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Abstract: In recent years, an increasing number of studies about quantum machine 
learning not only provide powerful tools for quantum chemistry and quantum physics but 
also improve the classical learning algorithm. The hybrid quantum-classical framework, 
which is constructed by a variational quantum circuit (VQC) and an optimizer, plays a 
key role in the latest quantum machine learning studies. Nevertheless, in these hybrid-
framework-based quantum machine learning models, the VQC is mainly constructed with 
a fixed structure and this structure causes inflexibility problems. There are also few 
studies focused on comparing the performance of quantum generative models with 
different loss functions. In this study, we address the inflexibility problem by adopting 
the variable-depth VQC model to automatically change the structure of the quantum 
circuit according to the qBAS score. The basic idea behind the variable-depth VQC is to 
consider the depth of the quantum circuit as a parameter during the training. Meanwhile, 
we compared the performance of the variable-depth VQC model based on four widely 
used statistical distances set as the loss functions, including Kullback-Leibler divergence 
(KL-divergence), Jensen-Shannon divergence (JS-divergence), total variation distance, 
and maximum mean discrepancy. Our numerical experiment shows a promising result 
that the variable-depth VQC model works better than the original VQC in the generative 
learning tasks. 
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1 Introduction 
Machine learning techniques have successfully been used in many areas. Not only do 
they flourish in fields such as computer vision, natural language processing and so on, but 
they also tremendously boost the other scientific research areas such as quantum physics 
[Broecker, Carrasquilla, Melko et al. (2017); Qu, Wu, Wang et al. (2017)] and chemistry 
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[Ramakrishnan, Dral, Rupp et al. (2015)] among others. As quantum computing 
techniques inherently provide speed-ups in some specific scenario [Harrow, Hassidim 
and Lloyd (2009)], like in principal component analysis [Chen, Xia, Wang et al. (2018)]. 
That is the reason why the researchers pay more attention to harness the power of 
quantum computing to enhance machine learning techniques. However, building a large 
scale and reliable quantum computer that can be perfectly isolated from the outside is a 
tremendous challenge. Preskill [Preskill (2018)] predicts that this kind of quantum 
computer is not likely to be invented in the near future. Fortunately, the intermediate 
scale quantum computer called NISQ, i.e., Noisy Intermediate-Scale Quantum computer, 
which can perform hybrid quantum-classical optimization will be released in the next few 
years [Havlíček, Córcoles, Temme et al. (2019)]. It makes it possible to combine 
quantum computing with machine learning. 
One of the valuable applications on NISQ is the hybrid quantum-classical computing 
framework. This framework includes two main components, variable quantum circuit and 
a classical optimizer. The parameterized quantum circuit, the variable quantum circuit, is 
used to deal with the initial quantum state, which is normally an encoded classical input 
data. To extract the classical information from the processed quantum state, we perform 
measurements on all quantum registers. After getting the expectation value of the 
measurements, we feed them as the input into the classical optimizer. The classical 
optimizer receives this data and guides the VQC to update the parameters. The whole 
process of minimizing the loss function is slightly changing the parameters of the VQC 
which are generated by the optimizer, according to various optimization methods such as 
a gradient descent. By iteratively running the above optimization steps until convergence, 
we will get the results that approximate the solution of the target problem. The whole 
structure of the hybrid quantum-classical framework is shown in Fig. 1. In 2014, Farhi et 
al. [Farhi, Goldstone and Gutmann (2014)] first proposed this hybrid computing idea, 
known as the quantum approximate optimization algorithm (QAOA), to solve the 
combinatorial optimization problem. Various studies based on this idea have successively 
been developed. Most of these works take advantage of hybrid quantum-classical 
techniques to solve physics problems, including preparing quantum states and finding 
low-energy states of a given Hamiltonian, such as in Peruzzo et al. [Peruzzo, McClean, 
Shadbolt et al. (2014)]. The latter proposed a Variational Quantum Eigensolver (VQE) to 
find the ground state corresponding to the lowest molecular energy of He-H+. 
Recently, researchers have also been devoted to enhancing the traditional generative 
learning methods. Many of the works showing the hybrid quantum-classical based 
algorithm on NISQ device, may have the potential power for learning tasks, that not 
being the case for their classical counterparts. For instance, Benedetti et al. [Benedetti, 
Realpe-Gómez, Biswas et al. (2017); Liu and Wang (2018)] proposed a quantum born 
machine to learn target probability distribution. 
Nonetheless, these are few studies that adopt the variable-depth circuit structure, such as the 
method proposed for quantum circuit compiling [Khatri, LaRose, Poremba et al. (2019)]. 
Comparing to other fixed Ansatz models, we employ a more flexible way to build VQC in 
the hybrid computing framework, and apply it to tackle the generative learning task. 
Meanwhile, we concentrate on analyzing the performances between the quantum 
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generative models which are based on the variable-depth VQC with different loss functions. 
We hope that what we found could provide some practical advice for related research, such 
as in the work of quantum communication [Qu, Li, Xu et al. (2019)]. 

