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Abstract: Frequent itemset mining is an essential problem in data mining and plays a key 
role in many data mining applications. However, users’ personal privacy will be leaked in 
the mining process. In recent years, application of local differential privacy protection 
models to mine frequent itemsets is a relatively reliable and secure protection method. 
Local differential privacy means that users first perturb the original data and then send 
these data to the aggregator, preventing the aggregator from revealing the user’s private 
information. We propose a novel framework that implements frequent itemset mining 
under local differential privacy and is applicable to user’s multi-attribute. The main 
technique has bitmap encoding for converting the user’s original data into a binary string. 
It also includes how to choose the best perturbation algorithm for varying user attributes, 
and uses the frequent pattern tree (FP-tree) algorithm to mine frequent itemsets. Finally, 
we incorporate the threshold random response (TRR) algorithm in the framework and 
compare it with the existing algorithms, and demonstrate that the TRR algorithm has 
higher accuracy for mining frequent itemsets. 
 
Keywords: Local differential privacy, frequent itemset mining, user’s multi-attribute. 

1 Introduction 
Mining frequent itemsets is very useful in many cases, such as in the record of someone 
purchasing cold medicine; whether they would buy antipyretics or cough medicines. By 
collecting data from multiple users, the degree of association among these drugs can be 
obtained, so a doctor can select the appropriate drug purchase ratio based on these 
records. However, users do not want to disclose sensitive personal information during the 
purchase process. In this study, we aim to mine frequent itemset information while 
ensuring that the user’s personal information is not revealed. 
There are many ways to protect privacy, such as data scrambling, data encryption, data 
anonymity, and other privacy protection technologies. Existing anonymity-based privacy 
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protection models require some background knowledge and special attack assumptions. 
Moreover, they cannot quantify the intensity of privacy protection, so significant 
limitations exist in the actual. To address the shortcomings of the anonymous privacy 
protection model, Dwork [Dwork (2006)] proposed a differential privacy model that 
randomly perturbed the published data. In a statistical sense, regardless of background 
knowledge that the attacker possesses, identifying whether a record exists in the original 
data table is impossible. The user sends the original data to a trusted third-party 
aggregator; then the aggregator perturbs the user data and publishes it. However, when 
the aggregator is untrustworthy or malicious third party attacks them, the user’s personal 
privacy information can be leaked. To solve the shortcomings of this mechanism, 
Kasiviswanathan et al. [Kasiviswanathan, Lee and Nissim (2011)] proposed local 
differential privacy, which advances the steps of the disturbance. Each user first perturbs 
the data on the user side and then sends it to the third-party aggregator. This process 
aggregator can be untrusted because it only analyzes the perturbed data and publishes it. 
Randomized aggregatable privacy-preserving ordinal response (RAPPOR) is the most 
convincing application of the local differential privacy model, and Erlingsson et al. 
[Erlingsson, Pihur and Korolova (2014)] has deployed RAPPOR to Google Chrome. In 
addition to Google, Thakurta et al. [Thakurta, Vyrros and Vaishampayan (2017)] applied 
for a patent to protect users’ privacy and deploy to the ISO in 2017. Other electronic 
information companies such as Samsung have also proposed a similar privacy protection 
system. Companies are beginning to value the importance of protecting user privacy data. 
Currently, most papers focus on privacy protection for a single frequent item, and each 
user has only one attribute. However, this situation does not apply in practical 
applications. For example, the user’s personal information may not only include the name 
or age, but also the education and income, and these attributes may be related to each 
other. For such complex user data, we propose a novel framework to implement frequent 
itemset mining under local differential privacy. 
Our contribution:  
1) For the multi-attribute of users, we propose a complete framework to mine frequent 
itemsets under local differential privacy. 
2) We also consider that the different attributes have different possible value ranges, such 
as gender and income. For this case, we chose different perturbation algorithms to 
achieve the best data availability. 
3) Finally, the aggregator uses the FP-tree algorithm to mine frequent itemsets and 
compares them with the existing methods. 
The rest of our paper is organized as follows. Section 2 introduces related work. Section 
3 describes the problem and defines local differential privacy. Section 4 introduces two 
mechanisms to satisfy the local differential privacy. Section 5 proposes the TRR 
algorithm to satisfy the user’s multi-attribute. Section 6 introduces the aggregator using 
the FP-tree algorithm to mine frequent itemsets and compares the TRR algorithm with 
