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Abstract: Named Data Networking (NDN) is one of the most excellent future Internet 
architectures and every router in NDN has the capacity of caching contents passing by. It 
greatly reduces network traffic and improves the speed of content distribution and 
retrieval. In order to make full use of the limited caching space in routers, it is an urgent 
challenge to make an efficient cache replacement policy. However, the existing cache 
replacement policies only consider very few factors that affect the cache performance. In 
this paper, we present a cache replacement policy based on multi-factors for NDN 
(CRPM), in which the content with the least cache value is evicted from the caching 
space. CRPM fully analyzes multi-factors that affect the caching performance, puts 
forward the corresponding calculation methods, and utilize the multi-factors to measure 
the cache value of contents. Furthermore, a new cache value function is constructed, 
which makes the content with high value be stored in the router as long as possible, so as 
to ensure the efficient use of cache resources. The simulation results show that CPRM 
can effectively improve cache hit ratio, enhance cache resource utilization, reduce energy 
consumption and decrease hit distance of content acquisition.  
 
Keywords: Cache replacement policy, named data networking, content popularity, 
freshness, energy consumption. 

1 Introduction 
In recent years, with the rapid development of the Internet and the explosive growth of 
Internet users, data traffic in the network has increased dramatically. The main function 
and objective of the Internet is also changing from the initial pursuit of network 
interconnection to information sharing and efficient access. The users are more interested 
in content itself rather than the address of the content [Wang, Kong, Li et al. (2019)]. 
Therefore, the existing IP network architecture is facing unprecedented challenges. With 
the emergence of these problems, many research institutes have been devoting 
themselves to the research and design of the future network. Among these design 
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schemes, Named Data Networking (NDN) has become a promising architecture based on 
contents for future network [Xylomenos, Ververidis, Siris et al. (2014)].  
NDN is a content-centric and user-driven network architecture, in which routers has the 
capability of caching [Jacobson, Smetters, Thornton et al. (2009); Zhang, Afanasyev, 
Burke et al. (2014)]. Namely, NDN is more concerned with the content itself than the 
actual physical location of content. By caching the content passing by, routers can 
provide data services for users. So, users can obtain the content they need from a nearby 
router instead of going to the original content server. This can greatly alleviate the 
bandwidth pressure and reduce the content acquisition time.  
In NDN, a user requests a content using interest packet with content name. When routers 
receive an interest packet, they will check their Content Store (CS) for the matched 
content. If there is a matching content, routers will send the content to user who requests 
it. Otherwise, they will forward the interest package to the next router according to the 
Forwarding Information Base (FIB). When a data packet is passing by, routers will cache 
the content for severing the incoming requests instead of original producer.  
Caching strategy is the key research area of NDN, which greatly affect the performance 
of network [Aggarwal, Nilay and Yadav (2017)]. And there also many researches on 
cache strategies recently [Liu, Zhang, Ge et al. (2019)]. When the cache space of router is 
full and new content arrives, it is important to decide which content should be discarded 
from CS. Hence, considering the limited caching resource of routers, it is crucial to make 
effective cache replacement policy to improve the utilization of caching resources.  
Based upon the multiple factors affecting cache performance, in this paper, we propose a 
cache replacement policy based on multi-factors which is named CRPM for Named Data 
Networking to improve the overall performance of NDN in this paper. In CRPM, the 
content with the least cache value will be evicted from the caching space. The 
contributions in this paper are summarized as follows: 1. We fully analyze multi-factors 
that affect the caching performance from different perspectives and puts forward the 
corresponding calculation methods. 2. A new cache value function is constructed to 
measure the cache value of contents. 3. A cache replacement policy is proposed which 
makes the content with high value be stored in the router as long as possible, so as to 
ensure the efficient use of cache resources. 
The reminder of this paper is organized as follows. In Section 2, we present the related 
work. Then we illustrate the CRPM strategy in detail in Section 3 and we present the 
performances of our cache replacement policy in Section 4 subsequently. Finally, we 
conclude the paper in Section 5. 