2 Preliminaries 
In this section, it contains some basic concepts of quantum information and computing in 
our quantum generative model.  

2.1 Qubits and quantum states 
The qubit is the basic information carrier in quantum information processing. Instead of a 
classical bit, a qubit has two possible states, including 0  and 1 . There are two types 
of quantum states, including pure quantum states and mixed quantum states. A pure 
quantum state is represented by a unit complex vector φ , where 

ii
v iφ =∑ , 2 1ii

v =∑ . The iv  can be regarded as the coefficients of the linear 

combination of the computational basis i . For example, one qubit pure quantum state is 
in a superposition of the computational basis and represented by a 2-dimensional 
complex vector ϕ  in the Hilbert Space 2

 , where 0 1ϕ = +a b  and ,a b  are 

known as the probability amplitudes, such that 2 2 1+ =a b . Similarly, an n-qubits 

quantum system 1... nϕ ϕ can be written as a tensor product of the subsystem iϕ  in 2n  
dimensional Hilbert space. A mixed quantum state is an ensemble a mixture of the pure 
states iψ  with respective probability ip , such that =1ii

p∑ . We usually describe a 

mixed state by a density matrix ρ  which is in the form of i i ii
pρ ψ ψ=∑ , 

[ ]0, 1ρ ρ = Tr . 

2.2 Quantum gates 
Any operations applied to a quantum state should be reversible and must preserve the 2  
norm. Thus, a quantum gate can be described by a unitary operator, which is a bounded 
linear operator on a Hilbert space that satisfies † †= =U U UU I , where †U  is the 
conjugate transpose of U . A quantum gate for the n-qubits system can be formulated by a 
unitary matrix in 2n

 . The widely used single qubit quantum gates are listed as follows. 
·Pauli gates 

0 1 0 1
, ,

1 0 0 0 1
0

σ σ σ
−     

= = =     −     
x y z

i
i

              (1) 

·Hardmard gates 
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1 11
1 12
 

=  − 
H               (2) 

·Rotation gates 

( ) ( ) ( )
2

2
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2 2 2 2
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θ

θ θ θ θ

θ θ θ
θ θ θ θ

−
   − −     

= = =     
     −      

i

x y z i

i e
R R R

ei
 (3) 

·Entanglement gates 
A quantum controlled gate acts on at least two qubits, where some of the qubits are set as 
the control bits which enable the operation on target qubits. The commonly used 
controlled gate is controlled NOT gate (CNOT) which flips the target qubit if and only if 
control qubit is 1 . 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 
 
 =
 
 
 

CNOT               (4) 

another entanglement gate which can be easily implemented on trap ion quantum 
computer is Ising coupling gate, XX gate. 

1 0 0
0 1 01
0 1 02

0 0 1

φ

φ−

 −
 − =
 −
 
− 

i

i

ie
i

XX
i

ie

              (5) 

2.3 Quantum measurement 
Instead of directly outputting the results in classical computing, we need perform a 
quantum measurement on the processed states to extract classical information. A 
quantum measurement is always defined by a set of operators. The simplest complete 
measurement is to measure the output state in the computational basis. For instance, if we 
measure the state 

1
ψ α

=
=∑n

ii
i  in the computational basis, it will return i  with 

probability 2
iα . This class of measurement with orthogonal operators { } 1,...,2ni

i i
=

 can 

also be viewed as the projective measurement. A projective measurement is always 
described by an observable. As an observable can be written as a Hermitian matrix M . 
As well known to us all, there is a spectral decomposition of M , =∑ mm

M mP , where 

mP  is the orthogonal projector with eigenvalue m . It is convenient to calculate the 
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expected value of the projective measurement by measuring an observable M , the 
expected value can be formed as ( ) ( )| |ψ ψ ϕ ϕ= 〈 = 〈E m Tr M M . 