the existing methods. Section 7 concludes the paper. 
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2 Related work 
In recent years, with the explosive growth of data and the rapid development of 
information technology, various industries have accumulated large amounts of data 
through various channels. However, various industries are beginning to value the 
importance of protecting user privacy data. Aiming at the security and privacy issues in 
cloud computing, for instance, Min et al. [Min, Yang, Wang et al. (2019)] proposed a 
homomorphic encryption algorithm, which utilized the characteristics of multi-nodes and 
matrix multiplication for parallel encryption. As for the problem of privacy leakage in the 
smart grid, He et al. [He, Zeng, Xie et al. (2017)] proposed a random linear network 
coding scheme to protect user privacy and effectively organize traffic analysis. 
Furthermore, for the leakage of location privacy information, Gu et al. [Gu, Yang and 
Yin (2018)] proposed a multi-level query tree structure to publish location data on 
database, and added an exponential mechanism to the query results. In addition, for the 
privacy leakage of personalized recommendation service system, Yin et al. [Yin, Shi, Sun 
et al. (2019)] proposed an efficient privacy protection collaborative filtering algorithm 
based on differential privacy protection and time factor. 
To ensure privacy of data mining, Wong et al. [Wong, Li and Fu (2006)] proposed a 
traditional method based on k-anonymity and Li [Li (2007)] proposed its extended 
models. These methods require certain assumptions and it is difficult to protect privacy 
when the assumptions are violated. The insufficiency of k-anonymity and its extended 
models is that there is no strict definition of the attack model, and that the knowledge of 
the attacker cannot be quantitatively defined. To pursue strict privacy analysis, Dwork 
[Dwork (2006)] proposed a strong privacy protection model called central differential 
privacy. It features independence of the background knowledge of the attacker and 
proves to be very useful. 
For centralized datasets, Wong et al. [Wong, Cheung and Hung (2007)] proposed using a 
1-to-n encryption method to change original itemsets to protect data privacy when 
outsourcing frequent itemset mining. Qiu et al. [Qiu, Li and Wu (2006)] proposed an 
algorithm that transforms business information into a very long binary vectors and a 
series of random mapping functions based on bloom filters. Tai et al. [Tai, Yu and Chen 
(2010)] proposed a k-support anonymity-based frequent itemset mining algorithm. All 
these methods sacrifice the precision of the mining result. 
Because traditional approaches are based on heuristics, a solid privacy guarantee is 
missing. Therefore, researchers began to investigate frequent itemset mining with 
differential privacy. Bhaskar et al. [Bhaskar, Laxman and Smith (2010)] presented two 
mining algorithms, which are representatives of frequent itemset mining with differential 
privacy. Cheng et al. [Cheng, Su and Xu (2015)] implemented differential privacy 
protection to the apriori mining algorithm. Xiong et al. [Xiong, Chen and Huang (2018)] 
implemented differential privacy protection to the FP-tree mining algorithm, which can 
reduce the number of database traversals. These are frequent itemset mining protection 
methods based on central differential privacy. 
Many previous studies used local differential privacy to solve heavy hitter problem, 
rather than frequent itemset. Heavy hitters are simply the frequency of occurrence and do 
not consider the relationship between frequent items. Examples include papers [Bassily 
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and Smith (2015); Bassily, Nissim and Stemmer (2017); Bun, Nelson and Stemmer 
(2018)], which solve heavy hitter problem under local differential privacy and only have 
a single attribute for the user. Wang et al. [Wang and Li (2018)] considered that there 
may be differences in the thresholds of attributes, but they still only considered a single 
attribute and heavy hitter. Herein, we study local differential privacy protection in 
frequent itemset mining and consider user multi-attribute values and associations. 
We use two important local differential privacy mechanisms, the RAPPOR [Erlingsson, 
Pihur and Korolova (2014)] mechanism and randomized response (RR) [Kairouz, Oh and 
Viswanath (2014)] mechanism. Zhang et al. [Zhang, Huang and Fang (2017)] proposed 
that the Multiple Randomized Response (MRR) algorithm applies personalized 
differential privacy to mine frequent itemsets. The RR algorithm is selected when the 
attribute is protected to a low degree, and the RAPPOR algorithm is selected when the 
attribute is protected to a high degree. Although the MRR algorithm has multiple attribute 
values, it does not consider that the thresholds of different attributes may have large 
differences. They have some understanding flaws in the RR and RAPPOR algorithms 
because their theoretical basis is derived from data distribution estimates. Choosing the 
RR and RAPPOR algorithms in frequent itemset mining is closely related to the attribute 
threshold. Our propose TRR algorithm solves the shortcomings of the above problems. 
Finally, to reduce the number of database traversals, the aggregator uses an FP-tree to 
mine frequent itemsets. 