2 Related work 
Many researchers have proposed various cache replacement policies to manage the in-
networking caches in order to improve the performance of network [Zhang, Luo and 
Zhang (2019)]. The default cache replacement policies are: First in First out (FIFO), 
Least Frequently Used (LFU) and Least Recently Used (LRU). In FIFO, the content that 
first be cached in CS is replaced first. LFU regards the content request frequency as the 
most important reference factor. It believes that if data has been accessed many times in 



 
 
 
A Cache Replacement Policy Based on Multi-factors                                          323 

the past, it will be accessed more frequently in the future. By using the request count of 
content, the content with the smallest count will be moved out of CS. LFU improves the 
cache hit rate to some extent. However, this method may lead to the situation that the 
content with high frequency of access in history has not been accessed recently. Hence, 
the caching resource has not been effectively utilized because of long-term occupation of 
caching resources. Considering that the content that has not been accessed for a long time 
in CS is likely not to be accessed again, LRU regards the time interval of content being 
accessed as an important reference factor and removes the data that has not been accessed 
for the longest time. LRU improves the cache hit rate to a certain extent and is relatively 
easy to implement. It is widely used in current research. 
Some researchers argue that in the existing cache replacement policies, such as LFU and 
LRU, the influence factors of content popularity are not taken into account, resulting in 
low cache efficiency in dynamic networks [Ran, Lv, Zhang et al. (2013); Xin, Li, Wang 
et al. (2016)]. Therefore, cache replacement strategies based on content popularity are 
proposed to remove the content with the smallest popularity from CS. These strategies 
not only improve the cache hit rate, but also significantly reduce server load and increase 
network capacity. In order to balance the distribution of content with different popularity 
in the network, Zhu et al. [Zhu, Mi and Wang (2013)] propose a cache probability 
replacement strategy based on content popularity, and selected the replacement content 
according to the characteristics of content popularity distribution. Fan et al. [Fan, Wu, 
Zhang et al. (2017)] consider that the cache value of contents in the CS are dynamic and 
increase exponentially with the number of requests. So, the value of content with high 
popularity is much higher than that of content with low popularity. When the value of 
content in CS are lower than the threshold value, the space occupied by them are marked 
as “idle”, and they can still provide services for users before being replaced. 
Li et al. [Li, Nakazato, Detti et al. (2015)] analyze the relationship between different 
blocks of the same video segment. When the video requester requests a video block of a 
sequence number, the block after the sequence number is more likely to be requested, so 
it has a higher request probability. In view of the above analysis, Li et al. [Li, Nakazato, 
Detti et al. (2015)] propose a cache replacement strategy based on future request 
probability for video content transmission, which removes the content with the minimum 
request probability in the future. The proposed method increases the average cache hit 
rate and shortens the average content transmission distance. There are cache replacement 
strategies based on popularity prediction which can predicts content popularity in CS 
[Zhang, Tan and Li (2017); Ren, Zhao, Sun et al. (2018)]. For efficient caching in CCN, 
Ren et al. [Ren, Zhao, Sun et al. (2018)] present a caching framework of Prefix-based 
Popularity Prediction (PPP), which assigns a lifetime to the prefix of a content name 
based on its access history or popularity. Zhang et al. [Zhang, Tan and Li (2017)] propose 
a blocklevel cache replacement method called Predictive Popularity Caching (PPC) to 
discover the relationship between video blocks from the perspective of user’s watching 
behavior. PPC predicts and caches the most popular blocks in the future, compares the 
future popularity of the arrived new content with the minimum future popularity in the 
CS, and keeps the content with higher value. In order to prevent popular content from 
being replaced in a short time, a limited-LRU strategy is proposed [Xin, Li, Wang et al. 
(2016)]. Based on the results of content popularity statistics, this strategy tries to cache 
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popular content copies as long as possible and remove unpopular content copies in CS.  
There are also many replacement strategies that take into account a variety of factors and 
try to improve the cache performance of routers. Some researchers start with the frequency 
of content being accessed, combining other factors that affect the performance of the 
replacement strategy. Considering the frequency and size of content access, Ma et al. [Ma, 
Chen and Zhao (2013).] propose a cache replacement strategy based on priority, which 
decides which content to replace according to priority. The filtering effect and aggregation 
of requests in NDN network are discussed in Hu et al. [Hu, Gong, Cheng et al. (2015)]. The 
cache replacement strategy is formulated considering the frequency of requests and the 
distance between users. There is a weighted frequency based real-time data replacement 
policy (WFRRP) is proposed to predict the real-time popularity of content by using the 
weighted frequency in different time periods and the cost of data requests [Liao, Hu, Wu et 
al. (2016)]. WFRRP enables real popular content far away from the source server to 
achieve high real-time popularity and high cache priority. This strategy improves the hit 
rate of data and reduces the average hop count and transmission delay. 
Some of the above policies only consider the improvement of a single factor to a certain 
performance of the network, and cannot meet the diverse network performance 
requirements. Therefore, considering the cache content in router from various 
perspectives, proposing cache replacement function and measuring the cache value of the 
content are the main ideas of cache replacement policies based on cache value. Currently, 
there are various methods based on cache value, and the algorithm performance and 
complexity are also different.  

