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Abstract: Although predecessors have made great contributions to the semantic 
segmentation of 3D indoor scenes, there still exist some challenges in the debris 
recognition of terrain data. Compared with hundreds of thousands of indoor point clouds, 
the amount of terrain point cloud is up to millions. Apart from that, terrain point cloud 
data obtained from remote sensing is measured in meters, but the indoor scene is 
measured in centimeters. In this case, the terrain debris obtained from remote sensing 
mapping only have dozens of points, which means that sufficient training information 
cannot be obtained only through the convolution of points. In this paper, we build multi-
attribute descriptors containing geometric information and color information to better 
describe the information in low-precision terrain debris. Therefore, our process is aimed 
at the multi-attribute descriptors of each point rather than the point. On this basis, an 
unsupervised classification algorithm is proposed to divide the point cloud into several 
terrain areas, and regard each area as a graph vertex named super point to form the graph 
structure, thus effectively reducing the number of the terrain point cloud from millions to 
hundreds. Then we proposed a graph convolution network by employing PointNet for 
graph embedding and recurrent gated graph convolutional network for classification. Our 
experiments show that the terrain point cloud can reduce the amount of data from 
millions to hundreds through the super point graph based on multi-attribute descriptor 
and our accuracy reached 91.74% and the IoU reached 94.08%, both of which were 
significantly better than the current methods such as SEGCloud (Acc: 88.63%, IoU: 
89.29%) and PointCNN (Acc: 86.35, IoU: 87.26). 
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1 Introduction 
With the rapid development of the engineering construction industry, the demands of the 
topographic surveys and geological exploration are constantly increasing. Therefore, how 
to carry out efficient and accurate surveys of terrain and geomorphology has become a 
common focus in the civil and military fields. On the other hand, low-price and high-
automation in the process of terrain acquisition make drone scanning become an 
important way to get 3D terrain data in recent years. However, the Digital Surface Model 
(DSM) obtained by remote sensing consists of surface buildings, bridges, and trees other 
than the ground. In 3D terrain modeling, terrain debris not only affects the accuracy of 
the survey, but also increases the additional redundant data processing in the terrain 
survey. Therefore, how to remove debris from the terrain point cloud becomes an 
inevitable challenge in terrain surveying. Traditional methods of removing terrain debris 
include point cloud layering and segmentation [Su, Bethel and Hu (2016)], point cloud 
uniformity based on vegetation point removal [Yang, Yang, Li et al. (2015)] and filtering 
processing [Yan, Liu, Tan et al. (2017)]. Although these methods can remove debris from 
the terrain point cloud, however, during the removal process, some useful data in the 
terrain will be eliminated, which will lead to the loss of terrain feature information. At the 
same time, these methods will also cause point cloud data sparsification and even 
hollowing out in lush vegetation, and the process of removing debris needs a lot of 
manual intervention.  
In recent years, point cloud semantic segmentation has made a great progress in single 
target recognition and indoor or outdoor small scene segmentation such as the semantic 
segmentation method of indoor scenes based on RGBD descriptors [Deng, Todorovic and 
Latecki (2015); Yang, He, Jiang et al. (2013)] and point cloud 3D object recognition and 
model segmentation methods [Xie, Wang, Zhang et al. (2017)]. Apart from that, semantic 
segmentation also exists in the field of object tracking [Zhang, Jin, Sun et al. (2018)]. 
However, these semantic segmentation methods cannot cope with large-scale laser point 
clouds for broad outdoor terrain. Apart from that, some methods specifically for outdoor 
scenes are used in recent years such as three-dimensional outdoor scene semantic 
segmentation based on prior knowledge of higher-order categories [Tang, Zhou, Yu et al. 
(2016); Li, Li, Ren et al. (2020)] and SPG based on local reclassification strategy 
[Ladrieu and Simonovsky (2018)]. However, these methods directly perform feature 
extraction and semantic recognition on the point cloud. The extracted features cannot 
represent the original data well and are not comprehensive enough. In conclusion, the 
current point cloud semantic segmentation methods in the large-scale and low-precision 
outdoor terrain point cloud segmentation have faced two problems: one is the easy loss of 
outdoor space information and the blur of the generated object boundary; the other is the 
low recognition accuracy and semantic details missing. 
Aiming at the problems of large number of point clouds and sparse distribution of debris 
which exist in segmentation methods in terrain point cloud debris removal, that are 
caused by the massive amount of point cloud of terrain remote sensing and the limited 
number of point cloud in sparse terrain debris, a multi-attribute descriptors based 
recurrent gated graph convolution network (RGGCNet ) is proposed for remote sensing 
terrain point clouds. Inspired by Xiang et al. [Xiang, Shen, Qin et al. (2019)], RGGCNet 
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can reduce the computational complexity and adapt to large-scale and low-precision 
terrain point cloud by using graph structure on the premise of a better description of 
features. The proposed RGGCNet has important significance in mineral census and 
exploration, road construction, conservation of water and soil, topographic survey, and 
national defense construction. The main contributions of our work are: 
• We did not need convolution to obtain the feature information contained in the point 
cloud, but use the multi-attribute descriptor to describe the terrain information contained 
in low-precision point by reconstructing the geometric information and color information 
of terrain points. 
• The graph structure is taken to reduce the amount of terrain point cloud data to be 
processed by deep learning without losing the main fine details. 
• We used PointNet for graph embedding and recurrent gated graph convolution for 
classification. For the latter, we used a new input gate form of Long Short Term Memory 
(LSTM). 
• We produced a new public Low precision mountain terrain data set (LPMT) to obtain 
terrain remote sensing in real scenes. In particular, we improve mean per-class 
intersection over union (mIoU) by 6.82 points compared with PoinCNN and 4.79 points 
compared with SEGCloud. 