3 Preliminaries 
3.1 Problem definition  
Let 𝐼𝐼 = {𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑚𝑚} be the set of all items in the transaction database, transaction 𝑇𝑇 be a 
set of some items (𝑇𝑇 ⊆ 𝐼𝐼), and a database 𝐷𝐷 = {𝑇𝑇1,𝑇𝑇2, …𝑇𝑇𝑛𝑛} be the set of transactions. 
Each 𝑃𝑃 where 𝑃𝑃 ⊆ 𝐼𝐼 is called an “itemset” and  P is also called a 𝑘𝑘-itemset, where |𝑃𝑃| =
𝑘𝑘. Transaction T contains an itemset 𝑃𝑃 if and only if 𝑃𝑃 ⊆ 𝑇𝑇; the support of 𝑃𝑃, which is 
denoted as support (P), is defined as the percentage of transactions in 𝐷𝐷 containing 𝑃𝑃. Let 
min − support be the user-defined minimum support threshold. There 𝑃𝑃 is a frequent 
itemset if and only if 𝑚𝑚𝑖𝑖𝑚𝑚 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑃𝑃). Given database D and the min-
support threshold, the frequent itemset mining task is defined as “discovering all frequent 
itemsets with their supports.”  

3.2 Local differential privacy  
Based on the untrustworthy third-party aggregator, we used local differential privacy to 
perturb the data on the user side, and the user can also choose different perturbation 
methods according to the protection degree of the original data. The aggregator is only 
responsible for collecting and analyzing data and publishing the overall model. 
Definition 1 (Local Differential Privacy [Kasiviswanathan, Lee and Nissim (2011)]). 
For any inputs 𝑥𝑥1 and 𝑥𝑥2, the output 𝑦𝑦 is obtained by an algorithm 𝜓𝜓. If the following 
inequalities are satisfied, we say that algorithm 𝜓𝜓 that satisfies 𝜀𝜀-local differential privacy. 
𝑃𝑃[𝜓𝜓(𝑥𝑥1) = 𝑦𝑦] ≤ 𝑒𝑒𝜀𝜀 ∙ 𝑃𝑃[𝜓𝜓(𝑥𝑥2) = 𝑦𝑦] (1) 
Here, 𝑃𝑃 denotes the output 𝑦𝑦 probability by the algorithm 𝜓𝜓 and 𝜀𝜀 represents the privacy 
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budget, which is inversely proportional to the privacy protection degree. Specifically, a 
smaller 𝜀𝜀 means higher privacy protection of the user data, and a larger ε means lower 
privacy protection. 

3.3 Sequence combination  
Local differential privacy inherits the sequence combination of central differential 
privacy. When a single user satisfies local differential privacy and different users may 
select different perturbation algorithms, multiple users can still satisfy local differential 
privacy, as follows: 
Given a dataset 𝐷𝐷  and n privacy algorithms  {𝜓𝜓1,𝜓𝜓2 …𝜓𝜓𝑛𝑛}  and  𝜓𝜓𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑚𝑚)  that 
satisfy 𝜀𝜀𝑖𝑖 -local differential privacy, the sequence combination of 𝜓𝜓𝑖𝑖(𝐷𝐷)  satisfies 
(∑ 𝜀𝜀𝑖𝑖𝑛𝑛

𝑖𝑖=0 )-differential privacy. 

4 Random disturbance mechanism  
4.1 k-RR random perturbation algorithm  
The previously proposed the 𝑤𝑤-RR perturbation algorithm, which is mainly applied for the 
two values. For example, we want to count the number of people with AIDS, and users 
respond to whether they have AIDS. If a user has AIDS, the probability of answering the 
suffering is 𝑠𝑠,and the not probability is 𝑞𝑞. If a user does not have AIDS, the probability of 
the unaffected person answering is 𝑠𝑠, and the probability of suffering is 𝑞𝑞. 
However, the 𝑤𝑤-RR algorithm can only be applied to a relatively simple user attribute. If 
the user attribute is more complex than a binary attribute, the 𝑤𝑤-RR would not be satisfied. 
The 𝑘𝑘-RR perturbation algorithm is proposed to improve the 𝑤𝑤-RR algorithm. When 𝑘𝑘 = 2, 
𝑤𝑤-RR is only a special case of 𝑘𝑘-RR. We use 𝜓𝜓 to represent the random perturbation 
algorithm. The specific perturbation probability of 𝑘𝑘-RR is as follows: 

𝛹𝛹(𝑦𝑦) = �
𝑠𝑠 = 𝑒𝑒𝜀𝜀

𝑒𝑒𝜀𝜀+𝑘𝑘−1
,   𝑦𝑦 = 𝑥𝑥

𝑞𝑞 = 1
𝑒𝑒𝜀𝜀+𝑘𝑘−1

,   𝑦𝑦 ≠ 𝑥𝑥
 (2) 

In general, we need to map the user’s data to a binary string and perturb with probability 𝑠𝑠 
or 𝑞𝑞. In the above formula, 𝑥𝑥 and 𝑦𝑦 are the input and output, respectively; 𝜀𝜀 represents the 
privacy budget; and k is the possible value of the user data. 
Theorem 1: The algorithm 𝑘𝑘-RR satisfies ε-local differential privacy. 
Proof: We use 𝜓𝜓𝑘𝑘−𝑅𝑅𝑅𝑅  to denote the 𝑘𝑘 -RR perturbation algorithm. To achieve data 
availability, we usually set that no disturbance probability is greater than the perturbation 
probability. The probability of 𝑠𝑠  should be greater than  𝑞𝑞 and satisfy the following 
inequalities. 
𝑃𝑃[𝜓𝜓𝑘𝑘−𝑅𝑅𝑅𝑅(𝑥𝑥1)=𝑦𝑦]
𝑃𝑃[𝜓𝜓𝑘𝑘−𝑅𝑅𝑅𝑅(𝑥𝑥2)=𝑦𝑦]

≤ 𝑝𝑝
𝑞𝑞

= 𝑒𝑒𝜀𝜀 (𝑒𝑒𝜀𝜀+𝑘𝑘−1)⁄
1 (𝑒𝑒𝜀𝜀+𝑘𝑘−1)⁄ = 𝑒𝑒𝜀𝜀                                                                                        (3) 