3 Proposed policy 
CRPM is a cache replacement policy that utilizes multi-factors to measure the caching 
value of contents in CS. It can effectively utilize caching resources. In CRPM, we fully 
analyze content popularity, content acquisition energy consumption, content freshness 
and the last access time interval and determine the calculation method of these four 
factors. Then we utilize analytic hierarchy process (AHP) to determine the weight of the 
important factors affecting cache replacement and construct a new cache value function 
to measure the cache value of contents. At last, we present a cache replacement policy 
based on content value to decide which content should be evicted form CS and describe 
the working details of CRPM. CRPM can achieve a better balance between cache 
performance and acquisition cost. 
In this section, we sketch out the environment and assumption under which CRPM is 
designed. In addition, the details of our proposed CRPM policy are described. CRPM 
consists of three main parts, including analysis of the important factors, using AHP to 
determine weight and CRPM cache replacement policy. 

3.1 Analysis of the important factors 
In the process of designing cache replacement policy, we consider the attribute 
characteristics of content itself. The content attribute factors affecting the replacement 
policy mainly include content popularity, content acquisition energy consumption, 
content freshness and content hit interval. Before introducing the replacement policy 
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proposed in this paper, we analyze the factors affecting cache replacement strategy from 
different perspectives and determine the calculation method of these four factors. 

3.1.1 Content popularity  
As we all know, there are huge amount of contents in the network, but only a small part 
of contents will frequently be accessed by a large number of users, most of the contents 
are rarely requested. Consequently, caching popular contents on routers will greatly 
improve the retrieval efficiency of users. In our strategy, we propose a dynamic content 
popularity algorithm, in which the content popularity includes three parts: the historical 
popularity information of content, the number of requests of content in the current period 
and the future trend of requests changing over time. The proposed algorithm can 
dynamically reflect the changes in content popularity and provide a more accurate cache 
basis for content objects arriving at routers. 
In this paper, the time period is set to τ and the popularity of content ic in period k is 
defined as follows: 

1P (c )= P (c )+ LP (c )+ (c ) 2,3,k i k i k i k iT kα β γ−× × × =,                                                            (1) 

where 1P (c )k i− is the popularity of content ic in period k-1, LP (c )k i is the relative 
popularity of content ic and (c )k iT is the future trend of requests changing about content 

ic . α , β , γ are the weight coefficients and + + =1α β γ .   

LP (c )k i and (c )k iT are denoted in Eqs. (2) and (3). 
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where 1( )k ir c− is the number of requests of content ic in period k-1. 