2 Related work 
2.1 Feature selection 
Feature extraction is a critical step in terrain processing such as topographic survey, terrain 
segmentation, and terrain reconstruction. The traditional terrain processing is mainly based on 
the ridgeline, ditch, trench edge line, contour line and tableland line [Koka, Anada, Goto et al. 
(2017); Ma, Li, Yang et al. (2015)] as well as 2D vector graphics [Peng, Lin, Zhang et al. 
(2019); Peng, Long and Lin (2019)]. With the lucubrating and extensive application of terrain, 
pixel-level based low-layer visualization features such as color information, texture features, 
and shape features of terrain point clouds have been gradually proposed [Yang (2011)]. 
Compared with terrain feature lines, these features have the advantages of invariance, less 
computation, and visualized expression, which has made great progress in the processing of 
image-based terrain features. Color histogram construction based on HSV, RGB and other 
color spaces has good discrimination ability for sky, grassland, land, and other categories in 
the scene [Shaik, Ganesan, Kalist et al. (2015)], but give poor segmentation effect for similar 
colors or clutters. In recent years, local image features such as edges, corners, lines, curves, 
and areas with special attributes have been widely used in multiple fields [Gharbi, Chen, 
Barron et al. (2017); Daniilidis, Deville, Durandcartagena et al. (2017)]. These image features 
are abundant in numbers, but low correlation between each other. At the same time [Gao and 
Yuan (2019)] found that texture information such as Gabor, LBP, and gradient co-occurrence 
matrix can be used to distinguish regions with different textures, which is effective in 
discrimination of thickness and density. However, they are helpless in distinguishing the fine 
difference between the texture information. Therefore, the image-based terrain feature 
extraction methods have the limitation on expressing terrain feature information and fail to 
make good use of the terrain point cloud context information. 



 
 
 
582                                                                             CMC, vol.65, no.1, pp.579-596, 2020 

The graphics-based terrain feature method has appeared in recent years. Topographic 
features, ridge points, and valley points [Kim (2013)] were used to repair point cloud 
holes in terrain areas. However, ridge points and valley points are extracted by GIS slope 
analysis and reclassification methods, which make it still not universal for the large-scale 
terrain point clouds. A terrain feature information based airborne LiDAR point cloud 
thinning algorithm [Qian, Zhang and Wang (2017)] mainly uses six types of terrain 
feature as local point density, elevation standard deviation, slope, gaussian curvature, 
average curvature, roughness degree, which was proved good thinning effect in high-
precision terrain point clouds, with not being tested in low-precision point clouds. Octree 
filtering based ground and feature point extraction [Wang, Liu, Guo et al. (2017)] is not 
suitable for the description of complex terrain scenes for less enough semantic 
expressions. Feature line and feature Surface-based point cloud registration algorithms 
[Ponerleau, Colas and Siegwart (2015)], such as ground, horizontal roof edge elevation, 
and control point elevation, have a better effect in large-curvature terrain. In summary, 
due to limitations in processing range, the traditional terrain feature extraction methods 
cannot be used to extract point cloud features of low-precision and complex scenes. 
Therefore, it’s necessary for terrain debris recognition to obtain enough information in 
limited debris point cloud of terrain remote sensing. 

2.2 3D semantic segmentation 
Recent 3D terrain processing methods mainly focused on terrain modeling and 
visualization. For example, based on the vegetation distribution database, Liu et al. [Liu, 
Li and Jiang (2015)] proposed a method for automatic identification of vegetation-based 
remote sensing information, which realized the extraction and classification management 
of vegetation data in the sample area. Besides, Li [Li (2013)] proposed a GPU based 
three-dimensional seabed terrain visualization, where real terrain data is taken for DEM 
modeling by taking advantage of CG High-Level Shading Language in illumination, 
texture rendering, and environment mapping. These methods have greatly enhanced the 
expressive ability of graphics in terrain, can more effectively represent terrain features, 
and expand the application of graphics in various scenes. But research on terrain scene 
understanding and semantic processing has still been in the fledging period. 
As an important research branch in the information science, scene understanding has 
important significance in the fields of data learning and mining, biometric cognition, 
scene recognition, and statistical modeling. Semantic segmentation has proven to be an 
important and effective method for scene understanding in graphics [Zhang, Liang, Yang 
et al. (2018)] as well as video [Song, Yang, Xie et al. (2017)]. However, the traditional 
3D point cloud semantic segmentation method will cause a large amount of 3D 
information loss, because 3D point cloud needs to be projected onto a 2D image before 
inputting a convolutional neural network such as Snapnet [Bouch, Guerry, Saux et al. 
(2018)] and DeePr3SS [Lawin, Danelljan, Tosteberg et al. (2017)]. With the development 
of artificial intelligence technology, in order to retain the structural information of the 3D 
point cloud, the team of Yang et al. [Yang, Maturana and Scherer (2016)] respectively 
proposed a supervised 3DCNN based Voxel grid network. These networks can 
effectively retain the structural information in the point cloud, but not applicable for the 
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high-computational and information loss in the color and intensity of the point cloud. 
PointNet [Qi, Su, Mo et al. (2017)], SEGCLoud [Tchapmi, Choy, Armeni et al. (2017)] 
and PointCNN [Li, Bu, Sun et al. (2018)] network make full use of the multimodal 
information of the point cloud and reduce the complexity, but they cannot solve the 
problems of lack of clear structure and uneven training samples during the large-scale 
point clouds training. 
How to introduce efficient scene recognition and classification network based on terrain 
simplification into large-scale terrain remote sensing recognition is very necessary for 
engineering construction. 