3 Quantum generative model 
Similar to the variational auto-encoder and Boltzmann machine, the goal of the quantum 
generative model is to learn a distribution by a given dataset { } 1=

= m
i i

D x , in which the 
samples are independent and identically distributed from the target distribution. Instead 
of modeling by neural networks, the quantum generative model applies a hybrid 
framework to reconstruct the target distribution. It is built by a variational quantum 
circuit (VQC) and a classical optimizer. The VQC plays a similar role, such as a neural 
network in classical generative tasks. The process of quantum part in the hybrid 
framework includes using VQC to model the target distribution in the Hilbert space, 
measuring the processed states in the computational basis, and outputting the expected 
value of the observable. The classical optimizer receives the expected value, then 
optimizes the loss function, finally feeds back and guides the VQC to adjust the 
parameters until the model converges. The main differences between VQC-based models 
are the structure of quantum circuits, the loss function, and the optimization methods. 
In this work, we use a flexible circuit structure for quantum generative model and make 
comparison of performance between different models based on widely used loss functions. 

 
Figure 1: framework of VQC 

3.1 Variable-depth quantum circuit structure 
Instead of the previous studies which are based on fixed circuit structure, we use a more 
flexible way to construct the quantum circuit, variable-depth variational quantum circuit 
(vVQC). The basic idea is that we regard the number of circuit layers l  as a parameter 
rather than a fixed number. We will introduce the following two ways to set up the layers 
of the circuit.  

We call the quantum circuit block ( )l lU θ  as a layer, which is constructed by 
parameterized circuit block and entanglement circuit block shown in Fig. 1. The 
parameterized circuit block is built by rotation gates θσ−ie , where σ  is chosen from 
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Pauli gates set { }, ,X Y Z , which are applied on each qubit. The degree θ  of the rotation 
is viewed as the parameter of the circuit which to be tuned. The single qubit layer can be 
written as, 

3

1 1

θ σ−

=
=

= ⊗∏ ij j
n i

s i j

U e                  (6) 

The entanglement block is constructed by entanglement gates such as CNOT gates and 
Ising coupling gates, and can be written as the following form, 

( )
[ ]

,ent
k l n

U U k l
< ∈

= ∏                  (7) 

where ( ),U k l  represents a entanglement block which acts on thk  and thl  qubits. We 
choose a fully-connected pattern as circuit structure of entanglement block, that is 
applying entanglement gates on any two qubits pair as shown in Fig. 2. One variational 
circuit layer is combining the parameterized block and fully-connected entanglement 
block. Here we note it as lU , which is a unit composed of vVQC. 

( )
[ ] 1

, i
n

i
l ent s ij k n

U U U U j k e θ σ−

=
< ∈

= = ⊗∏                (8) 

This kind of structure can also be implemented on trap-ion quantum device. 

 

Figure 2: The circuit can be implemented on trap-ion quantum device, where ,X Z  
represent θσ− xue  and θσ− zue  respectively. XX represents Ising coupling gate 

Another choice of building the circuit is employing universal 2-qubits circuit block 
[Sousa and Ramos (2007)], which require 15 single rotation gates and 3 CNOT gates, as 

shown in Fig. 3, where 
( ) ( ) ( )
1 222 2α σα σ α σ−− −=

ii i
y yz zz zii i

iU e e e . We apply these universal 2-
qubits circuit to the near-neighbor qubits, so the single mixed layer requires 1−m  the 
block to construct shown in Fig. 4. 
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Figure 3: The universal two-qubit circuit 

Similar to the work based on a variable-depth circuit in compiling quantum circuit tasks 
[Khatri, LaRose, Poremba et al. (2019)], the variational-depth quantum circuit is applied 
in this work for the quantum generative learning task. With the increasing of the number 
of the layers, the quantum circuit will enrich its expressive power in general. Our goal is 
to automatically extend the layers of the circuit according to the qBAS score. We set the 
number of the layers as 0l  and check the qBAS score every ep  iterations [Benedetti, 
Garcia-Pintos, Perdomo et al. (2019)]. When the qBAS score is over the preset threshold 
value after ep  iterations, we will reset the parameters, increase 0l , and randomly choose 
some parts of the old parameters to update instead of initializing all the parameters. By 
repeating the above process, we will get a model with reasonable performance. 