4.2 k-RAPPOR random perturbation algorithm  
RAPPOR was proposed by Erlingsson et al. [Erlingsson, Pihur and Korolova (2014)] and 
has been successfully applied to Google Chrome. It is one of the few perturbation 
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algorithms deployed in a real environment. RAPPOR is roughly divided into three stages. 
The most complete RAPPOR must first hash each value with a bloom filter and then 
perform two random perturbations, namely, permanent and temporary perturbations. The k-
RAPPOR we introduced is only a relatively simple case, called a one-time RAPPOR, used 
only for permanent perturbations. 
We use 𝜓𝜓 to represent the perturbation algorithm. The probability of not perturbing a bit of 
a binary string is  𝑠𝑠 , and the probability of perturbation is  𝑞𝑞 . The specific probability 
formula is as follows: 

𝛹𝛹(𝑧𝑧) = �
𝑠𝑠 = 𝑒𝑒𝜀𝜀/2

𝑒𝑒𝜀𝜀/2+1
, 𝑣𝑣𝑖𝑖 = 𝑧𝑧

𝑞𝑞 = 1
𝑒𝑒𝜀𝜀/2+1

, 𝑣𝑣𝑖𝑖 ≠ 𝑧𝑧
 (4) 

Here, v and z are the user’s input and output, respectively, and 𝑣𝑣𝑖𝑖 is the disturbance to the 𝑖𝑖-
th bit. 
Theorem 2: The algorithm 𝑘𝑘-RAPPOR satisfies ε-local differential privacy. 
Proof: We use 𝑣𝑣1 and 𝑣𝑣2 to represent the input, and the output is z as follows: 
𝑃𝑃[𝑧𝑧|𝑣𝑣1]
𝑃𝑃[𝑧𝑧|𝑣𝑣2]

=
∏ 𝑃𝑃[𝑧𝑧[𝑖𝑖]|𝑣𝑣1]𝑖𝑖∈[𝑑𝑑]

∏ 𝑃𝑃[𝑧𝑧[𝑖𝑖]|𝑣𝑣2]𝑖𝑖∈[𝑑𝑑]
≤

𝑃𝑃�𝑧𝑧[𝑣𝑣1] = 1�𝑣𝑣1�∙𝑃𝑃�𝑧𝑧[𝑣𝑣2] = 1�𝑣𝑣1�
𝑃𝑃�𝑧𝑧[𝑣𝑣1] = 1�𝑣𝑣2�∙𝑃𝑃�𝑧𝑧[𝑣𝑣2] = 1�𝑣𝑣2�

= 𝑝𝑝
𝑞𝑞
∙ 1−𝑞𝑞
1−𝑝𝑝

= 𝑒𝑒𝜀𝜀                       (5) 

5 TRR disturbance algorithm  
The TRR algorithm selects the k-RR when the threshold is small, and selects the k-RAPPOR 
algorithm when the threshold is large. Next, we use some theory to explain its correctness. 

5.1 Pure local differential privacy protocol  
The biggest difference between  local differential privacy is that the input 𝑣𝑣 will obtain a 
certain output value, and Wang et al. [Wang and Li (2018)] proposed the pure differential 
privacy protocol that defines this output value as a set. 
Suppose there are two different probabilities, 𝑠𝑠∗  and 𝑞𝑞∗. The non-disturbing probability 
𝑠𝑠∗should be greater than the perturbation probability 𝑞𝑞∗ and satisfy the following inequality: 
𝑃𝑃[𝜓𝜓(𝑣𝑣1) ∈ {𝑦𝑦|𝑣𝑣1 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦)}] ≤ 𝑒𝑒𝜀𝜀 ⋅ 𝑃𝑃[𝜓𝜓(𝑣𝑣2)  ∈ 𝑦𝑦|𝑣𝑣2 ∈ 𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦)] (6) 
In the above inequality, 𝜓𝜓 is the perturbation algorithm, v1 and v2 are the user’s input, and y is 
the output. Add is a function that maps each possible output value y to an input value set. 
If yj represents the perturbation data sent to the aggregator by user j, the aggregator needs to 
estimate the number of per bit and then perform statistics: 

𝑚𝑚�(i) =
∑ 𝑆𝑆𝑎𝑎𝑑𝑑𝑑𝑑�𝑦𝑦𝑗𝑗�

(𝑖𝑖)−𝑛𝑛𝑞𝑞∗𝑗𝑗

𝑝𝑝∗−𝑞𝑞∗
 (7) 

In the above formula, 𝑚𝑚� is used to indicate the number of times each bit is used. It should be 
noted that there is a flag function, and the specific calculation formula is as follows: 

𝑆𝑆𝑋𝑋(𝑖𝑖) = �1,   𝑖𝑖 ∈ 𝑋𝑋
0,   𝑖𝑖 ∉ 𝑋𝑋 (8) 

From (6), 𝑋𝑋 is the user's binary string, and 𝑖𝑖  is one of the strings. It can be obtained after 
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encoding that the user has a certain attribute coded to 1 or coded to 0. 
Theorem 3: In order to verify the correctness of our estimate for each bit, we need to 
calculate its variance: 

𝑉𝑉𝑎𝑎𝑠𝑠[𝑚𝑚�(𝑖𝑖)] = 𝑛𝑛𝑞𝑞∗(1−𝑞𝑞∗)
(𝑝𝑝∗−𝑞𝑞∗)2

+ 𝑛𝑛𝑓𝑓𝑖𝑖(1−𝑝𝑝∗−𝑞𝑞∗)
𝑝𝑝∗−𝑞𝑞∗

 (9) 

Proof.  

