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Abstract: Radar quantitative precipitation estimation (QPE) is a key and challenging task 
for many designs and applications with meteorological purposes. Since the Z-R relation 
between radar and rain has a number of parameters on different areas, and the rainfall 
varies with seasons, the traditional methods are incapable of achieving high spatial and 
temporal resolution and thus difficult to obtain a refined rainfall estimation. This paper 
proposes a radar quantitative precipitation estimation algorithm based on the 
spatiotemporal network model (ST-QPE), which designs a convolutional time-series 
network QPE-Net8 and a multi-scale feature fusion time-series network QPE-Net22 to 
address these limitations. We report on our investigation into contrast reversal 
experiments with radar echo and rainfall data collected by the Hunan Meteorological 
Observatory. Experimental results are verified and analyzed by using statistical and 
meteorological methods, and show that the ST-QPE model can inverse the rainfall 
information corresponding to the radar echo at a given moment, which provides practical 
guidance for accurate short-range precipitation nowcasting to prevent and mitigate 
disasters efficiently. 
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1 Introduction 
At present, China’s rainfall forecast mainly provides a forecast of precipitation for the 
next few days, but lacks an accurate prediction of short-term rainfall for specific given 
regions. Traditional methods of meteorology are unable to meet the requirement of high 
resolution for quantitative precipitation estimation. Water falling gathered by rain gauges 
tells a rough liquid precipitation, but domestic observation stations are sparsely 
distributed giving difficulties of obtaining more details of rainfall. Meteorological 
satellites mainly observe information of the cloud top, which has a low correlation with 
precipitation. Radar QPE is a measurement based on the empirical formula Z-R 
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relationship between radar echo and precipitation to do QPE [Li, Chen, Wang et al. 
(2020)]. With the advent of the intelligent era, many academic scholars proposed 
different types of optimization models to reduce the error in radar QPE [Lea, Loris, 
Marco et al. (2018); Tao, Hsu, Ihler et al. (2018); Song, Chen, Chen et al. (2019)]. Kusiak 
et al. [Kusiak, Wei, Verma et al. (2013)] verified the effectiveness of multi-layer 
perceptron, random forest, SVM, classification regression tree and K-nearest neighbor 
algorithm on QPE, as well as emphasizing the importance of using machine learning for 
radar data driven problems. Fu et al. [Fu, Xiao, Tan et al. (2015)] improved the function 
of a radial basis in the neural network model. Compared to the Z-R relationship better 
accuracy and stability are acquired but only in limited experimental regions. Chen et al. 
[Chen, Chen, Zhao et al. (2019)] utilized the gradient boost decision tree (GBDT) to 
study meteorological radar data in South China. Its results are better than the fixed Z-R 
relationship and the dynamic Z-R relationship, but the issue of inaccurate estimation is 
not addressed yet. Zhang et al. [Zhang, Yang and Zhang (2019)] considered weighted 
random forest as well as vertical profile of reflectivity (VPR), and analyzed radar 
quantitative estimation on rainfall procedure. This work suggested that obtaining 
precipitation more accurate than traditional Z-R relationship and random forest methods 
is possible. The previous research is mainly based on traditional machine learning, that 
suffers from a low effect on the high spatiotemporal resolution of radar. 
In recent years, the spatiotemporal networks have been gaining an increasing amount of 
attention from QPE researchers [Yu, Liu, Wang et al. (2018); Zuo, Yu, Zi et al. (2018); 
Zhang, Jin, Sun et al. (2018); Chen, Wang, Liu et al. (2019); Wang, Liu, Xu et al. 
(2019)]. A video fingerprint recognition model based on spatiotemporal deep neural 
network combined with self-encoding and LSTM (Long Short-Term memory) network is 
described in Wang et al. [Wang and Li (2018)]. Later, Zhang et al. [Zhang, Bai, Sha et al. 
(2019)] proposed a mobile network traffic model based on spatiotemporal features, where 
three-dimensional convolutional network and time convolutional network are employed 
to extract the spatial characteristics of mobile network traffic, and achieved quality 
results for short-term traffic prediction. Currently in the meteorological field, there are 
limited studies on the application of space-time networks to radar QPE. In 2015, Shi et al. 
[Shi, Chen, Wang et al. (2015)] took advantages of both the convolutional layer and the 
recursive layer to present Convolutional Long Short-Term Memory (ConvLSTM) for 
short-term rainfall forecasting, which partially remedied the shortcomings of the optical 
flow methods by better handling image space and dynamics information. Based on the 
LSTM network model, Wang et al. [Wang, Long, Wang et al. (2017)] developed radar an 
echo nowcasting technology by adapting a number of existing works such as 
spatiotemporal memory unit, hierarchical normalization, deconvolution network, data 
augmentation. Their results show that the model extrapolates the precipitation is better 
than other benchmark algorithms. 
By studying the spatiotemporal characteristics of radar data and the rapid change of 
rainfall data, we quantitatively estimated the precipitation of rainfall scanned by the radar 
for the current 60 minutes. We analyzed the historical radar echo data of Hunan 
Meteorological Observatory and propose a radar quantitative precipitation estimation 
algorithm, which is referred to ST-QPE (Spatiotemporal QPE), we also designed a 
convolutional time-series model QPE-Net8 and a multi-scale feature fusion time-series 
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model QPE-Net22. We conducted a set of contrast reversal experiments with radar echo 
data and rainfall data collected by the Hunan Meteorological Observatory, and applied 
the statistical and meteorological tests on the ST-QPE. The experimental results showed 
that our method better reflected the rainfall information corresponding to the current 
radar echo than existing work. 