3 Method 
A multi-attribute descriptors based recurrent gated graph convolution network 
(RGGCNet) is proposed to recognize the debris in terrain remote sensing. At first, a 
multi-attribute descriptor is designed by restructuring the geometric and color features of 
the terrain point cloud to better describe the information in the limited debris point cloud. 
Then, by employing multi-attribute descriptors in unsupervised classification, we 
aggregate point clouds into several terrain areas and regard each terrain as super point. 
Next, by defining an oriented attribute graph, we combine the super points into a graph 
structure for reducing the number of terrain point clouds. Then, we use PointNet to 
embed the data of the edge of the super graph structure. At last, a LSTM based recurrent 
graph convolution is proposed to classify graph’s nodes. 

 

Figure 1: Struct of RGGCNet 

3.1 Multiple attribute descriptor 
Since each point in the low-precision point cloud contains less available information, we 
extend the available extra dimension to describe the local information at each point in the 
input terrain point clouds 𝐷𝐷. For each point 𝑝𝑝𝑖𝑖, we construct its multi-attribute descriptor 
𝜌𝜌𝑖𝑖 in Eq. (1): 
ρi = (GEi(ci, li, si, vi, ei), CRi(ai, bi, ri))                                                                                         (1) 
where 𝐺𝐺𝐺𝐺𝑖𝑖 is geometric descriptor, consisting of five defined geometric dimensions. And 
𝐶𝐶𝐶𝐶𝑖𝑖 is color descriptor, consisting of three color dimensions. 
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First, we design a five dimensions geometric descriptor 𝐺𝐺𝐺𝐺𝑖𝑖  in Eq. (2), where five 
characteristics-curvature 𝑐𝑐𝑖𝑖 Eq. (2-1), linear 𝑙𝑙𝑖𝑖 Eq. (2-2), planar 𝑠𝑠𝑖𝑖 Eq. (2-3), spatial 𝑣𝑣𝑖𝑖 Eq. 
(2-4) and verticality 𝑒𝑒𝑖𝑖 Eq. (2-5) are employed to describe the spatial terrain. 
𝑐𝑐𝑖𝑖 = 𝛿𝛿3

𝛿𝛿1+𝛿𝛿2+𝛿𝛿3
                                                                                                                     (2-1) 

𝑙𝑙𝑖𝑖 = 𝛿𝛿1−𝛿𝛿2
𝛿𝛿1

                                                                                                                          (2-2) 

𝑠𝑠𝑖𝑖 = 𝛿𝛿2−𝛿𝛿3
𝛿𝛿1

                                                                                                                                     (2-3)  

𝑣𝑣𝑖𝑖 = 𝛿𝛿3
𝛿𝛿1

                                                                                                                                          (2-4) 

𝑒𝑒𝑖𝑖 = 𝜏𝜏3
2

�𝜏𝜏1
2+𝜏𝜏2

2+𝜏𝜏3
2
                                                                                                                   (2-5) 

where 𝛿𝛿1, 𝛿𝛿2, 𝛿𝛿3(𝛿𝛿1 > 𝛿𝛿2 > 𝛿𝛿3)  are three eigenvalues of the covariance matrix of 
positions of the point cloud neighborhoods. 𝜏𝜏1, 𝜏𝜏2, 𝜏𝜏3 are the three eigenvectors associated 
with 𝛿𝛿1, 𝛿𝛿2, 𝛿𝛿3 respectively. 
Further, to accurately describe the difference of color gradation in each point, two color 
components 𝑎𝑎𝑖𝑖 Eq. (3-3) and 𝑏𝑏𝑖𝑖 Eq. (3-4) ranged from 0 to 1 in the LAB color coordinate 
system are employed in Eq. (3-1) and Eq. (3-2) to deal with the terrain point cloud for its 
wider color gamut.  
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𝑜𝑜𝑡𝑡ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒
                                                                                    (3-2) 

𝑎𝑎𝑖𝑖 = 5[𝑓𝑓(𝑋𝑋 𝑋𝑋𝑛𝑛⁄ ) − 𝑓𝑓(𝑌𝑌 𝑋𝑋𝑛𝑛⁄ )]                                                                                            (3-3) 
𝑏𝑏𝑖𝑖 = 2[𝑓𝑓(𝑌𝑌 𝑌𝑌𝑛𝑛⁄ ) − 𝑓𝑓(𝑍𝑍 𝑍𝑍𝑛𝑛⁄ )]                                                                                             (3-4) 
Apart from that, we also define color curvature 𝑒𝑒𝑖𝑖  for better describing the color 
differences between each point in Eq. (3-5): 
𝑒𝑒𝑖𝑖 = 𝜃𝜃3

𝜃𝜃1+𝜃𝜃2+𝜃𝜃3
                                                                                                                    (3-5) 

where 𝜃𝜃1, 𝜃𝜃2, 𝜃𝜃3(𝜃𝜃1 > 𝜃𝜃2 > 𝜃𝜃3) are three eigenvalues of the covariance matrix of RGB 
color of the point cloud neighborhoods, with RGB value ranging in [0,1]. 