𝑉𝑉𝑎𝑎𝑠𝑠[𝑚𝑚�(𝑖𝑖)] = 𝑉𝑉𝑎𝑎𝑠𝑠 �
∑ 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎�𝑦𝑦𝑗𝑗�(𝑖𝑖) − 𝑚𝑚𝑞𝑞∗𝑗𝑗

𝑠𝑠∗ − 𝑞𝑞∗
� =

∑ 𝑉𝑉𝑎𝑎𝑠𝑠 �𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎�𝑦𝑦𝑗𝑗�(𝑖𝑖)�𝑗𝑗

(𝑠𝑠∗ − 𝑞𝑞∗)2
                                            

=
𝑚𝑚𝑓𝑓𝑖𝑖𝑠𝑠∗(1 − 𝑠𝑠∗) + 𝑚𝑚(1 − 𝑓𝑓𝑖𝑖)𝑞𝑞∗(1− 𝑞𝑞∗)

(𝑠𝑠∗ − 𝑞𝑞∗)2
 

= 𝑛𝑛𝑞𝑞∗(1−𝑞𝑞∗)
(𝑝𝑝∗−𝑞𝑞∗)2

+ 𝑛𝑛𝑓𝑓𝑖𝑖(1−𝑝𝑝∗−𝑞𝑞∗)
𝑝𝑝∗−𝑞𝑞∗

                                                                                                          (10) 

However, most values have fewer occurrences and are determined by frequent values in 
most applications. Avoiding a large number of false positives allows one to obtain lower 
estimated variances between infrequent values. In the above formula, when the frequency 
𝑓𝑓𝑖𝑖 is small, the variance is mainly determined by the first term, and then an approximate 
variance 𝑉𝑉𝑎𝑎𝑠𝑠∗ is obtained: 

𝑉𝑉𝑎𝑎𝑠𝑠∗[𝑚𝑚�(i)] = 𝑛𝑛𝑞𝑞∗(1−𝑞𝑞∗)
(𝑝𝑝∗−𝑞𝑞∗)2

 (11) 

5.2 k-RR and k-RAPPOR variance  
The additional function of the 𝑘𝑘-RR perturbation algorithm is 𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘−𝑅𝑅𝑅𝑅(𝑖𝑖) = {𝑖𝑖}, which 
satisfies the pure local differential privacy protocol. Furthermore, 𝑠𝑠∗ = 𝑠𝑠 and 𝑞𝑞∗ = 𝑞𝑞 can 
be obtained, and then the 𝑘𝑘-RR approximate variance is obtained by combining Eqs. (7) 
and (11): 

𝑉𝑉𝑎𝑎𝑠𝑠∗[𝑚𝑚�𝑘𝑘−𝑅𝑅𝑅𝑅(𝑖𝑖)] = 𝑚𝑚 ⋅ 𝑘𝑘−2+𝑒𝑒
𝜀𝜀

(𝑒𝑒𝜀𝜀−1)2 (12) 

We can see that as the threshold 𝑘𝑘 increases, the 𝑘𝑘-RR variance also increases. It can be 
said that the accuracy of the 𝑘𝑘-RR result decreases as the threshold increases. We, therefore, 
use the 𝑘𝑘-RR algorithm when the threshold is small. 
Similarly, the additional function of the 𝑘𝑘-RAPPOR is 𝑎𝑎𝑎𝑎𝑎𝑎𝑘𝑘−𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅(𝑧𝑧) = {𝑖𝑖|𝑧𝑧[𝑖𝑖] = 1}, 
which satisfies the pure local differential privacy protocol. We can obtain 𝑠𝑠∗ = 𝑠𝑠 and 𝑞𝑞∗ =
𝑞𝑞, and then combine the above Eqs. (7) and (11) to obtain the approximate variance: 

𝑉𝑉𝑎𝑎𝑠𝑠∗[𝑚𝑚�𝑘𝑘−𝑅𝑅𝑅𝑅𝑃𝑃𝑃𝑃𝑅𝑅𝑅𝑅(𝑖𝑖)] = 𝑚𝑚 ⋅ 𝑒𝑒𝜀𝜀/2

(𝑒𝑒𝜀𝜀−1)2 (13) 

We can see that the approximate variance of the 𝑘𝑘-RAPPOR algorithm is irrelevant to the 
threshold 𝑘𝑘. We use the 𝑘𝑘-RAPPOR algorithm better when the threshold is larger. 

5.3 Encoding  
The situation we have to consider is more complicated. Each user may have multiple 
attribute values, and the possible values of each attribute are different. How should we 
choose the encoding method and the perturbation algorithm for this complicated situation? 



