).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report
regarding the present study.

References
Abaei, G.; Rezaei, Z.; Selamat, A. (2013): Fault prediction by utilizing self-organizing
map and threshold. IEEE International Conference on Control System, Computing and
Engineering, pp. 465-470.
Chawla, N. V.; Bowyer, K. W.; Hall, L. O.; Kegelmeyer, W. P. (2002): SMOTE:
synthetic minority over-sampling technique. Journal of Artificial Intelligence Research,
vol. 16, no. 1, pp. 321-357.
Chen, M.; Ma, Y. (2015): An empirical study on predicting defect numbers. Proceedings
of the International Conference on Software Engineering and Knowledge Engineering, pp.
397-402.
Gao, K.; Khoshgoftaar, T. M.; Wang, H. J.; Seliya, N. (2011): Choosing software
metrics for defect prediction: an investigation on feature selection techniques. Software:
Practice and Experience, vol. 41, no. 5, pp. 579-606.
Globerson, A.; Roweis, S. T. (2005): Metric learning by collapsing classes. Annual
Conference on Neural Information Processing Systems, pp. 451-458.
Gu, X. D; Zhang, H. Y.; Zhang, D. M.; Kim, S. H. (2016): Deep API learning.
Proceedings of the ACM SIGSOFT International Symposium on Foundations of Software
Engineering, pp. 631-642.
Guo, J.; Cheng, J.; Cleland-Huang, J. (2017): Semantically enhanced software
traceability using deep learning techniques. Proceedings of the International Conference
on Software Engineering, pp. 3-14.

306 CMC, vol.65, no.1, pp.279-308, 2020

He, Z.; Shu, F.; Yang, Y.; Li, M.; Wang, Q. (2012): An investigation on the feasibility of
cross-project defect prediction. Automated Software Engineering, vol. 19, no. 2, pp. 167-199.
Herbold, S.; Trautsch, A.; Grabowski, J. (2018): A comparative study to benchmark
cross-project defect prediction approaches. IEEE Transactions on Software Engineering,
vol. 44, no. 9, pp. 811-833.
Hosseini, S.; Turhan, B.; Gunarathna, D. (2019): A systematic literature review and
meta-analysis on cross project defect prediction. IEEE Transactions on Software
Engineering, vol. 45, no. 2, pp. 111-147.
Huang, G. B.; Chen, L.; Siew, C. K. (2006): Universal approximation using incremental
constructive feedforward networks with random hidden nodes. IEEE Transactions on
Neural Networks, vol. 17, no. 4, pp. 879-892.
Huang, G. B.; Zhou, H. M.; Ding, X. J.; Zhang, R. (2012) Extreme learning machine
for regression and multiclass classification. IEEE Transactions on Systems Man &
Cybernetics, vol. 42, no. 2, pp. 513-529.
Huang, G.; Zhu, Q.; Siew, C. (2006): Extreme learning machine: theory and applications,
Neurocomputing, vol. 70, no. 1, pp. 489-501.
Huang, Q. H.; Wang, H. J.; Xu, Q.; Bi, W. Z. (2009): Semi-supervised learning with
locally linear coordination for face recognition. Proceedings of the International
Conference on Natural Computation, pp. 255-259.
Ji, R. R.; Liu, H.; Cao, L. J.; Liu, D.; Wu, Y. J. et al. (2017): toward optimal manifold
hashing via discrete locally linear embedding. IEEE Transactions on Image Processing,
vol. 26, no. 11, pp. 5411-5420.
Jiarpakdee, J.; Tantithamthavorn, C.; Ihara, A.; Matsumoto, K. (2016): A study of
redundant metrics in defect prediction datasets. Proceedings of the International
Symposium on Software Reliability Engineering Workshops, pp. 51-52.
Khoshgoftaar, T. M.; Gao, K.; Napolitano, A. (2012): An empirical study of feature
ranking techniques for software quality prediction. International Journal of Software
Engineering and Knowledge Engineering, vol. 22, no. 2, pp. 161-183.
Kondo, M.; Bezemer, C. P.; Kamei, Y.; Ahmed, E. H.; Osamu, M. (2019): The impact
of feature reduction techniques on defect prediction models. Empirical Software
Engineering, vol. 24, no. 4, pp. 1925-1963.
Krizhevsky, A.; Sutskever, I.; Hinton, G. E. (2012): Imagenet classification with deep
convolutional neural networks. Annual Conference on Neural Information Processing
Systems, pp. 1106-1114.
Liu, M.; Miao, L.; Zhang, D. (2014): Two-stage cost-sensitive learning for software
defect prediction. IEEE Transactions on Reliability, vol. 63, no. 2, pp. 676-686.
Lu, G. F.; Wang, Y.; Zou, J.; Wang, Z. Q. (2018): Matrix exponential based
discriminant locality preserving projections for feature extraction. Neural Networks, vol.
97, no. 1, pp. 127-136.
Lu, H.; Kocaguneli, E.; Cukic, B. (2014): Defect prediction between software versions
with active learning and dimensionality reduction. IEEE 25th International Symposium on
Software Reliability Engineering, pp. 312-322.