2 Related work 
QPE is mainly based on estimated precipitation from weather radar, which works as 
follows: the meteorological radar emits electromagnetic waves that will get scattered due 
to intersections with raindrops and snowflakes, then the radar echoes are received by 
radar antenna and displayed on screens to allow meteorologists to learn the intensity, 
distribution, movement and evolution of precipitation in the atmosphere according to 
echo images and thus further to understand the structure and characteristics of the 
weather system. 

2.1 The relationship of radar echo and rainfall intensity 
The Z-R relationship reflects the correlation between the radar echo and the rain-fall 
intensity. Mathematically, the relationship between the radar reflectivity factor Z (unit: 
mm6/m3) and the rainfall intensity R (unit: mm/h) is: 

= bZ aR                                                                                                                             (1) 
where a and b are empirical constants (a≈200, b [1.5 and 2]), determined by various 
factors such as time, location and type and nature of precipitation. The Z-R relationship is 
the main basis for radar measurement of precipitation, and its measurement accuracy 
depends on the determination of a and b parameters. 

2.2 The analysis of radar and rainfall data  
The weather radar collects a radar echo data Z map every 6 minutes, that is to say 240 sheets 
or time series per day. Each time point contains 12 layers of radar echo data of m×n latitude 
and longitude grid points (0.01°, grid point size is 1 km×1 km). Among the 12 layers, layers 
1 to 10 are at height of 0.5 km, 1.0 km, 1.5 km, 2.0 km, ..., 5.0 km, the 11th layer is the echo 
top height, and the 12th layer is the vertical integrated liquid water content. 
The rainfall data collects a rainfall intensity R every hour. The rainfall coverage is 5 
km×5 km latitude and longitude grid (the lattice distance is 0.05°), as shown in Fig. 1, 
representing the radar data of 5×5 latitude and longitude grid points. 
In general, radar data has time series and spatial characteristics; rainfall data is unstable 
and strong in spatiotemporal characteristics, due to the rapid change of rainfall process. 
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Figure 1: Rainfall coverage map 

2.3 The description of QPE  
According to Eq. (1), the essence of the QPE is the problem of determining parameters a, 
b based on radar data and rainfall data <Z, R>. However, because the model described by 
Eq. (1) is too simple, it cannot reflect the spatiotemporal characteristics of <Z, R> well, 
which makes it difficult to greatly improve the estimation accuracy. This paper attempts 
to solve this problem by using the deep learning model of spatiotemporal networks. 
The precipitation intensity R of a certain location (latitude and longitude) is related to the 
radar echo factor at the location and its neighboring spatial points (latitude, longitude and 
altitude). In other words, Z is a 3-dimensional matrix data, and the precipitation intensity 
Rt at a certain time t. It can be fitted by the following network functions: 

( -1)( ) ( ( )), ( ) *= = = +h h
t t t t t bR f Z f f Z f Z w Z                                                            (2) 

where f is the convolution function, w is the convolution kernel parameter, b is the offset 
parameter, and h is the convolution depth. 
Now the temporal characteristics of the radar echo data and the rainfall data can be taken 
into account. According to the radar spatial data Z1, Z, …, Zt at the periodic moments of 1, 
2, …,T, a more accurate precipitation intensity 



tR  at time t is expressed as: 

1 2 -1( ( , , , ; ), ; ), 1, 2, ,= = …


t t tR g g R R L R q R q t T                                                             (3) 

Therefore, the problem is to find an optimized spatiotemporal network model parameter 
that makes the hit ratio of the sample data 1 2t tD { Z ,R | t , , ,T }= < > =   as large as possible. 