When =1k , the initial values of content popularity for content ic in the first period are 
given as follows: 
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3.1.2 Content acquisition energy consumption 
In this paper, the energy consumption of content acquisition in CS is mainly the energy 
consumption of content transmission, that is, the transmission cost from the router or 
server who provide content to the user. It is related to the size of content and the 
transmission distance. Assume ( )

j

m
ihop c represents the number of hops from the content 

acquisition node to the local node, is  (bit) is denoted the size of the content ic  and lP  is 
the transmission energy consumption per bit per hop. The content acquisition energy 
consumption is defined as follows: 

( ) ( )m
j i i j iE c Pl s hop c= × ×                                                                                                      (5) 

Therefore, the higher the energy consumption is, the higher the cache value is, namely, 
caching the content can consume less energy. The larger the number of hops and the 
larger the content size, the higher the cost of data transmission. Therefore, our policy 
avoids replacing the cached content far from the local node. 

3.1.3 Content freshness  
Because the content replica in CS may be outdated, it is necessary to use the freshness 
mechanism to check the validity of hitting content. This problem is called cache freshness 
validity [Hail, Amadeo, Molinaro et al. (2015)]. In this paper, let t is the current time, 

( )ini it c  is the time when content is generated by the content source server, and ( )l it c is the 
life cycle of content ic . Therefore, the freshness of content ic in jr  is defined as follows: 

( ) ( )-( ( ))j i l i ini iF c t c t t c= −                                                                                                      (6) 

The fresher the content in the cache, the later it is generated and it is more likely to 
provide services. Therefore, this paper argues that the content with high freshness has 
more caching value. 

3.1.4 Content hit interval 
When the content in CS is not accessed for a long time and still occupies cache resource, it 
will cause cache pollution [Xu, Wang and Wang (2017)]. Therefore, CRPM considers the 
interval between current time and the last access time of the content. The longer the interval, 
the smaller the cache value of the content. Let t denote the current time and ( )Hit it c  denote 
the last time the content was hit. So, the content hit interval is defined as follows: 

interT ( ) ( )i Hit ic t t c= −                                                                                                              (7) 

3.2 Using AHP to determine weight 
In this section, the important factors will be quantitatively analyzed, and each factor will 
be given the corresponding weight. Because these factors have different effects on the 
performance of cache replacement policy, and each factor considers different purposes, 
the importance of these factors are different. Considering the linear requirement of 
routers for data processing in NDN network, the algorithm of cache replacement policy 
should not be too complex. We utilize analytic hierarchy process (AHP) to determine the 
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weight of each influencing factor, and establishes the cache value function on this basis. 
We will introduce the specific steps of the implementation of the AHP method in this 
section, including constructing hierarchy structure model, establishing judgement 
matrixes, calculating weight vectors and consistency check. 

3.2.1 Constructing hierarchy structure model 
We establish the hierarchical structure model according to AHP, as shown in Fig. 1. The 
problems to be solved are as follows: selecting the content with the lowest cache value in 
the CS as the goal layer; four important factors affecting cache replacement are taken as 
the criterion layer for decision-making; and the lowest level is each content in the CS 
which serve as the alternative layer. 

Content 
Popularity

Content Acquisition 
Energy 

Consumption

Content 
Freshness

Content Hit 
Interval

Select the content with the lowest cache value in the CS

All contents in CS

Goal Layer

Criterion Layer 

Alternative Layer 
 

Figure 1: AHP hierarchical structure diagram 

3.2.2 Establishing judgement matrixes  
Let 1 2 3 4( , , , )G G G G G=  is denoted the four factors in criterion layer and compare the four 
factors in pairs. Let ija  denotes the result of important comparison. The judgment matrix 
is as follows: 

1 7 3 5
1 1 117 5 3
1 5 1 33
1 13 15 3

A

 
 
 
 =
 
 
  

                                                                                                       (8) 

The maximum eigenvalues and eigenvectors of the judgment matrix are calculated and 
the consistency check is carried out in next section. 

3.2.3 Calculating weight vectors and consistency check  
We calculate the maximum eigenvalue of judgment matrix A and its corresponding 
eigenvectors utilizing matlab. The maximum eigenvalue is max =4.117λ , and its corresponding 
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eigenvector is =(0.8880,0.0869,0.4121,0.1847)W . The normalized eigenvector is obtained by 
normalizing the eigenvectors and the value is =(0.5650,0.0553,0.2622,0.1175)W ′ . 