3.2 Terrain division  
By taking advantage of minimum global energy proposed by Landrieu et al. [Landrieu 
and Simonovsky (2018)], the generalized minimization division problem of the terrain is 
converted to a minimized optimization problem. However, due to non-convex and non-
continuous of this minimization function, it cannot quickly solve the problem of feature 
partitioning in large-scale point cloud scenarios such as terrain. 
In this section, an unsupervised classification is adapted to break down the terrain points 
into several minimum divisions by introducing a cut-pursuit algorithm [Raguet and 
Landrieu (2017)] to the problem of global energy. Thus, we improved the global energy 
algorithm by defining the minimum division as the solutions of the normally connected 
components in the following equation: 
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𝑎𝑎𝑒𝑒𝑎𝑎 𝑚𝑚𝑒𝑒𝑚𝑚
𝑔𝑔∈𝑅𝑅𝜌𝜌𝑖𝑖

∑ ||𝑎𝑎𝑖𝑖 − 𝜌𝜌𝑖𝑖||𝑖𝑖∈𝐶𝐶 + 𝜇𝜇 ∑ 𝑒𝑒𝑖𝑖,𝑗𝑗(𝑖𝑖,𝑗𝑗)∈𝐸𝐸𝑛𝑛𝑛𝑛 ∙ �𝑎𝑎𝑖𝑖 − 𝑎𝑎𝑗𝑗 ≠ 0�                                                    (4) 

where [∙] is the Iverson bracket, if the condition is satisfied in the Iverson bracket, it 
means 1, otherwise, it means 0. 𝑒𝑒 ∈ 𝐶𝐶+

|𝐸𝐸| express a decreasing linear relation with the 
edge length. µ is a factor, the regularization strength which determines the coarseness of 
the resulting division.  
As a result, the solution of Eq. (4), constantly connected components 𝑃𝑃 =
{𝑃𝑃1,𝑃𝑃2,𝑃𝑃3,⋯ ,𝑃𝑃𝑘𝑘}, define our geometrically simple elements named super point. 

3.3 Graph construction 
Based on the above terrain super point 𝑃𝑃, the super point graph is defined as an oriented 
attribute graph 𝐺𝐺 = (𝑃𝑃,𝐺𝐺, 𝛾𝛾) with three components 𝑃𝑃-the super point, 𝐺𝐺-the super edge, 
and 𝛾𝛾-the edge feature of 𝐺𝐺.  
Super edge 𝐺𝐺 is defined based on the Voronoi adjacency graph 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣 = (𝑃𝑃,𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣) in Eq. (5): 
𝐺𝐺 = {(𝑀𝑀,𝑁𝑁) ∈ 𝑃𝑃2|∃(𝑒𝑒, 𝑗𝑗) ∈ 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣 ∩ (𝑀𝑀 × 𝑁𝑁)}                                                                        (5) 
If two super points 𝑀𝑀 and 𝑁𝑁 can be connected by at least one edge, then these two points 
will constitute an adjacency relationship 𝐺𝐺 in Eq. (5). 
The edge feature offset-𝛾𝛾 is calculated from two super points 𝑀𝑀 and 𝑁𝑁 which is joined by 
edge 𝐺𝐺 . The seven components of edge features 𝛾𝛾  describe the different super edge 
characteristics in Tab. 1: 
The spatial features 𝜑𝜑m in Tab. 1 is defined in Eq. (6): 
𝜑𝜑(𝑀𝑀,𝑁𝑁) = ��𝐿𝐿𝑖𝑖 − 𝐿𝐿𝑗𝑗��(𝑒𝑒, 𝑗𝑗) ∈ 𝐺𝐺𝑣𝑣𝑣𝑣𝑣𝑣 ∩ (𝑀𝑀 × 𝑁𝑁)�                                                                     (6) 
where 𝐿𝐿𝑖𝑖 means the 3D position of the super point 𝑃𝑃𝑖𝑖. 

Table 1: Hyperedge features between two super points M and N. Where we define |𝑀𝑀| as 
the number of points comprised in a super point 𝑀𝑀 , shape features 𝑙𝑙𝑒𝑒𝑚𝑚𝑎𝑎𝑡𝑡ℎ(𝑀𝑀) = 𝜆𝜆1 , 
surface (𝑀𝑀) = 𝜆𝜆1 ∙ 𝜆𝜆2 , 𝑣𝑣𝑜𝑜𝑙𝑙𝑣𝑣𝑚𝑚𝑒𝑒(𝑀𝑀)  =  𝜆𝜆1 ∙ 𝜆𝜆2 ∙ 𝜆𝜆3 , 𝜆𝜆1,𝜆𝜆2,𝜆𝜆3  is the eigenvalues of the 
covariance of the points positions comprised in each super point, sorted by decreasing value 

Edge feature (𝛾𝛾) Size Description 
Mean offset 3 meanm∈𝜑𝜑(𝑀𝑀,N)𝜑𝜑m 

Offset deviation 3 Stdm∈𝜑𝜑(𝑀𝑀,N)𝜑𝜑m 
Centroid ratio 3 meani∈M𝑂𝑂ı̇−meanj∈N𝑂𝑂j 
Length ratio 1 log length(M)/length(N) 
Surface ratio 1 log surface(M)/surface(N) 
Volume ratio 1 log volume(M)/volume(N) 