1 2
1=

= − <∑




T

t tθ t
θ arg max log p(| R F( Z ,Z , ,Z ;θ )| ε )                                                  (4) 

where F is a spatiotemporal network containing f and g, and θ is the network parameter. 
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3 Design of spatiotemporal network 
For the purpose of investigating the characteristics of spatiotemporal network model in 
the QPE problem, we propose a deep learning algorithm, which is able to construct a 
network model not only for the QPE problem but also for more general spatiotemporal 
sequence problems. Additionally, we introduce the training phase of algorithm and the 
back-propagation process to evaluate model accuracy. Contributions of this paper relate 
primarily to this section. 

3.1 The strategy of spatiotemporal network 
Based on the spatiotemporal characteristics of QPE problem, this paper designs a 
spatiotemporal deep neural network algorithm model ST-QPE, which extracts the spatial 
and time characteristics of the radar image respectively to finally find the rainfall amount. 
The model is divided into two parts, a spatial feature layer and a temporal feature layer. 
For the layer feature of space, C is the convolution operation, σ is the sigmoid activation 
function, wi and bi are the convolution kernel weights and offset parameters, then a 
formula is defined as Eq. (5). 





i+1
i i i

Z i=0
Y =

σ(w*Y +b ) otherwise
                                                                                     (5) 

where i denotes the number of convolution layers, and iY  denotes the input of the i-th 
layer convolution. i=0 indicates that the input of the first-layer convolution is Z. When 
i>0, the output of the i-th layer is used as the input into its next layer, and the operation of 
convolution activation is performed in sequence. 
For the layer feature of time, It can be known from Eq. (5) that the feature value 1iY +  from 
the i-th layer in the spatial feature layer is assumed to have a j-layer time series structure, 
and for each time, by having the state value of the previous time set to 1th − , the operation 
of the j-th layer timing structure, when j=1: 

1
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= − ∗ + ∗
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1 z,1 1 i+1
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o ,

r =σ(w [h ,Y ])

z =σ(w [h ,y ])

h tanh( w [ r h , y ])

h ( z ) h z h
y σ( w h )

                                                                                      (6) 

When j is otherwise, the j-th layer timing structure is: 
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                                                                                     (7) 

When t=1, the initial state value 0t
jh of all-time feature layers is 0. In other cases, the 

timing features are extracted according to Eq. (7). The overall structure of ST-QPE is 
shown in Fig. 2. 
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Figure 2: ST-QPE structure 

In this paper, two different structures, QPE-Net8 and QPE-Net22, are designed for the 
connection characteristics of space and time. The difference is that when the time feature 
extraction layer is carried out, two kinds of operation modes are performed on the spatial 
features. QPE-Net8’s spatial feature operation is a reference structure that uses pure 
convolution and pooling operations to take the extracted feature values as input into the 
temporal feature layer and then perform operations involving three timings. Unlike QPE-
Net8, QPE-Net22 network uses four sub-sampling operations in the spatial feature 
extraction layer to accomplish multi-scale feature recognition of images. In each layer of 
timing operation sampling results of the spatial feature layer are utilized by fusing the 
multi-scale features, and thoroughly connecting the spatial feature layer and the temporal 
feature layer through the entire network model. 

3.2 QPE-Net8 
In QPE-Net8 where an 8-layer network structure is employed, convolution and pooling 
operations are used to perform feature extraction to ensure a sufficient number of 
convolutions to extract features, then operations are performed by ConvGRU [Shi, Gao, 
Lausen et al. (2017)]. QPE-Net8 is implemented alternately by three convolutional layers 
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and two maximum pooling layers for extracting radar space features, and three layers of 
ConvGRU cell are used to learn radar timing features. Now the input of the timing layer 
is the result of the last layer of spatial features, at any given time step: 

( )( )1 *t t
last i last iY C w Y b+ = +σ                                                                                                (8) 

For the first cell of the timing layer, the operation of the first-level timing structure 
becomes: 

( )1
1 ,1 1 1 ,t t t

r lastr w h Y−
+ = ⋅  σ                                                                                                  

( )1
1 ,1 1 1,t t t

z lastz w h Y−
+ = ⋅  σ                                                                                                  (9) 

 ( )1
1 1 1 1,1 * ,

t t t t
lasthh tanh w r h Y−

+ = ⋅  

                                                                                   

The timing structure of the second and third layers is identical to Eq. (7). 
The structure of QPE-Net8 is shown in Fig. 3. By taking the first six layers of the radar 
echo data subjected to data preprocessing as channels, inputting the radar data of 10 
consecutive moments intermediate eigenvalues are obtained by applying convolution 
operation to the feature layer. Eigenvalues are then input into each ConvGRU cell unit 
depending on the timing. Finally, the rainfall data corresponding to the hour is generated. 
The QPE-Net8 parameter configuration table is shown in Tab. 1. 