 
Figure 4: The quantum circuit block of vVQC 

3.2 Quantum generative model with vVQC 
Our quantum generative model is similar to quantum circuit learning and also consists of 
two parts. One is a variable-depth quantum circuit which is used to model the target 
distribution, another one is the post-processing module which contains a classical 
optimizer that is used to optimize the loss function, that is ( )min ,θ t gL D D  where tD  is 

the target distribution and gD  is the generated distribution, by the gradient-based 

methods. Initially, we set the zero state 0 00...0ϕ =  as the input state, then feed it to 
the vVQC. The state travels forward through the vVQC like classical feedforward neural 
network. However, the variational circuit generates a quantum state instead of producing 
classical data as output. Since we are unable to use the quantum state which encodes the 
processed data directly, it is necessary to measure the output state with a specific 



 
 
 
452                                                                              CMC, vol.65, no.1, pp.445-458, 2020 

observable and get the element of the generated distribution 

0
†

0 |gD Tr MU Uϕ ϕ = 〈  . Post-processing is feeding the gD  to a classical optimizer 

that finds the of the optimal solution of the loss function and returns the new parameters 
θ  to the vVQC. 
We set the initial number of the vVQC layers as same as the number of system size. To 
avoid trapping in local minima, the training process of vVQC will extend the size of the 
circuit and reset some parts of the parameters when the qBAS score is greater than the 
threshold. Similar to the classical neural network, with an appropriately increasing of the 
depth of the quantum circuit, the expression ability of the quantum variational circuit will 
also be enhanced [Niu, Lu and Chuang (2019)]. However, increasing the number of layers 
is not always beneficial for training. Not only it increases the parameter space to optimize, 
but it also increases the complexity of the variational quantum circuit to evaluate. 

Algorithm 1: training process of quantum generative model with 
variable-depth VQC 

Input: Initial quantum state 0 ⊗n , target distribution Q , learning 

rate η , threshold value εqBAS , iteration threshold value ep , type of 
loss function k , iteration iter . 
Output: the trained vVQC 
1 Initialize the parameters of variational quantum circuit qc , and 

set initial layer number 0 1=l , 100=v . 

2 While ε> qBASv  do 

3       generate fake distribution P  by qc . 

4       ( ),θθ θ η← − ⋅∂ kL qc Q  

5        calculate qBAS score, ( , )=v qBAS P Q  
6        If iter  mod 0=ep  then 
7              add a variational quantum layer. add _ layer(qc)=qc  
8              1← +l l  
9              randomly choose parameters of new circuit to initialize 
10 1← +iter iter  

In the generative learning task, the loss function is always based on the probability 
distance. Since the performance of the model will be affected by the different metric 
distances between the generated distribution and target distributions, we estimate the 
following metrics and set them as the loss functions for the generative learning task. Here 
Q  is the target distribution, and P  is the generated distribution which can be written as 

( ) ( ) ( )†0 | | 0θ θ= 〈 〈P x U x x U                (9) 



 
 
 
Quantum Generative Model with Variable-Depth Circuit                                    453 

and the partial derivative of ( )P x  with respected θi  is 

( )

( )

: 1 1:1 1

1
†

: 1

†

1 1:

0 | | ... 0

0 | ... | 0

θ θ

θ

+ −

+ −

∂  ∂
= 〈 〈 ∂ ∂ 

 ∂
+〈 〈  ∂ 

i
n i i n

i i

i
n n i i

i

P x UU U x x U U

UU U x x U U

           (10) 

where :1 1 1...−=n n nU U U U . 

·Kullback-Leibler divergence 
The Kullback-Leibler divergence between discrete probability distribution P  and Q  is 
define as 

( ) ( ) ( )( ) ( ) ( )( )log log
∈ ∈

= −∑ ∑KL
x X x X

D P Q P x P x P x Q x           (11) 

We compute the gradient with following way respected to the parameters iθ of the vVQC. 

( ) ( )( ) ( )( ) ( )log log
θ θ θ

∂ ∂∂  = − + ∂ ∂ ∂∑ ∑KL

x xi i i

P x P xD P x Q x           (12) 

·Jensen-Shannon divergence 
The Jensen-Shannon divergence is another statistic metric based on KL divergence, 
defined as 

( ) 1 1
2 2 2 2

 +   + 
= +   

   
JS KL KL

P Q P QD P Q D P D Q            (13) 

Then the gradient of JS loss function with respected to parameter θi  is 

( ) ( )( ) ( ) ( )( )( ) ( )1 1log log log
2 2θ θ θ

∂ ∂ ∂
= − + − ∂ ∂ ∂ 

∑ ∑JS

x xi i i

P x P xD P x P x Q x         (14) 

·Total variation distance 
As our set is discrete and countable, the total variation distance is 