Point count ratio 1 log |M|/|N| 

3.4 PointNet embedding 
In order to reduce the number of low-precision terrain point clouds, the original point clouds 
are abstracted into a super point graph. Different from point cloud-based data, multiple feature 
fusion descriptors based super-point data will cause the general feature generation networks to 
fail in extracting features directly. Accordingly, by introducing the PointNet, we embed each 
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input super point 𝑃𝑃𝑖𝑖 into a vector of fixed dimension size 𝑑𝑑𝑧𝑧 to form an embedded super point 
𝑧𝑧𝑖𝑖  as in Eq. (7). Therefore, the processing object in general feature extraction network is 
replaced with a standard vector for the better feature extraction of super point. 
𝑧𝑧𝑖𝑖 = 𝐼𝐼(𝑈𝑈𝑖𝑖 ,𝑑𝑑𝑧𝑧)                                                                                                                      (7) 
where, 𝐼𝐼  is the embedding operation, 𝑑𝑑𝑧𝑧  is the vector dimension of the super point 
embedding. The embedding operation 𝐼𝐼 is designed to facilitate the feature extraction of 
subsequent layers and improve the operation efficiency of network, based on the aligning 
of input super point data by spatial transformation network T-net [Qi, Su, Mo et al. 
(2017)], a multi-layer perceptron MLP is adopted to achieve feature enhancement, and 
maximum pooling is employed to aggregate super point features to achieve super point 
embedding in the PointNet network. At last, an embedded super point 𝑧𝑧𝑖𝑖 is formed for 
charactering the super point. 
In order to make PointNet better learn the spatial distribution of different scales, each super 
point 𝑃𝑃𝑖𝑖 is scaled into a unit sphere 𝑈𝑈𝑖𝑖 , each point 𝑝𝑝𝑗𝑗  is represented by their normalized 
position 𝑚𝑚𝑜𝑜𝑒𝑒𝑚𝑚𝑎𝑎𝑙𝑙�𝑝𝑝𝑗𝑗� and multi-attribute descriptor 𝜌𝜌𝑗𝑗 in Eq. (8), before embedding. 
𝑈𝑈𝑖𝑖 = �𝑚𝑚𝑜𝑜𝑒𝑒𝑚𝑚𝑎𝑎𝑙𝑙�𝑝𝑝𝑗𝑗�,𝜌𝜌𝑗𝑗� 𝑝𝑝𝑗𝑗 ∈  𝑃𝑃𝑖𝑖}                                                                                            (8) 

3.5 Recurrent gated graph convolution 
3.5.1 Graph convolution neural network 
Aiming at the problem that the general network needs too many parameters and consumes a 
large amount of memory in processing low-precision, large-scale data sets, edge conditional 
convolutional ECC [Li, Bu, Sun et al. (2018)] is introduced to solve these challenges. The 
convolution weights are dynamically generated by taking advantages of ability of multi-
layer perceptron in continuously processing super edge feature 𝛾𝛾𝑗𝑗𝑖𝑖 in Eq. (9), which further 
reduces the number of parameters and saves memory space. 
𝑚𝑚𝑖𝑖

(𝑡𝑡) = 𝑚𝑚𝑒𝑒𝑎𝑎𝑚𝑚𝑗𝑗|(𝑗𝑗,𝑖𝑖)∈𝜀𝜀𝛩𝛩�𝛾𝛾𝑗𝑗𝑖𝑖;𝑊𝑊𝑒𝑒� ∙ ℎ𝑗𝑗
(𝑡𝑡)                                                                                      (9) 

where, Θ is a multilayer perceptron, 𝑊𝑊𝑒𝑒 is an edge weight vector generated by regression 
on a specific edge vector; 𝑚𝑚𝑖𝑖  is a cyclic convolution weight obtained by performing 
vector multiplication on each element. By combing ECC, the graph convolution neural 
network generates the convolution weights 𝑚𝑚𝑖𝑖 through the multi-layer convolution of Eq. 
(10), according to the embedded 𝑧𝑧𝑖𝑖 of super point 𝑃𝑃𝑖𝑖 and the connection between super 
point with its neighbors in super point graph, Feature extraction is performed on the 
super-point data to obtain the feature vector 𝑓𝑓(𝑖𝑖,𝑗𝑗) of the super point data in Eq. (10). 
𝑓𝑓(𝑖𝑖,𝑗𝑗) = 𝐶𝐶𝑒𝑒𝑙𝑙𝑣𝑣(𝑚𝑚𝑖𝑖 ∙ [𝑧𝑧𝑖𝑖] + 𝑏𝑏𝑖𝑖)                                                                                                          (10) 
where, 𝐶𝐶𝑒𝑒𝑙𝑙𝑣𝑣 is the activation function layer. 