Table 1: QPE-Net8 Network parameter 

Input size Kernel size Output size z 
224×224×6 3×3 224×224×64  

224×224×64 3×3 112×112×128  
112×112×128 3×3 56×56×256  

          

Figure 3: QPE-Net8 network structure 
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A typical calculation flow of the QPE-Net8 network model is presented in Algorithm 1. 

Algorithm1 QPE-Net8 
Input: Training data  1 2i TD =<Z ,Z , ,Z >,i=1,2, ,k   

Output: The rainfall Y 
1:   for t=1, 2, …, T:  
2:       for i=1, 2, …, n: 
3:               Ct=Convi(Zt); 
4:               if i≠n then: 
5:                   Ct=Maxpoolingi(C); 
6:       end for 
7:       Dt=Ct; 
8:       for j=1, 2, …, m: 
9:             Gt, ht=GRUcellj(Dt , ht-1); 

10:             Gt=ReLUj (Gt); 
11:       end for 
12:  end for 
13:  Y=ReLU(W*Gt+b); 
14:  return Y 

3.3 QPE-Net22 
Similarly, QPE-Net22 employs a 22-layer network structure. As opposed to the QPE-Net8 
network, QPE-Net22 first implements multi-scale feature recognition of image features in 
space, and each layer of time series operations uses the sampling results of the spatial 
feature layer. Multi-scale feature fusion, the connection of the spatial feature layer and the 
temporal feature layer runs through the entire network model; at the same time, 
downsampling is used to reduce redundant information to form a tighter expression, making 
the output feature map more accurate. The overall structure of the network is divided into 
two parts: feature extraction and sampling layer. Prior to each upsampling, ConvGRU is 
integrated to perform timing operations. There are four downsampling operations in the 
feature extraction layer, and the output of each sampling is set to 1iY + . Then: 

1

                          1
     =2,3,4i

i i i

z i
Y

( C( w * Y b )) i+

=
=  +σ

                                                                           (10) 

The timing layer has two layers of results. Unlike QPE-Net8, the timing result of each layer 
uses the sampling result 1iY +  of the corresponding layer from bottom to top. the timing 
structures of the first layer and the second layer are easily derived using Eqs. (6) and (7). 
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(The first layer) 

( )1
1 ,1 1 5 1 ,t t t

rr w h Y−
+ = ⋅  σ  

( )1
1 ,1 1 5 1,t t t

zz w h y−
+ = ⋅  σ                                                                                              (11) 

 ( )1
1 1 1 5 1,1 * ,

t t t t
hh tanh w r h y−

+ = ⋅  

 

(The second layer) 

( )1
2 ,2 2 4 1 1 ,t t t t

rr w h Y h−
+ = ⋅ + σ  

( )1
2 ,2 2 4 1 1,t t t t

zz w h y h−
+ = ⋅ + σ                                                                                     (12) 

 ( )1
2 2 2 4 1 1,2 * ,

t t t t t
hh tanh w r h y h−

+ = ⋅ + 

 

The structure of QPE-Net22 is shown in Fig. 4. Taking the first six layers from the 
preprocessed radar echo data as the channel, by inputting the radar data of 10 continuous 
time, each time passing through two convolutional layers, and then learning the multi-
level features through the downsampling (the largest pooling layer). Each time the 
downsampling size is changed to half of the original. When upsampling, the ConvGRU 
unit is used for timing calculation, and then the same number of channels corresponding 
to the feature extraction part are fused, and finally the rain data corresponding to the hour 
is generated. QPE-Net22 is a network parameter configuration table as shown in Tab. 2. 