 
 
 
376                                                                              CMC, vol.65, no.1, pp.369-385, 2020 

We use bitmap encoding, first considering a universal set U with cardinalityn. We can 
represent each subset of 𝑈𝑈 by a bitmap of size n. Each element of 𝑈𝑈 is assigned to one of 
the bits in the bitmap. If an element is a member of a subset 𝑆𝑆  (𝑆𝑆 ⊆ 𝑈𝑈 ), then its 
corresponding bit is 1; otherwise it is 0. Consider the following example: let there be a 
universal set 𝑈𝑈 = {𝑎𝑎3,𝑎𝑎2,𝑎𝑎1,𝑎𝑎0}, and subsets 𝐴𝐴 = {𝑎𝑎3,𝑎𝑎2} and 𝐵𝐵 = {𝑎𝑎3,𝑎𝑎0}. With two 
bitmaps of size four, in which each ai(0 ≤ i ≤ 3) is assigned to their ith bit, these subsets 
are represented as 𝐴𝐴 = 1100  and 𝐵𝐵 = 1001 . With this representation of sets, some 
common set operators can be implemented faster using bitwise operators. For example, to 
calculate the intersection (union) of two given sets, we can use the bitwise operator AND 
(OR) on their corresponding bitmaps. Bitwise operators are implemented efficiently in 
CPUs and performed in one CPU cycle. 
Specific to the user’s multi-attribute, assuming that each user has ℎ attributes, and the value 
of each attribute is represented by 𝑘𝑘. Then, 𝑘𝑘1 is the possible value of the first attribute, and 
𝑘𝑘ℎ is the possible value of the ℎth attribute. We mapped each attribute to a binary string. 
For example, the first attribute may have 𝑘𝑘1 values that are mapped to 𝑘𝑘1 bits. If the user 
has a value of this attribute mapped to 1, otherwise is mapped to 0, so we can get a binary 
string of length 𝑚𝑚 = 𝑘𝑘1 + 𝑘𝑘2 … + 𝑘𝑘ℎ . 

5.4 TRR algorithm  
We select 𝑘𝑘-RR when the attribute threshold is small, and select 𝑘𝑘-RAPPOR when the 
attribute threshold is large in the TRR algorithm. When 𝑘𝑘𝑖𝑖 < 3𝑒𝑒𝜀𝜀 + 2 is a smaller threshold, 
and 𝑘𝑘𝑖𝑖 > 3𝑒𝑒𝜀𝜀 + 2 is a larger threshold [Wang and Li (2018)]. 
The TRR algorithm is suitable because the user data are more complicated. In particular, 
the user has multiple attributes, and the thresholds between the attributes are significantly 
different. The TRR algorithm is more practical and has a wider range of applications. The 
specific process of the algorithm is as follows: 

Algorithm 1. TRR perturbation algorithm 
Input: binary string m∈ {0,1}𝑛𝑛 
Input: User’s possible attribute value ℎ , threshold value 𝑘𝑘1 ,𝑘𝑘2…𝑘𝑘ℎ  for 

each attribute 
Input: Privacy budget 𝜀𝜀 
Output: binary string 𝑚𝑚�   after disturbance 

1: 
et a variable 𝑠𝑠 = 0 that controls the movement of each bit. 

2: 
or each item 𝑘𝑘𝑖𝑖 in ℎ do 

3:  
  if  𝑘𝑘𝑖𝑖 < 3𝑒𝑒𝜀𝜀 + 2   

4:  
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     for 𝑙𝑙 = 0 in 𝑘𝑘𝑖𝑖 
5:  

           𝑚𝑚�(𝑠𝑠) = �
𝑚𝑚(𝑠𝑠),          𝑠𝑠 = 𝑒𝑒𝜀𝜀

𝑒𝑒𝜀𝜀+𝑘𝑘𝑖𝑖−1
 

1−𝑚𝑚(𝑠𝑠), 𝑞𝑞 = 1
𝑒𝑒𝜀𝜀+𝑘𝑘𝑖𝑖−1

 

6:  
           𝑠𝑠 = 𝑠𝑠 + 1 

7:  
      end for 

8:  
 else if  𝑘𝑘𝑖𝑖 > 3𝑒𝑒𝜀𝜀 + 2  

9:  
      for 𝑙𝑙 = 0 in 𝑘𝑘𝑖𝑖 

10:  

           𝑚𝑚�(𝑠𝑠) = �
𝑚𝑚(𝑠𝑠),          𝑠𝑠 = 𝑒𝑒𝜀𝜀/2

𝑒𝑒𝜀𝜀/2+1

1 −𝑚𝑚(𝑠𝑠), 𝑞𝑞 = 1
𝑒𝑒𝜀𝜀/2+1

 

11:  
           𝑠𝑠 = 𝑠𝑠 + 1 

12:  
      end for 

13:  
  end if 

14: 
nd for 

15: 
eturn 𝑚𝑚�  

5.5 Decoding  
Next, we introduce some unbiased estimation content, mainly considering that the original 
data will have some impact after the perturbation algorithm. If unbiased estimation is not 
performed, the 𝑖𝑖-th bit of the binary string of all users is directly added to obtain: 
𝑚𝑚(𝑖𝑖) = ∑ 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎(𝑦𝑦𝑗𝑗)𝑗𝑗 (𝑖𝑖) (14) 

This method will cause some errors, so we will estimate it unbiasedly: 
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𝑚𝑚�(𝑖𝑖) =
∑ 𝑆𝑆𝑎𝑎𝑑𝑑𝑑𝑑�𝑦𝑦𝑗𝑗�

(𝑖𝑖)−𝑛𝑛𝑞𝑞∗𝑗𝑗

𝑝𝑝∗−𝑞𝑞∗
 (15) 

Theorem 4: By calculating the number 𝑚𝑚�(𝑖𝑖) of a certain bit, the expectation can 𝐸𝐸[𝑚𝑚�(𝑖𝑖)] =
𝑚𝑚𝑓𝑓𝑖𝑖 be proved to be unbiased. 
Proof.  