3.5.2 Gated recurrent 
By taking advantage of LSTM forgetting layer, the LSTM gated neural unit is improved 
to solve the problem of gradients disappearance and gradients explosion, which control 
the retention or forgetting of input point cloud feature, based on the feature vector 𝑓𝑓(𝑖𝑖,𝑗𝑗) 
and the input message 𝑥𝑥𝑡𝑡 At each LSTM iteration, the hidden status ℎ𝑡𝑡 and the incoming 
message 𝑥𝑥𝑡𝑡 are obtained as inputs, and used to calculate its new hidden status ℎ𝑡𝑡+1. At 
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last, the final feature graph is obtained after multiple iterations of the LSTM, shown in 
Fig. 2. A specific implementation process is designed as following: 
First step, the feature vector 𝑓𝑓(𝑖𝑖,𝑗𝑗) of each super point 𝑃𝑃𝑖𝑖 is stored as a hidden status in the 
LSTM, and then the initial hidden status ℎ0 is initialized by the super point descriptor 𝑧𝑧𝑖𝑖 
embedded by PointNet network. By taking the initial cell status 𝐶𝐶0, as input information, 
the judgment information 𝑥𝑥0  is generated from the initial hidden status ℎ0 , which 
generated by the data variable filling process. 
In second step, the information that the cell status needs to be discarded is determined by 
the forgetting layer of LSTM. According to the information of ℎ𝑡𝑡−1  and 𝑥𝑥𝑡𝑡 , a vector 
between 0 and 1 in Eq. (11) is calculated to control the retention or forgetting of the 
information in cell status 𝐶𝐶𝑡𝑡−1 in the fourth step. 
𝑓𝑓𝑡𝑡 = 𝜎𝜎�𝑊𝑊𝑓𝑓[ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑘𝑘𝑓𝑓�                                                                                                  (11) 
where, ℎ𝑡𝑡−1  is the hidden status at the previous moment, and 𝑥𝑥𝑡𝑡  is the judgment 
information at the current moment. 
In the third step, the information which is added to the cell status is determined by the 
input gate through LSTM. Taking the hidden status ℎ𝑡𝑡−1 and the judgment information 
𝑥𝑥𝑡𝑡  as input, a cell status update control factor is generated by the input gated neural 
network unit as in Eq. (12); a candidate cell information is further optimized by taking 
advantage of the candidate information layer of the cell, as in Eq. (13). 
𝑒𝑒𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑖𝑖] + 𝑘𝑘𝑖𝑖)                                                                                                 (12) 
�̃�𝐶𝑡𝑡 = 𝑡𝑡𝑎𝑎𝑚𝑚ℎ(𝑊𝑊𝑐𝑐 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑘𝑘𝑐𝑐)                                                                                          (13) 
where, 𝑒𝑒𝑡𝑡  is a cell update control factor, �̃�𝐶𝑡𝑡  is candidate cell information, and tanh is 
activation function layer. 
In the fourth step, the old cell information is updated to the new cell information through 
the output gate shown in Eq. (14). 
𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∙ 𝐶𝐶𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 ∙ �̃�𝐶𝑡𝑡                                                                                                         (14) 
where, 𝑓𝑓𝑡𝑡  is the forgetting layer, determines which part of the cell information 𝐶𝐶𝑡𝑡−1 
should be forgotten. 𝑒𝑒𝑡𝑡  is the cell update factors, that determines the candidate 
information for the cell information 𝐶𝐶𝑡𝑡−1  to be updated, and obtains the new cell 
information 𝐶𝐶𝑡𝑡 . 
Finally, after the cell status updated, the judgment condition 𝑜𝑜𝑡𝑡 is calculated through the 
fully connected layer by inputting ℎ𝑡𝑡−1  and 𝑥𝑥𝑡𝑡  in Eq. (15), to determine status 
characteristics of the cell should be output. Accordingly, the current iterative output ℎ𝑡𝑡 is 
obtained by multiplying the judgment condition 𝑜𝑜𝑡𝑡 with the new cell status 𝐶𝐶𝑡𝑡 which goes 
through the activation function layer, shown in Eq. (16). 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑣𝑣 ∙ [ℎ𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑘𝑘𝑣𝑣)                                                                                               (15) 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∙ 𝑡𝑡𝑎𝑎𝑚𝑚ℎ(𝐶𝐶𝑡𝑡)                                                                                                             (16) 
where, ℎ𝑡𝑡 is the output of the current iteration, that is, the input status of the next iteration 
process. 
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4 Experiments 
In this paper, we evaluated the proposed RGGCnet model on Low precision mountain 
terrain data set (LPMT) in three parts. First, we show LPMT dataset collection and 
production (Section 4.1); Second, the data set attribute preprocessing and super point graph 
construction is shown on LPMT (Section 4.2); Third, we demonstrate the training, testing 
and evaluation of the RGGCNet on LPMT (Section 4.3). In Section 4.3, a comparison 
between our model and the state of art is evaluated on three metrics: Average per-class 
accuracy (Acc) [Xu, Schwing and Urtasun (2014)], Overall Accuracy (OA) [Masocha, 
Dube and Mpofu (2018)] and Intersection over Union (IoU) [Taran, Gordienko and 
Kochura (2018)]. At last, ablation studies are employed to verify the critical role of multi-
attribute descriptors and LSTM in terrain data processing (Section 4.4). 

4.1 Collection and production of LPMT dataset 
The source data of LPMT comes from Jiulong mountain of Gansu-China, which is 
scanned by low-precision image-type unmanned aerial vehicles (UAVS) with an area of 
8.75 square kilometers in interval of 0.5 meter. The resulting files are JPG format and 
Digital Surface Model (DSM) files. In light of the demands of sematic segmentation 
network for input dataset, we convert terrain files into point cloud in PCD formats, where 
the LPMT composed of more than 20 million points, including hills, basins, ridges and 
other terrain, as well as houses, roads and other sundries. Finally, the large-scale point 
cloud is cut into fourteen parts as training set (Tab. 2) with hundreds of thousands of 
points and seven files as test set (Tab. 3) with points ranging from four million to six 
million. Where, Name means different subset of terrain point cloud scenes; Size shows 
the memory space occupied by each subset; Points represents the number of points in 
each subset of point cloud scene; debris number means the number of debris in tags of 
this scene; Terrain's number means the number of terrain in tags of this scene. 