( ) ( ) ( )1
2

= −∑TV
x

D P Q P x Q x              (15) 

then we can get the gradient, 

( )1
2θ θ

∂∂
=

∂ ∂∑TV x

xi x i

P xD V
V

              (16) 

where ( ) ( )1 1
†0 | ... | ... 0= 〈 〈 −x n nV U U x x U U Q x  
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·Maximum mean discrepancy 
We can also use kernel maximum mean discrepancy (MMD) to distinguish the two 
distribution by finite samples. The square of MMD can be formulated as 

( ) , ~ , ~ , , ~[ ( , )] 2 [ ( , )] [ ( , )]′ ′′ ′= − +MMD x x P x y P Q y y QD P Q E k x x E k x y E k y y         (17) 

where , {0,1}∈ nx y  are the permutations. Here we choose Gaussian function 
21

2σ
− −x y

e  
as our kernel. It is easy to use chain rule to calculate the gradient of the parameter θi , 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

, ~

, ~ ,

,

2 ,

θ θ θ

θ

′

′∂ ∂ ∂ ′ ′= + ∂ ∂ ∂ 
∂

−
∂

∑

∑

MMD

x x Pi i i

x y P Q i

P x P xD k x x P x P x

P x
k x y Q y

          (18) 

4 Experimental results 
We focus on training our model on a widely used Bars-and-Stripes dataset, which is a set 
of binary images with ×n n  pixels for the generative task [Gao, Zhang and Duan (2017); 
Benedetti, Garcia-Pintos, Perdomo et al. (2019)]. The probability of each sample in Bars 
and Stripes dataset is uniform and equals ( 1)1/ (2 2)+ −n . For example, there are six 
different Bar-and-Stripe patterns in the 2 2×  pixels case shown in Fig. 5. To capture the 
patterns, we represent a pixel by one qubit, so the system size should be 2 ×n n . In fact, the 
system size will exponentially increase as the number of pixel increases. Because there 
are limits of the computational power of our device for classical simulation, our 
following numerical experiments are mainly based on the 2 2×  Bar-and-Strips dataset 
and we built the models on a four-qubits quantum system. The target distribution Q  is 

encoded into the probability amplitudes of a quantum state, i.e., ( )ϕ =∑t i
Q i i . 

 
Figure 5: Example of bar-and-strip dataset 
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Figure 6: The Bar-and-Stripe pattern and the target distribution of 2 2×  case 

We tested the models based on four different loss functions including KL-divergence, JS-
divergence, total variation distance, and maximum mean discrepancy for the generative 
learning task on Bar-and-Strips dataset respectively. We choose the gradient descent as 
the optimization method with the learning rate 0.1. The loss curves of the experiments are 
shown in Fig. 7, and the performances of quantum generative models based on VQC and 
vVQC are shown in Fig. 8. As shown in Figs. 7 and 8, the vVQC-based model has better 
performance than the original VQC-based model. 

 
Figure 7: qScroe of KL-divergence, JS-divergence, total variation distance and MMD 

From Fig. 8, the qBAS score curves of JS, KL, and TV can reach 0.01 around 150 
iterations, and the performance of KL-divergence is the best and reach 0.001 after around 
200 iterations. The reason why the performance of MMD does not provide a good result 
is that the parameter σ  of the Gaussian kernel function is fixed and not optimal. 
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(a) VQC-JS                                                   (b) vVQC-JS 

 
(c) VQC-KL                                                    (d) vVQC-KL 

 
(e) VQC-MMD                                                (f) vVQC-MMD 
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(g) VQC-TV                                                    (h) vVQC-TV  

Figure 8: The comparison between generated distribution by normal VQC and vVQC 
with MMD and total variation distance as the loss function and target distribution 

5 Discussion 
The VQC plays an important role in the widely used hybrid quantum-classical computing 
framework, especially in quantum machine learning. However, most studies based on the 
VQC are using the fixed circuit structure, which is not flexible enough. In this work, we 
explored a flexible way to build the VQC and applied it for the generative learning task. 
It is called variable-depth VQC, which automatically increases the number of the 
quantum circuit layers and randomly chooses parts of parameters to update according to 
the qBAS score. As the layers of the quantum circuit are added dynamically, the 
expressive power of VQC is enhanced, especially when the size of the quantum circuit is 
not easy to determine. Besides, we designed the quantum generative models based on the 
variable-depth VQC with the different loss functions and tested them on learning the 
given probability distribution. The results show that the performances of variable-depth 
VQC are better than that of the normal VQC models. There are still open questions, 
including whether there is an optimal circuit structure with fewer gates and finding the 
optimal parameters in MMD distance. 
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