𝐸𝐸[𝑚𝑚�(𝑖𝑖)] = 𝐸𝐸 �
∑ 𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎�𝑦𝑦𝑗𝑗�(𝑖𝑖) − 𝑚𝑚𝑞𝑞∗𝑗𝑗

𝑠𝑠∗ − 𝑞𝑞∗ � =
𝑚𝑚𝑓𝑓𝑖𝑖𝑠𝑠∗ + 𝑚𝑚(1 − 𝑓𝑓𝑖𝑖)𝑞𝑞∗ − 𝑚𝑚𝑞𝑞∗

𝑠𝑠∗ − 𝑞𝑞∗
                                        

= 𝑚𝑚 ⋅ 𝑓𝑓𝑖𝑖𝑝𝑝
∗+𝑞𝑞∗−𝑓𝑓𝑖𝑖𝑞𝑞∗−𝑞𝑞∗

𝑝𝑝∗−𝑞𝑞∗
= 𝑚𝑚𝑓𝑓𝑖𝑖                                                                                                         (16) 

6 Experiment  
6.1 FP-tree frequent itemset mining  
After the server receives the user’s binary string, it constructs an FP-tree for frequent 
itemset mining. 
First, building an FP-tree requires creating an item header table, so we scan the database for 
the first time and obtain all 1-itemset 𝑚𝑚�(𝑖𝑖). Then, we delete the items whose support is 
lower than min – support, obtain frequent 1-itemsets into the header table, and sort them in 
descending order of support. Next, the second scan database deletes the infrequent 1-
itemsets of the data and sorts them in descending order of support. 
After acquiring the item header table and sorted datasets, we can start building the FP-tree. 
The FP-tree has no data at the beginning. When building an FP-tree, we need to insert the 
sorted datasets one by one. The node that ranks first is the ancestor node, and the next one 
is the descendant node. If they have a shared ancestor, the ancestor node count is 
incremented by one. After the insertion, if a new node appears, the node corresponding to 
the item header table is linked to the new node through the node list. The creation of the 
FP-tree is complete when all the data has been inserted. 
Next, we mine frequent itemsets from the item at the bottom of the item header table. For 
each item in the item header table that corresponds to the FP-tree, we need to find its 
conditional pattern base. The conditional pattern base is the FP-subtree corresponding to 
the leaf node that we want to mine. We set the count of each node in the FP subtree to the 
count of the leaf nodes and delete the nodes whose count is lower than the support. From 
this conditional model base, we can recursively mine frequent itemsets. In the experiment, 
we set ,𝑚𝑚𝑖𝑖𝑚𝑚 – 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 0.5  and obtain frequent 2-itemsets and frequent 3-itemsets. 
These settings are not fixed. 

6.2 Algorithm experiment comparison  
Our experimental metric is F-score, which is a commonly used measure in data mining, and 
it is the harmonic mean of the correct rate and recall rate.  

𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑒𝑒 = 2 ∗ 𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛∗𝑝𝑝𝑒𝑒𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟
𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑝𝑝𝑛𝑛+𝑝𝑝𝑒𝑒𝑝𝑝𝑎𝑎𝑟𝑟𝑟𝑟

 (17) 

Here, precision denotes the accuracy rate and recall is the recall rate. The higher F-score, 
the more effective the experimental method. 
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Additionally, to measure the error with the actual support of itemsets in the dataset, we 
calculated the relative error (RE) of the support of released itemsets. 

𝑅𝑅𝐸𝐸 = 𝑚𝑚𝑒𝑒𝑎𝑎𝑖𝑖𝑎𝑎𝑚𝑚𝑋𝑋
|𝑝𝑝𝑠𝑠𝑝𝑝′(𝑥𝑥)−sup (𝑥𝑥)|

sup (𝑥𝑥)
 (18) 

Here, 𝑋𝑋 is the set of all frequent itemsets generated by a private algorithm, 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) is 
the actual support of itemset 𝑥𝑥, and 𝑠𝑠𝑠𝑠𝑠𝑠′(𝑥𝑥) is its noisy support. It should be noted 
that the smaller the RE is, the smaller the error; it also indicates that the utility of the 
algorithm is higher. 
Our experimental environment was implemented in Python 3.7. The experimental dataset 
generates a normal distribution, and an exponential distribution by its definition, and then 
verifies the TRR algorithm. If the dataset obeys a uniform distribution, our algorithm is not 
applicable. It does not make much sense to mine frequent itemsets. 
We conducted two sets of experiments under the normal distribution to mine frequent 2-
itemsets and frequent 3-itemsets. Fig. 1 shows the impact of four different local differential 
privacy algorithms on frequent mining results under different privacy budgets. The abscissa 
indicates that the privacy budget has a value from 1.0 to 6.0, with an increase of 0.5 each 
time. As shown in Fig. 1, as the privacy budget increase, the overall F-scores of the four 
algorithms show an upward trend. Further, the F-score of the TRR algorithm is larger than 
that of the other three algorithms, which indicates that the TRR algorithm has a higher 
accuracy for mining frequent 2-itemsets. As seen in Fig. 2, similar to Fig. 1, the F-score of 
the TRR algorithm in mining frequent 3-itemsets is larger than that of the other three 
algorithms. This also shows that the TRR algorithm has a better effect than the RR, 
RAPPOR and MRR algorithms in mining frequent itemsets. 