Software Defect Prediction Based on Stacked Contractive Autoencoder 307

Majdi, M. M.; Seyedali, M. (2017): Hybrid whale optimization algorithm with simulated
annealing for feature selection. Neurocomputing, vol. 260, no. 10, pp. 302-312.
Marco, D. A.; Michele, L.; Romain, R. (2010): An extensive comparison of bug
prediction approaches. Proceedings of the 7th International Conference on Mining
Software Repositories, pp. 31-41.
Menzies, T.; Greenwald, J.; Frank, A. (2007): Data mining static code attributes to learn
defect predictors. IEEE Transactions on Software Engineering, vol. 33, no. 1, pp. 2-13.
Mohamed, A.; Dahl, G. E.; Hinton, G. E. (2012): Acoustic modeling using deep belief
networks. IEEE Transactions on Audio, Speech, and Language Processing, vol. 20, no.
1, pp. 14-22.
Nam, J.; Pan, S. J.; Kim, S. (2013): Transfer defect learning. Proceedings of the 2013
International Conference on Software Engineering, pp. 382-391.
Ni, C.; Chen, X.; Wu, F. F.; Shen, Y. X.; Gu, Q. (2019): An empirical study on pareto
based multi-objective feature selection for software defect prediction. Journal of Systems
and Software, vol. 152, no. 6, pp. 215-238.
Ning, L. V.; Chen, C.; Tie, Q.; Arun, K. S. (2018): Deep learning and superpixel feature
extraction based on contractive autoencoder for change detection in SAR images. IEEE
Transactions on Industrial Informatics, pp. 5530-5538.
Oh, B. D.; Song, H. J.; Kim, J. D.; Park, C. Y.; Kim, Y. S. (2019): Predicting
concentration of PM10 using optimal parameters of deep neural network. Intelligent
Automation and Soft Computing, vol. 25, no. 2, pp. 343-350.
Parviainen, E. (2016): A graph-based N-body approximation with application to
stochastic neighbor embedding. Neural Networks, vol. 75, no. 1, pp. 1-11.
Peters, F.; Menzies, T.; Layman, L. (2015): Lace2: better privacy-preserving data
sharing for cross project defect prediction. Proceedings of the International Conference on
Software Engineering, pp. 801-811.
Rathore, S. S.; Gupta, A. (2014): A comparative study of feature-ranking and feature-
subset selection techniques for improved fault prediction. Proceedings of the 7th India
Software Engineering Conference, pp. 1-10.
Ren, J.; Qin, K.; Ma, Y.; Luo, G. (2014): On software defect prediction using machine
learning. Journal of Applied Mathematics, vol. 2014, no. 1, pp. 1-8.
Rifai, S.; Vincent, P.; Muller, X.; Xavier, G.; Yoshua, B. (2011): Contractive auto-
encoders: explicit invariance during feature extraction. ICML, pp. 833-840.
Saini, S.; Rambli, D. R.; Sulaiman, S. B.; Zakaria, M. N. (2013): Human pose tracking
in low-dimensional subspace using manifold learning by charting. IEEE International
Conference on Signal and Image Processing Applications, pp. 258-263.
Tantithamthavorn, C.; McIntosh, S.; Hassan, A. E.; Matsumoto, K. (2017): An
empirical comparison of model validation techniques for defect prediction models. IEEE
Transactions on Software Engineering, vol. 43, no. 1, pp. 1-18.
Tantithamthavorn, C.; McIntosh, S.; Hassan, A. E.; Matsumoto, K. (2016):
Automated parameter optimization of classification techniques for defect prediction