Table 2: Training dataset 

Name Size Points Debris number Terrain’s number 
Dataset1 14.6 M 169695 8 5 
Dataset2 14.4 M 170497 4 5 
Dataset3 16.3 M 178531 2 6 
Dataset4 5.77 M 66732 2 5 
Dataset5 42.0 M 205185 6 8 
Dataset6 19.8 M 256162 5 6 
Dataset7 47.3 M 589270 6 9 
Dataset8 28.9 M 312000 4 5 
Dataset9 4.78 M 60480 1 4 
Dataset10 13.0 M 152641 4 6 
Dataset11 26.4 M 310734 9 6 
Dataset12 39.8 M 420000 9 9 
Dataset13 41.4 M 415338 4 15 
Dataset14 24.4 M 249804 2 7 
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Table 3: Test dataset 
Name Size Points Debris number Terrain’s number 
test_1 621 MB 7387808 21 19 
test_2 339 MB 3811151 6 7 
test_3 274 MB 4349427 26 11 
test_4 313 MB 4834444 15 7 
test_5 258 MB 3711438 21 8 
test_6 223 MB 3183450 10 5 
test_7 172 MB 2473143 13 3 

4.2 Construction of terrain super point graph 
4.2.1 Label mapping 
Before processing the input point cloud, the extra dimension is precalculated to determine 
the corresponding relationship between the label point and the point cloud scene, named 
the label mapping. For each labeled point in the scene, the label mapping of this point is 
set as 1, and label mapping of the part dataset is shown in Tab. 4. Where Point serial 
number 3556 means the 3556th point in dataset1, where the debris is 1, so the points 
belong to the debris. 

Table 4: Label mapping (dataset1 in LPMT) 
Point serial number debris Terrain 

3556 1 0 
3557 1 0 
3558 1 0 
3559 1 0 
3660 1 0 
3661 1 0 
3662 0 1 
3663 0 1 
3664 0 1 
3665 0 1 

4.2.2 Multi-attribute descriptors generation 
For each point in the LPMT, we first calculate and extract its multi-attribute descriptor 
according to the reconstruction algorithm proposed in Section 3.1, which is used for 
accurate terrain division in the next step. Tab. 5 gives part of the calculation results of the 
multi-attribute descriptors of dataset1 in LMPT. By extracting multi-attribute descriptors, 
we can mine a lot of information hidden in the coefficient point cloud to better describe 
the terrain point cloud. 
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Table 5: Multi-attribute descriptors (dataset1 in LMPT) 
Geometric descriptor Color descriptor 

Curvature Linear Planar Spatial Verticality a b Color curvature 
0.006669 0.303082 0.685526 0.011393 0.021503 0.109440 0.027812 0.065637 
0.007448 0.282405 0.704706 0.012889 0.020396 0.115613 0.029463 0.063258 
0.009399 0.303651 0.680254 0.016096 0.014376 0.113472 0.028886 0.051297 
0.010012 0.369031 0.614474 0.016495 0.014483 0.105312 0.026715 0.059000 
0.011141 0.407960 0.574103 0.017937 0.022980 0.106195 0.026949 0.029233 
0.010321 0.443247 0.540518 0.016235 0.032737 0.108486 0.027558 0.044755 
0.009075 0.443174 0.542568 0.014258 0.041665 0.105312 0.026715 0.022629 
0.008897 0.443102 0.0676313 0.013975 0.050702 0.109923 0.027941 0.017384 
0.009111 0.442910 0.0601516 0.014317 0.057450 0.108486 0.027558 0.054411 

4.2.3 Terrain division and super graph composition 
Based on the multi-attribute descriptors in Section 4.2.2, we divide the terrain point cloud 
into serval simple shapes in geometric sense according to the method in Section 3.2. In 
this way, the terrain point cloud is divided into several simple geometric divisions which 
named super point (Fig. 2(b)). Then, by simulating method of Section 3.3 on each 
adjacent super point, the graph structure is formed by connecting the super point with 
rich attributes edges (Fig. 2(c)). The comparison of the number of points before and after 
super point composition is shown in the Tab. 6. By dividing the point cloud into super 
points, we reduce the amount of data in the subsequent semantic segmentation process, 
thus simplifying the calculation process. 

    
(a) (b) (c) (d) 

Figure 2: Terrain division and composition (dataset1). (a) Description of raw point cloud; 
(b) Description of aggregate division; (c) Description of super point graph. (d) prediction 
of terrain point 

Table 6: The number of super points in Test dataset 
Name Points Super Points 
test_1 7387808 543 
test_2 3811151 294 
test_3 4349427 392 
test_4 4834444 414 
test_5 3711438 307 
test_6 3183450 245 
test_7 2473143 213 
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4.3 Training and test 
In this section, RGGCNet is trained and tested on LPMT, and evaluated by comparing it 
with SEGCloud, SPG, PointNet, PointCNN and 3D-BoNet [Yang, Wang, Clark et al. 
(2019)] in Acc, OA and IoU (Tab. 6). In the process of training and testing, we adopted the 
micro-averaging method mentioned by Engelmann et al. [Engelmann, Kontogianni and 
Hermans (2017); Qi, Su, Mo et al. (2017)] to perform 6-fold cross validation on the LMPT. 
In our 6-fold cross validation, the original data were divided into 6 groups, where each 
subset data was used as a verification set and the remaining 5 subsets as the training set. 
Therefore, 6 models were obtained, and the average classification accuracy of the final 
verification dataset of the 6 models is taken as the performance index of the network 
structure. In this sense, each sample data is used as both training data and test data, which 
can effectively avoid the occurrence of over-learning and under-learning. By taking the 6-
fold cross-validation, our training process is carried out on the training set of LPMT (Tab. 2) 
and the obtained prediction accuracy is defined as the training accuracy. Then, we verify 
the trained model on the test dataset (Tab. 3) of LPMT. The quantitative results obtained in 
this paper are shown in Tab. 7, while the qualitative results are shown in Fig. 3.  