Table 2: QPE-Net22 Network parameter 

Input size Kernel type Kernel size Output size 
224×224×6 Conv2d 3×3 224×224×64 
224×224×64 Downsampling conv2d 3×3 112×112×128 

112×112×128 DownSampling conv2d 3×3 56×56×256 
56×56×256 DownSampling conv2d 3×3 28×28×1 

28×28×1 DownSampling conv2d 3×3 14×14×1 
14×14×1 Upsampling deconv2d 3×3 28×28×1 
28×28×1 Upsampling deconv2d 3×3 56×56×1 
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Figure 4: QPE-Net22 network structure 

A typical calculation flow of the QPE-Net22 network model is as follows: 

Algorithm2 QPE-Net22 
Input: Training data 1 2i TD =<Z ,Z , ,Z >,i=1,2, ,k   

Output: The rainfall Y 
1:   for t=1, 2, …, T:  
2:       for i=1, 2, …, n: 
3:            Ci=DownConvsi (Zt); 
4:       end for 
5:           Dt=Cn; 
6:       for i=1, 2, …, n: 
7:             Dt=UpConvsj (Cn-j-1,Dt); 
8:             Gt, ht =GRUcellj (Dt, ht-1); 
9:             Gt=ReLUj (Gt); 

10:       end for 
11:   end for 
12:   Y=ReLU (W*Gt+b); 
13:  return Y 

3.4 Training algorithm 
The ST-QPE algorithm’s radar quantitative estimation of precipitation training process on 
these two structures mentioned above is listed: 
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Algorithm3 ST-QPE 

Input:  Training data 1 2 1 2i l i TD ,R ,D Z ,Z , ,Z ,i , , ,k< > =< > =


 
 

Output: The model parameter =< >θ W ,b  
1: 8←f QPENet  or QPENet22 ; 

2: Initial  θ ; 
3: ≤ ∆ >Do while itertime epoch and ε :  

4:      ← −
 

t i t iL( R ,D ,θ ) R f ( D ,θ ) ; 

5:       ∆ = −


i iR f ( D ,θ ) ; 

6:       ← − ⋅∇


t iθ θ η L( R ,D ,θ ) ; 

7: EndDo  
8: Output θ  

After obtaining training samples, the algorithm selects an appropriate number of batches 
from the training set, use the back-propagation algorithm to find the optimal parameters, 
input the training set into the ST-QPE algorithm, and iterate through the epoch to the 
model convergence. ST-QPE algorithm training is actually a process of seeking the 
optimal parameters. The loss function is used as the training target during model training. 
this paper uses Mean Square Error (MSE) as our loss function to evaluate accuracy of 
model training. The calculation formula is as Eq. (13): 

' 2

1

1 ( )
=

= −∑
n

i
L y y

n
                                                                                                         (13)  

where n is the total number of experimental samples, y is the actual rainfall value, and y′  
is the result value reversed by the model. 

3.5 Back propagation and parameter update 
Similar to Shin et al. [Shin, Ahn, Lee et al. (2019)], we adopt Rectify Linear Unit (ReLU) 
as the activation function, which helps to solve the convergence of deep networks, also to  
improve the model expression ability. Because of the piecewise linear characteristics of 
the ReLU function, the network does not easily lose information during forward and 
backward propagation. The expression of the ReLU function is as Eq. (14): 

0  x 0
f ( x )

x, x>0
≤

= 


，                                                                                                                (14) 

For the ST-QPE algorithm, the loss function is defined as L( θ ) , and the gradient of the 
parameter θ  is obtained by the loss function. To facilitate the derivative operation, the 
calculation formula of the loss function has been improved. The back-propagation 
process is as Eqs. (15) to (17): 
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2

1

1
2

n

i
L( θ ) ( y y ( θ ))

n =

′= −∑                                                                                                  (15) 

1

1 n

i

L y( y y ( θ ))
θ n θ=

′∂ ∂′= −
∂ ∂∑                                                                                                   (16) 

θ
LL( θ )
θ
∂

∇ =
∂

                                                                                                                    (17) 

After obtaining the gradient of each layer, we use the stochastic gradient descent 
algorithm to update the parameters of each layer so that the objective function converges. 
the magnitude of the parameter change is adjusted by referring to the learning rate η  
according to the gradient, as shown in the Eq. (18): 

θθ θ η L( θ )= − ⋅∇                                                                                                              (18) 

An inappropriate value of η  can introduce issues. The network may converge too slow if 
the value is too small, or may never converge if the value is too large. Empirically, the 
learning rate of this paper is best when it is set to 0.001. 

4 Experimental results and analysis 
The method is implemented using python with a deep learning framework pytorch on 
pycharm. To demonstrate the method, we also take the advantage of GPU computing 
architecture to gain higher performance by using CUDA 9.0 and CUDNN. We conducted 
experiments for analysis of QPE-Net8 and QPE-Net22 on a computer with an NVIDIA 
GTX 1080Ti card. 