308 CMC, vol.65, no.1, pp.279-308, 2020

models. Proceedings of the 38th International Conference on Software Engineering, pp.
321-332.
Wang, J. J.; Cui, Q.; Wang, S.; Wang, Q. (2017): Domain adaptation for test report
classification in crowdsourced testing. Proceedings of the International Conference on
Software Engineering, pp. 83-92.
Wang, S.; Liu, T. Y.; Tan, L. (2016): Automatically learning semantic features for defect
prediction. IEEE/ACM 38th IEEE International Conference on Software Engineering, pp.
297-308.
Witten, I. H.; Frank, E.; Hall, M. A. (2011): Data mining: practical machine learning
tools and techniques, third edition. ACM Sigmod Record, vol. 31, no. 1, pp. 76-77.
Xu, B. W.; Ye, D. H.; Xing, Z. C.; Xia. X.; Chen, G. B. et al. (2016): Predicting
semantically linkable knowledge in developer online forums via convolutional neural
network. Proceedings of the International Conference on Automated Software
Engineering, pp. 51-62.
Xu, Z.; Liu, J.; Luo, X.; Yang, Z. J.; Zhang Y. F. et al. (2018): Software defect
prediction based on kernel PCA and weighted extreme learning machine. Information and
Software Technology, vol. 106, no. 2, pp. 182-200.
Xu, Z.; Liu, J.; Yang, Z.; An, G.; Jia, X. (2016): The impact of feature selection on defect
prediction performance: an empirical comparison. Proceedings of the 27th International
Symposium on Software Reliability Engineering, pp. 309-320.
Yang, X. L.; David, L.; Zhang, Y.; Sun, J. L. (2015): Deep learning for just-in-time
defect prediction. Proceedings of the IEEE International Conference on Software Quality,
Reliability and Security, pp. 17-26.
Yasutaka, K.; Takafumi, F.; Shane, M.; Kazuhiro, Y.; Naoyasu, U. et al. (2016):
Studying just-in-time defect prediction using cross-project models. Empirical Software
Engineering, vol. 21, no. 5, pp. 2072-2106.
Zhang, F.; Zheng, Q.; Zou, Y.; Hassan, A. E. (2016): Cross-project defect prediction
using a connectivity-based unsupervised classifier. Proceedings of the 38th International
Conference on Software Engineering, pp. 309-320.
Zhang, J. M.; Wang, W.; Lu, C. Q.; Wang, J.; Sangaiah, A. K. (2019): Lightweight deep
network for traffic sign classification. Annals of Telecommunications (to be published).
Zhu, K.; Zhang, N.; Ying, S.; Wang, X. (2020): Within-project and cross-project
software defect prediction based on improved transfer naive Bayes algorithm. Computers,
Materials & Continua, vol. 63, no. 2, pp. 891-910.

	Software Defect Prediction Based on Stacked Contractive Autoencoder and Multi-Objective Optimization
	Nana Zhang0F , Kun Zhu1, Shi Ying1, * and Xu Wang2