 
Figure 1: Frequent 2-itemsets of the F-score under normal distribution 
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Figure 2: Frequent 3-itemsets of the F-score under normal distribution 

Figs. 3 and 4 show the MRR, TRR, RR, and RAPPOR algorithms mining frequent 2-
itemsets and frequent 3-itemsets in an exponential distribution. As shown in Fig. 3, as the 
privacy budget increases, the F-score of the four algorithms gradually increase. As shown 
in Fig. 3, the F-score change curves of the MRR and RR algorithms almost coincide, 
mainly because the MRR algorithm selects the RR algorithm when the privacy budget is 
low. Moreover, as the privacy budget gradually increases from 4.0 to 6.0, the F-score of 
the RAPPOR and TRR algorithms do not change significantly. This is because as the 
privacy budget increases, the degree of perturbation of the original data approaches 0, 
and the dataset produced by the perturbation closer to the real dataset. Therefore, the 
TRR algorithm is superior to the RR, RAPPOR and MRR algorithms because the TRR 
algorithm has the lowest probability of disturbance under the same privacy budget, 
resulting in a higher F-score. Similarly, Fig. 4 shows that TRR and the other three 
algorithm mine frequent 3-itemsets. The F-score obtained by the TRR algorithm is larger 
than that of the other three algorithms, indicating that the TRR algorithm is also suitable 
for an exponential distribution. 

 
Figure 3: Frequent 2-itemsets of the F-score under exponential distribution 
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Figure 4: Frequent 3-itemsets of the F-score under exponential distribution 

The F-score experimental standard only measures the accuracy and recall of the mining 
results, but it does not evaluate the experimental error. To analyze the error of the 
experimental results, we used the relative error measure. For each element in the frequent 
itemset, we find its initial support for the original data and then find the perturbation 
support for the perturbed data. Subsequently, we calculate these two support values and 
then find the median of this set to determine the relative error. 

 
Figure 5: Frequent 2-itemsets of the RE under normal distribution 
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Figure 6: Frequent 3-itemsets of the RE under normal distribution 

Figs. 5 and 6 show the results of relative errors of the TRR, MRR, RR, and RAPPOR 
algorithms for frequent itemset under a normal distribution. Fig. 5 shows that in the 
process of mining frequent 2-itemsets, as the privacy budget becomes larger, the relative 
errors of the four algorithms generally show a downward trend. Further, the TRR 
algorithm has higher accuracy in data mining than the MRR, RR and RAPPOR 
algorithms. The relative error of the MRR algorithm is the largest, and the relative error 
varies significantly and is unstable when the privacy budget is 7.0-7.5. This is mainly 
because the disturbance probability is more sensitive to these privacy budgets and the 
uncertainty of random disturbances. Similarly, Fig. 6 similar characteristics to Fig. 5. 
With the increase in the privacy budget, the relative error of the TRR algorithm is smaller 
than the relative errors the other three algorithms, which also shows that the TRR 
algorithm has better utility than the MRR, RR and RAPPOR algorithms in mining 
frequent itemsets. 

 
Figure 7: Frequent 2-itemsets of the RE under exponential distribution 
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Figure 8: Frequent 3-itemsets of the RE under exponential distribution 

Fig. 7 and 8 show the influence of the privacy budget on the relative errors of the TRR, 
MRR, RR and RAPPOR algorithms under exponential distribution. Fig. 7 shows that the 
relative error of TRR algorithm is smaller than that of the MRR, RR and RAPPOR 
algorithms, and the relative error of the MRR algorithm is high. The relative error of the 
TRR algorithm is less because the TRR disturbance probability is lower than that of the 
other three algorithms under the same privacy budget. Fig. 8 shows frequent 3-itemset 
ming, demonstrating that the relative error of the TRR algorithm is still less than that of 
the RR and RAPPOR algorithms. 
In summary, F-score of the TRR algorithm is larger, and the relative error is the smallest. 
When the user has multiple attributes, the RR and RAPPOR algorithms are determined by 
the attribute threshold. The disadvantage of the MRR algorithm is that the data distribution 
estimation is not suitable for frequent itemset mining. In short, if the user has multiple 
attributes, choosing the TRR algorithm will be a better choice. 

7 Conclusions  
We propose a complete implementation framework to mine frequent itemsets under local 
differential privacy protection. The general process is that the original data is first bitmap 
encoded, and the encoded data implement local differential privacy perturbation; the 
aggregator performs unbiased estimation after perturbing data, and then uses FP-tree to 
mine frequent itemsets. We propose a new TRR algorithm, mainly to satisfy the complex 
data types under multiple attributes of users, and the thresholds of multiple attributes can 
vary greatly. The TRR algorithm satisfies the requirements of complex data and ensures 
that the user’s personal information dose not leak. Finally, the FP-tree algorithm is used to 
mine frequent itemsets and the TRR, RR, RAPPOR and MRR algorithms are compared 
experimentally. We found that the TRR algorithm is better than the existing algorithms. 
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