4.1 Dataset 
Meteorological observation data is a collection of various raw data observed by 
conventional meteorological instruments and professional meteorological equipment.  
The meteorological element sequences accumulated from continuous observations at 
fixed points, cannot directly represent the characteristics of regional climate change in 
climate analysis and numerical simulation, due to limitations such as uneven station 
spatial distribution, uneven sequence lengths instability of observation equipment in 
performance. Therefore, such data encounters many restrictions in practical applications. 
Motivated by these limitations, this paper systematically integrates and perform quality 
control on the experimental samples. We choose radar data and rainfall data from 
February to October 2018 as experimental data. The string-matching algorithm is used to 
select the effective samples of the radar data. 7450 consecutive valid samples are selected 
among 11162 samples; thus 745 rainfall sets of data. In order to speedup reading, the 
original radar echo data and the rainfall data that covers the whole province are cropped 
with a smaller size of 45×45 (550 to 595, 840 to 885). The size of original coverage is 
224×224 (550 to 774, 700 to 924). The radar echo data values are normalized, level by 
level to between 0 and 1 using Eq. (19): 
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−
= ≤

−
i

i i

i min'
i

max min

x x
x   (0 i<6)

x x
                                                                                                 (19) 

where x is the original radar echo data, minx  and maxx  are the minimum and maximum 
values respectively, '

ix  is the normalized value, and i denotes the radar layer number. 

After data preprocessing steps described above, a set of standard data is built, where the 
ratio of data for to data for test is 7:3. The data set consists of ten consecutive radar 
samples and corresponding rain labels within one hour. The data set is defined as: 

1 1 2 2{( , ), ( , ), , ( , ), , ( , )}=  i i t tD x y x y x y x y                                                              (20) 

In Eq. (20), ( 1, 2,3, , )= ix i t  is the input data(all radar echo data), ( 1, 2,3, , )= iy i t is 
the output data. The target data set represents the hourly rainfall value of the automatic 
weather station. 

4.2 Experimental results 
Once the model training is done, the current optimal model and loss function graphs on 
the training and test sets are recorded. The QPE-Net8 structure and QPE-Net22 loss 
function graphs are depicted in Figs. 5-8. 

 

   Figure 5: QPE-Net8 training loss          Figure 6: QPE-Net8 testing loss 

 

    Figure 7: QPE-Net22 training loss         Figure 8: QPE-Net22 testing loss 
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Figs. 5-8 shows the changes of the loss values of QPE-Net8 and QPE-Net22 after 300 
iterations. It can be seen from the figure that as the number of iterations increases, the 
loss values of the two structures gradually decrease and tend to be stable. 
Now we can draw the inversion rainfall map based on the optimal model. Fig. 9 is a 
comparison of rainfall images retrieved from radar echo maps between CMPA, QPE-
Net8 and QPE-Net22. Darker colors indicate greater rainfall intensity. By having the loss 
maps of both two structures, the QPE-Net8 and QPE-Net22 network structures are able to 
learn the radar data characteristics to get inversed rainfall maps that are more similar to 
and the real rainfall maps. 

 

Figure 9: The rainfall images retrieved from radar echo maps. (a) the CMPA hourly 
fusion live rainfall map (the label), (b) the rainfall map retrieved by QPE-Net8, (c) the 
rainfall map retrieved by QPE-Net22 

Then, we use the MICAPS, a comprehensive analysis and processing system for weather 
information, to visualize the map on July 6, 2018 at 05:00, where the size is 45×45 with 
the grid interval of 0.05, longitude from 112° E to 114.2° E and latitude from 27.5° N to 
29.7° N. The result is then converted into Micaps fourth type data format. The data is 
arranged in the wise of first weft and backward meridian. Next, data from label, QPE-
Net8, and QPE-Net22 are imported into the Micaps system with the region set to Hunan. 
The results are shown in Fig. 10 and the enlarged area is shown in Fig. 11. 

 

Figure 10: The result comparison in MICAPS 
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Figure 11: The enlarged area map 

As can be seen from Figs. 11 and 12, a clearer and more intuitive understanding of the 
results can be developed, by visualizing CMPA fusion hourly live, and results of QPE-
Net8 and QPE-Net22 inversion. Compared with the CMPA actual situation, results show 
that the QPE-Net8 and QPE-Net22 models have better responses in several heavy 
precipitation centers, therefore better reflect the heavy precipitation area where the 
overall deviation of precipitation is relatively small. Fig. 11 shows the QPE-Net8 
underestimates the heavy rainfall center, while the QPE-Net22 model based on multi-
scale fusion is stronger than the CMPA live and QPE-Net Net8 model has better stability.  