Then the consistency check is carried out. The consistency index to be tested is as follows: 

max -
=

1
n

CI
n
λ
−

                                                                                                                          (9) 

where n denotes the order of the matrix A. Consequently, the consistency check value for 

the problem in this paper is 4.117-4= =0.039 0.1
4 1

CI <
−

. So, there is satisfactory consistency. 

In order to the value of CI , we look up the average random consistency index table and 
find that the corresponding random consistency index is 0.9. By comparing CI with 

random consistency index, the test coefficient is 0.039 0.043 0.1
0.9

CICR
RI

= = = < . It is 

considered that the judgment matrix passes the consistency check. 
By using the AHP method, we obtain the weight parameters of content popularity, 
content acquisition energy consumption, content freshness and content hit interval. They 
are 0.5650, 0.0553, 0.2622 and 0.1175.  

3.3 CRPM cache replacement policy 
This section constructs a cache value function to calculate the cache value of the contents 
in CS, removes the content with the least cache value from the CS, and leaves the cache 
space for more valuable content. Then we will introduce the description of CRPM cache 
replacement policy model and its working details. The CRPM cache replacement model 
mainly consists of the following modules: influencing factor calculation module, 
influencing factor weight assignment module and cache replacement module. The overall 
design idea of the cache replacement policy model is shown in Fig. 2. 

Cache Replacement Module

Construct Content Value Function

Factors Calculation Module

Calculate Content Freshness

Calculate Content Hit Interval 

Calculate Content Popularity

Calculate Content Acquisition 
Energy Consumption 

Factor Weight Assignment Module

 Content Freshness Weight

Content Hit Interval Weight

Content Popularity Weight

 Content Acquisition Energy 
Consumption Weight

 

Figure 2: The modules of CRPM  
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When the content reaches the router and the cache space is full, the replacement policy 
occurs. It will decide which content of CS will be moved out of CS. CRPM cache 
replacement policy proposes a cache value function according to the calculation formula 
of four factors affecting the content in Section 3.2 and the cache weight determined by 
AHP method. The cache value of each content in CS is calculated, and the content with 
the lowest cache value is evicted from CS. The definition of the cache value function is 
defined as follows: 

1 2 3 4 interCV( ) P (c )+ ( )+ ( )+ T ( )i j i j i j i ic E c F c cα α α α=         (10) 

where 1 2 3 4( , , , )= =(0.5650,0.0553,0.2622,0.1175)Wα α α α ′ . 

4 Performance evaluation 
In this section, the simulation results of CRPM caching replacement policy are presented, 
compared and analyzed using ndnSIM [Mastorakis, Afanasyev and Zhang (2017)]. We 
detail the simulation evaluation, including simulation parameter setting, evaluation 
metrics and experiment results analysis. 

4.1 Simulation parameter setting 
In all our simulations, we choose LRU, FIFO and a cache replacement policy based on 
content popularity (CCP) [Ran, Lv, Zhang et al. (2013)] as comparison strategies with 
our CRPM policy and record experimental results in 1000 s. 
Most of the current networks are complex network topologies. This paper mainly studies 
the cache replacement policy on routers. Therefore, in the simulation, we use a simple 
linear topology which includes one user and one server distributed at both ends of the 
linear topology. There are three routers in the middle as cache nodes. The network 
topology is shown in Fig. 3. 

serverrouter1 router2 router3user  
Figure 3: Network topology 

The distribution of content requests is very important for our research. In different fields, 
there are various professional methods to study the distribution of random variables 
[Mallouli (2019)]. In our simulation, the total content requests in the network have been 
modeled following a Zipf distribution function [Yang and Zhu (2016)]. In our experiments, 
there are 1000 different content in the network. We observe the impact of cache capability 
on cache performance and cache capability refers to the number of contents that can be 
stored in CS. The cache size of each node ranges from 5 to 30 and the default value is 5. 
This paper also observes the impact of different Zipf exponents on cache performance 
through experiments. The frequency of interest packets is 100/s. The request count period is 
4 seconds. The simulation configurable parameters are depicted as Tab. 1. 
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Table 1: Simulation parameter setting 