Table 7: The comparison of RGGCnet with SEGCloud, SPG, PointNet and PointCNN 
( test dataset of LMPT) 

Method Terrain Debris Acc mIoU OA 
Ours 99.22 88.95 91.74 94.08 99.26 
SPG 98.86 85.20 90.76 92.03 98.93 
SEGCloud 97.25 83.34 88.63 89.29 96.32 
PointNet 96.45 86.68 87.32 85.56 96.45 
PointCNN 97.34 84.34 86.35 87.26 95.46 
3D-BoNet 98.34 84.16 89.98 93.64 94.65 
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(a) (b) (c) 

 Terrain          Debris 

Figure 3: Raw point and prediction (Test dataset of LMPT) (a) Description of raw point 
cloud; (b)Terrain division; (c) Description of prediction 

 
(a) 

 
(b) 

Figure 4: Accuracy of IoU and Acc of each framework in test dataset of LPMT. (a) 
Description of Acc; (b) Description of IoU 

5 Discussion 
From Section 4.3 (Tab. 6) we can see that RGGCNet is much better than SEGCloud (3.11 
Acc, 4.79 mIoU, 2.94 OA), PointNet (4.42 Acc, 8.52 mIoU, 2.81 OA), PointCNN (5.39 
Acc, 6.82 mIoU, 3.80 OA) and 3D-BoNet (1.76 Acc, 0.44 mIoU,4.61 OA) for them only 
designed for the indoor scene. When dealing with the debris of terrain remote sensing 
data, these networks could not extract effective information only from limited number of 
point cloud of terrain debris. Therefore, in the accuracy of Debris prediction, RGGCNet 
leads SEGCloud by 5.25 percentage points, PointNet by 2.27 percentage points, and 
PointCNN by 4.61 percentage points. The advantage of RGGCNet over SPG is in the 
introduction of the LSTM gate structure (2.05 mIoU), which can effectively improve the 
problem of Gradient explosion and gradient disappearance during training process. And 
The comparison between RGGCNet and NoLSTM in Section 4.4 (Tab. 7) also proves 
this view.Apart from that, The result in Fig. 4 indicates that in the same test on LPMT, 
RGGCNnet only used 116 epoches to achieve convergence, 20 epochs less than other 
network structures, indicating that the training process is accelerated by reducing the 
number of point clouds (Tab. 6). 
We also explore the advantages of several designed attributes by individually removing 
them from RGGCNet to compare the framework’s performance of each attributes, and 
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the comparing result is shown in Tab. 8. In Color Descriptor Only, we removed the 
geometric descriptor from multi-attribute descriptors during the terrain division process; 
In Geometric Descriptor Only, we removed color descriptor from multi-attribute during 
the terrain division process; In NoLSTM, we remove the gate control LSTM from 
RGGCNet; In GRU, we changed the gate control unit from LSTM to GRU. It can be seen 
from the first three lines in Tab. 8, geometric descriptor accounts for about 10 mIoU 
points and color descriptor accounts for about 3 mIoU points, which indicates that both 
geometric descriptor and color descriptor are important information in the terrain point 
cloud. Next, without LSTM, RGGCNet’s performance has declined significantly (5.35 
mIoU). And Compared with LSTM, GRU decreases the performance by 2.12 mIoU. 
Therefore, we can see that LSTM can effectively improve the semantic segmentation 
accuracy of large-scale low-precision terrain point cloud while solving the gradient 
explosion phenomenon in the training process, and it has more advantages than GRU. 

Table 8: Ablation study and comparison on the test set of LPMT 

Model Acc mIoU 
RGGCNet 91.74 94.08 
Color Descriptor Only 81.32 83.86 
Geometric Descriptor Only 88.56 91.14 
NoLSTM 86.24 88.73 
GRU 89.65 91.96 

6 Conclusions 
In this paper, a terrain faced 3D semantic segmentation framework for remote sensing is 
proposed by combing multi-attribute descriptors, graph structure and graph convolution 
to recognize terrain debris. The experiment results show that the proposed multi-attribute 
descriptor can commendably describe the limited point cloud of terrain debris, and the 
gated graph convolutional network with LSTM can effectively improve the semantic 
segmentation ability on graph structure which reduce the amount of terrain point cloud 
data from millions to hundreds.  In conclusion, the proposed RGGCNet can effectively 
improve the semantic segmentation ability on remote sensing point cloud of terrain.  

Availability of Data and Materials: Our project code-RGGCNet is available online at: 
https://github.com/XuHan-CN/RGGCNet. and our dataset-LPMT is available online at: 
http://118.126.108.211/LPMT/dataset/HTML/data.html.  
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