4.3 Test of results 
In order to describe the error and accuracy characteristics of radar retrieval rainfall effect, 
this paper uses the Mean-Square Error (MSE), Mean Error (ME) and Relative Error (RE) 
to statistically evaluate these two models by Eqs. (21)-(23). RMSE is used to measure the 
similarity between predicted results and label values, which is commonly used in 
regression problems in the field of machine learning. Use RMSE to evaluate the 
dispersion of QPE-Net8, QPE-Net22 and CMPA live rainfall. If the RMSE is smaller, it 
means that the distribution is more concentrated. The average error is used to estimate the 
overall data difference. The closer the ME is to 0, the smaller the overall data difference; 
The relative error is used to estimate the reliability of the data. The smaller the RE, the 
higher the reliability of the data. 

' 2

1

1 ( )
=

= −∑
n

i
RMSE y y

n
                                                                                             (21) 

'

1

1 ( )
=

= −∑
n

i
ME y y

n
                                                                                                       (22) 

'

1

'

1

1

100%
1
=

=

−
= ×

∑

∑

n

i
n

i

y y
nRE

y
n

                                                                                           (23) 



 
 
 
474                                                                              CMC, vol.65, no.1, pp.459-479, 2020 

where n  represents the total number of samples, y  is the sample label, and 'y  is the 
value inversed by the model. 
In order to ensure the evaluation objectivity of, this paper divides rainfall into light rain 
(less than or equal to 2.5 mm), moderate rain (2.6~8.0 mm), heavy rain (8.1~15 mm), and 
torrential rain (more than or equal to 16 mm) according to the one-hour rainfall level.), 
the rainfall inversion of the two models is analyzed for each group.QPE-Net8 and QPE-
Net22 models and CMPA live rainfall scatter plots are given in Fig. 12. The closer the 
points lie on a scatter plot with respect to the straight line, the better the radar rainfall 
inversion quality is. Points above and under the line indicate overestimation and 
underestimation respectively. As shown in Fig. 12, in the case of QPE-Net8 
underestimation become more obvious as the amount of rainfall increases. the correlation 
coefficient between QPE-Net22 and CMPA live rainfall is slightly higher than that of 
QPE-Net8, indicating that QPENet22 has a better correlation with CMPA live 
distribution, as a more concentrated distribution can be observed, which effectively 
improves the accuracy of rainfall estimation. Therefore, the QPE-Net22 network gives 
inversion closer to the CMPA hourly live than QPE-Net8 does. 

 

Figure 12: The scatter plot of CMPA live, QPE-Net8 estimated rainfall and QPE-Net22 
estimated rainfall 

Then, based on the rainfall level, we give the error analysis of QPE-8 and QPE-Net22 
models, as shown in Tab. 4. 

Table 4: The analysis of radar inversion rainfall error for different rainfall levels 

Model  <2.5 mm 2.6~8.0 mm 8.1~15 mm >16 mm 

QPE-Net8 
RMSE 2.4608 7.8636 14.641 19.789 

ME 0.1976 -0.0668 0.0106 0. 1093 
RE 0.5129 0.3088 0.0339 0.0942 

QPE-Net22 
RMSE 2.4873 7.8636 14.556 17.609 

ME 0.0393 -0.0103 0.0314 0. 0297 
RE 0.1732 0.0378 0.0942 0.0275 
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According to Tab. 4, QPE-Net8 and QPE-Net22 overestimate the rainfall more often for 
light rain, heavy rain and torrential rain, but highly underestimate moderate rain. The 
QPE-Net22 model has an average error of 0.0297 mm and a relative error of 0.0275, In 
this order of magnitude, rainfall is better than the QPE-Net8 model, and the average error 
of QPE-Net8 overestimation of heavy rain is 0.0106 mm and the relative error is 0.0339, 
which is better than the QPE-Net22 model. Overall, QPE-Net22 has average and relative 
retrieval errors on cases of light rain, moderate rain, and heavy rain lower than QPE-
Net8. For moderate rain, heavy rain, and torrential rain, the mean square error generated 
by QPE-Net22 is also smaller than QPE-Net8, which indicates that QPE-Net22 has a 
higher degree of fit for heavy rainfall and torrential rainfall. 
Finally, we use the objective weather testing methods for ConvGRU, QPE-Net8 and 
QPE-Net22, including the Probability of Detection (POD), the False Alarm Ratio (FAR), 
and the Critical Success Index (CSI) [Lu, Ren, Sun et al. (2018)]. The calculation 
formulas are shown in Eqs. (24)-(26). 