Parameter Description Value 
n Number of contents 1000 

Request Rate Number of requests of user 100 
Cache Size Number of contents stored per router 5, 10, 15, 20, 25, 30 

τ  Count period (s) 4 

s Zipf exponents parameter 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 
1.4, 1.5 

4.2 Evaluation metrics 
In order to effectively improve cache-hit ratio, enhance cache resource utilization, reduce 
energy consumption and decrease hit distance of content acquisition, we use the following 
metrics to compare CRPM with LRU, FIFO and CCP Cache replacement policy. 
(1) Cache-Hit Rate 
The ratio of the total number of interest packets satisfied at all routers to the total number of 
interest packets arriving at all routers, which indicates the utilization rate of the router’s 
cache resources and the average cache efficiency of the routers. It is calculated as follows: 

router

router router

Hit
cache hit rate

Hit Miss
− =

+

∑
∑ ∑

                                                                         (11) 
(2) Replacement Frequency 
The average number of replacements on a router per second. It is used to define the load 
degree of router in network. If the number of replacement operations occurs in routers is 
small, it means that contents stay in the CS for a long time and the cache space is 
effectively utilized. 
(3) Average Cache Hit Distance 
The average number of hops that contents have travelled in the network between 
requesters to the corresponding cache nodes. It is used to define the responding speed of 
user requests. 

4.3 Experiment results and analysis 
4.3.1 Cache-Hit Rate 
In this experiment, we observe the effect of cache size and Zipf exponents on cache hit 
rate. The results will be introduced separately. 
Fig. 4 is a comparison of cache-hit rates of CRPM, FIFO, LRU and CCP under the change 
of cache size. The cache-hit rates of the four cache replacement policies are increasing with 
the increase of cache capacity. Therefore, the more contents the router caches, the stronger 
the caching capability, the greater the possibility of providing services for users, and the 
higher the cache hit rate. The cache-hit rate of CRPM policy is always higher than that of 
the other three policies. The cache hit rate of FIFO is the lowest, always under the other 
three policies. Compared with FIFO, LRU, CCP and CRPM have significantly improvement 
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in cache-hit rate. When the cache size is small, the cache-hit rate of CRPM is significantly 
higher than that of LRU and CCP, especially when the cache size is less than 8, the contrast 
is obvious; when the cache size is increasing, the effect of the cache replacement policy is 
no longer obvious, so the gap between the three policies is gradually smaller. The result 
shows that CRPM plays a very good role in improving the hit-rate of NDN, which meets 
the original intention of designing this policy. 

 
Figure 4: Cache size-cache-hit rate  

Fig. 5 is a comparison of cache-hit rates of CRPM, FIFO, LRU and CCP under the 
change of Zipf exponents when the default cache size is 3. The cache-hit rates of the four 
cache replacement policies are increasing with the increase of Zipf exponents and FIFO 
has always been the lowest one. FIFO always replaces the content that first enters the CS, 
so it is insensitive to popularity and the hit rate increases slowly. While LRU replaces the 
content that has not been accessed for the longest time and the cache-hit rate is higher 
than FIFO. Both CRPM and CCP are based on content popularity, so they are more 
sensitive to the increase of Zipf exponents, and CRPM policy is better than CCP. 

 
Figure 5: s of Zipf-cache-hit rate 
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4.3.2 Replacement frequency 
In this experiment, we observe the effect of cache size and Zipf exponents on 
replacement frequency. The results are introduced separately. 
Fig. 6 is a comparison of replacement frequency of CRPM, FIFO, LRU and CCP under the 
change of cache size. The replacement frequency of the four cache replacement policies is 
reducing with the increase of cache capacity. Therefore, the more contents the router caches, 
the stronger the caching capability, the greater the possibility of providing services for users, 
the fewer replacements frequency, and the smaller the processing load of the router. When 
the router’s cache capacity is unlimited, all contents can be cached without replacing. As 
shown in Fig. 6, FIFO always has the highest cache replacement frequency. FIFO always 
replaces the content that first enters the CS, without considering the characteristics of the 
content itself, so the cache replacement frequency is the highest. LRU replaces the content 
that has not been accessed for the longest time, so the cache replacement frequency is lower 
than FIFO. Both CRPM and CCP policies take content popularity into account, so the more 
likely the content in CS is to provide services, the fewer cache replacements. When the 
cache space is small, CRPM has greater advantages, but when the cache space increases, 
the difference between CRPM and CCP is no longer obvious. 

 
Figure 6: Cache size-replacement frequency 

Fig. 7 is a comparison of replacement frequency of CRPM, FIFO, LRU and CCP under 
the change of Zipf exponents when the default cache size is 3. The replacement 
frequency of the four cache replacement policies is reducing with the increase of Zipf 
exponents. This is because the larger the Zipf exponents, the more requests users request 
for popular content, the greater the difference in content popularity. FIFO always replaces 
the content that first enters the CS, so it is insensitive to popularity, and FIFO always has 
the highest cache replacement frequency. LRU replaces the content that has not been 
accessed for the longest time, so the cache replacement frequency is lower than FIFO. 
CRPM and CCP are based on content popularity, so they are more sensitive to the 
increase of Zipf exponents, and CRPM is better than CCP strategy. 
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Figure 7: s of Zipf-replacement frequency 

4.3.3 Average cache hit distance 
In this experiment, we observe the effect of cache size and Zipf exponents on average 
cache hit distance. The results are introduced separately. 
Fig. 8 is a comparison of average cache hit distance of CRPM, FIFO, LRU and CCP under 
the change of cache size. The average cache hit distance of the four cache replacement 
policies are reducing with the increase of cache capacity. Therefore, the more contents the 
router caches, the stronger the caching capability, the greater the possibility of providing 
services for users, and the less average cache hit distance. Therefore, the more contents can 
be cached on the router close to the user, the user’s requests can be satisfied on these routers, 
so the average cache hit distance decreases continuously. As shown in Fig. 8, FIFO always 
has the highest average cache hit distance. FIFO always replaces the content that first enters 
the CS, without considering the characteristics of the content itself, so the average cache hit 
distance is the highest. LRU replaces the content that has not been accessed for the longest 
time, so the average cache hit distance is lower than FIFO. Both CRPM and CCP policies 
take content popularity into account, so the more likely the content in CS is to provide 
services, the fewer average cache hit distance. When the cache space is small, CRPM has 
greater advantages, but when the cache space increases, the difference between CRPM and 
CCP is no longer obvious. 
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Figure 8: Cache size-average cache-hit distance 

Fig. 9 is a comparison of average cache hit distance of CRPM, FIFO, LRU and CCP 
under the change of Zipf exponents when the default cache size is 3. The average cache 
hit distance of the four cache replacement policies are reducing with the increase of Zipf 
exponents. This is because the larger the Zipf exponents, the more requests users’ 
requests for popular content, the greater the difference in content popularity. FIFO always 
replaces the content that first enters the CS, so it is insensitive to popularity, and FIFO 
always has the highest average cache hit distance. LRU replaces the content that has not 
been accessed for the longest time, so the average cache hit distance is lower than FIFO. 
CRPM and CCP are based on content popularity, so they are more sensitive to the 
increase of Zipf exponents, and CRPM is better than CCP strategy.  

 
Figure 9: s of Zipf-average cache-hit distance 
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5 Conclusions 
In this paper, we proposed the CRPM cache replacement policy for named data net-
working. The policy fully analyzes multi-factors that affect the caching performance, puts 
forward the corresponding calculation methods, and utilize the multi-factors to measure 
the cache value of contents. Furthermore, a new cache value function is constructed, 
which makes the content with high value be stored in the router as long as possible, so as 
to ensure the efficient use of cache resources. The simulation results show that CPRM 
can effectively improve cache hit ratio, enhance cache resource utilization, reduce energy 
consumption and decrease hit distance of content acquisition.  
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