=
+
TPPOD

TP FN
                                                                                                          (24) 

=
+
FPFAR

TP FP
                                                                                                           (25) 

=
+ +

TPCSI
TP FN FP

                                                                                                   (26) 

where TP, FN and FP respectively represent the number of points in cases of the success, 
false and missing reports on the inverse rainfall map. 
According to the information of radar and the rainfall label, the corresponding hourly 
rainfall maps are inverted, and the two network structures of QPE-Net8 and QPE-Net22 
are tested and evaluated. The inversed results are tested by calculating the rainfall in each 
grid cell. Evaluation and comparison analysis are performed against with the existing 
ConvGRU network model. The final evaluation results are shown in Tab. 5. 

Table 5: Comparison of inspection results 

Model POD FAR CSI 
ConvGRU 0.6342 0.2351 0.5472 
QPE-Net8 0.5991 0.0246 0.5902 

QPE-Net22 0.5255 0.0103 0.5226 

It can be seen from Tab. 5 that POD and CSI values of QPE-Net8 and QPE-Net22 are 
less than those of ConvGRU, which indicates that the rainfall results reversed by the ST-
QPE model are more stable, especially for the case of missing reports, which is referred 
to FAR Evaluation. QPE-Net8 and QPE-Net22 results are significantly better than 
ConvGRU. In summary, QPE-Net22 provides results that are closer to the ground truth 
rainfall value than the other two methods. 
Fig. 13 shows a schematic diagram of the rainfall changes at 12, 14, 17 and 18 o’clock on 
8th July, 2018. A rainfall zone including Yiyang and Yueyang is involved. As time 
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advances, the rainfall has changed significantly. At 14:00, 17:00, and 18:00, rainfall of 
more than 10mm appeared, followed by two zones with heavy rainfall greater than 16mm 
at 17:00 and 18:00. The hourly precipitation evolution chart shows that the center of 
precipitation gradually moves westward and northward over time. Fig. 13 contains the 
live rainfall map obtained from the automatic station, the CMPA live area zoomed-in 
map, the QPE-Net8 reversed area zoomed-in map, and the QPE-Net22 reversed area 
zoomed-in map. Compared with the real station rainfall, the CMPA live rainfall, QPE-
Net8 inversion rainfall and QPE-Net22 inversion rainfall precipitation distribution and 
landing area are more consistent, which further verifies the reliability of the method 
presented in this paper. 

 
Figure 13(a): The rainfall data of Hunan Province Automatic Observation Station in hour 

 
Figure 13(b): CMPA Live Rainfall 

 
Figure 13(c):  The rainfall inversion by QPE-Net8 model 

 
Figure 13(d): The rainfall inversion by QPE-Net22 model 

Figure 13: Diagram of rainfall process from 12:00 pm to 18:00 pm on July 8, 2018 
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In terms of the effect of the inversion of rainfall given in Figs. 13(c) and 13(d), the 
overall performance of both models is relatively stable, especially for moderate rain, 
heavy rain and storm in the northeast border area of Hunan. In contrast to the automatic 
station live and CMPA live rainfall, the area and intensity of different grades of rainfall 
have better improvements. The spatial and temporal characteristics of QPE-Net8 are 
generally poorer, resulting in a narrow precipitation range and large instability. Another 
concern is that QPE-Net22 can generate results closer to the CMPA reality, and it is able 
to better grasp the northward movement of rainfall zones. The area and range of the 
rainstorm are more consistent with the automatic station reality and the CMPA reality. 
The model inversion effect better. 

5 Conclusion and future work 
In this paper, an algorithm of radar echo precipitation based on spatiotemporal network is 
proposed to meet the high resolution in radar quantitative precipitation estimation which 
is difficult to achieve by traditional methods. The convolutional neural network was used 
to extract the spatial and temporal characteristics of the radar echo map, two different 
network structures have been designed for inversion experiments, and the ST-QPE 
algorithm inversion was analyzed using statistical tests and weather methods. The 
simulation results include the indicators and correlation coefficient diagrams of the two 
models for different rainfall distributions. The experimental results show that the ST-QPE 
algorithm can better reflect the rainfall information corresponding to the current hourly 
radar echo and improve the accuracy of the quantitative rainfall estimation. Therefore, 
useful practical guidance for small areas without radar stations and early warnings of 
extreme weather can be provided more efficiently.  
There are several avenues for future works. We would like to design a data set that 
includes multiple meteorological elements (such as temperature and humidity), and 
construct a network model that integrates attention mechanisms, optimizes network 
parameters. Also, improvements to the spatial and temporal characteristics can likely to 
be considered. 
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