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Abstract: The quality of ultrasound scanning images is usually damaged by speckle 
noise. This paper proposes a method based on local statistics extracted from a histogram 
to reduce ultrasound speckle through a region growing algorithm. Unlike single statistical 
moment-based speckle reduction algorithms, this method adaptively smooths the speckle 
regions while preserving the margin and tissue structure to achieve high detectability. 
The criterion of a speckle region is defined by the similarity value obtained by matching 
the histogram of the current processing window and the reference window derived from 
the speckle region in advance. Then, according to the similarity value and tissue 
characteristics, the entire image is divided into several levels of speckle-content regions, 
and adaptive smoothing is performed based on these classification characteristics and the 
corresponding window size determined by the proposed region growing technique. Tests 
conducted from phantoms and in vivo images have shown very promising results after a 
quantitative and qualitative comparison with existing work. 
 
Keywords: Ultrasound speckle, histogram matching, speckle reduction, tissue 
characterization, region growing. 

1 Introduction 
Ultrasound images are usually affected by speckle noise, which is a scattered coherent 
interference due to the coherent nature of ultrasound beams. This phenomenon especially 
occurs when imaging organs, such as livers and kidneys, whose basic structures are too 
small to be resolved by ultrasonic transducers. Speckle appears as a granular pattern; it not 
only degrades the quality of scanning images but also makes it difficult to detect low-
contrast objects, small high-contrast targets and subtle differences in image brightness [Song, 
Zhou, Wang et al. (2016)]. Therefore, it is important to improve the image quality by 
reducing the speckle noise while maintaining the tissue structure [Duran and Teke (2019); 
Guo, Cheng, Tian et al. (2009); Hafizah and Supriyanto (2011); Ortiz, Chiu and Fox (2012)]. 
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Speckle reduction techniques include the compounding methods of combining images of 
different frequency contents [Wang, Hong, Wu et al. (2019)] of different spatial views 
[Wilhjelm, Jensen, Jespersen et al. (2004)] or through temporal filtering in the time 
domain [Li and Liu (2009)]. Speckle can also be reduced by adaptively filtering images 
according to the information on the speckle formation to smooth out speckle while 
preserving the structure [Chen, Yin, Flynn et al. (2003); Dutt and Greenleaf (1996)]. As 
another nonlinear technique for simultaneously performing contrast enhancement and 
noise reduction, the anisotropic diffusion method [Li and Zhang (2017); Wang and Hiller 
(2000); Yu and Acton (2002)] can model image filtering as controllable heat flow. 
It is well known that an echo signal with sufficient speckle detected by the envelope (i.e., 
a large number of randomly distributed scatterings with a smaller interval than the 
ultrasound wavelength) shows a Rayleigh distribution. The deviation from this special 
scattering condition has been previously modeled by the Rice distribution (used to 
explain the “structure” or nonrandom coherent components) and the K distribution (used 
to explain the deviations from the nonuniformity in the scatter distribution). 
Many researchers have observed statistical information to develop adaptive filtering to 
rule out speckle noise. Modern ultrasound imaging systems always apply logarithmic 
compression to convert the large dynamic range of input echo signals to match the lower 
dynamic range of the display device. This nonlinear processing will change the statistics 
of the input envelope signals and make these statistical moments unreliable in terms of 
the large variance in a small-size window. Dutt et al. [Dutt and Greenleaf (1996)] 
analyzed the effect of nonlinear processing by theoretically studying the distribution 
functions and used the statistics of logarithmic compressed echo images from the K-
distribution model as the echo envelope to derive a variance-dependent parameter that 
can be used to quantify the extent of speckle formation. 
Instead of using the above statistical moments, we use the histogram shape to measure 
the similarity between the probability distribution of the running window and that from a 
user-selected reference window within the speckle region. The entire histogram shape 
should contain more information than single statistical moments. Furthermore, the whole 
histogram covers the changes in the distribution caused by system-dependent processing. 
In combination with other local image features, the estimated similarity value can be used 
to determine the region for adaptive averaging. 
Liu et al. [Liu, Czenszak and Kim (1998)] proposed using the histogram shape as the 
criterion to differentiate speckle regions, and this approach was extended in Li et al. [Li 
and Zhang (2017)]. In this paper, we propose a new method to define the processing 
window and calculate the similarity. Additionally, a fast algorithm is proposed to select 
regions for adaptive smoothing. Consequently, the basic ideas of our proposed algorithm 
are described as follows: 
(1) The local amplitude histograms are used to distinguish the speckle and non-speckle 
areas instead of the local statistical moments. 
(2) A region growing method is adopted to select the optimal region of a local processing area 
rather than selecting a window with a constant size. This optimal region might be irregular 
and obtained from processing based on the similarity factor and local tissue features. 
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(3) Pixels with the same range of local similarity values are collected with the proposed 
region growing method and categorized into different tissue types. This process can avoid 
premature blockage caused by intruders from different tissue types, which may result in 
small smoothing windows that are too small, and can prevent structure blurring from an 
excessively large processing area. These difficulties always arise from a processing 
window with a fixed size. 
(4) Once the final processing area is determined, simple arithmetical mean filtering is 
used to compute the output pixel from its adjacent pixels with the same tissue type. This 
approach may provide the maximum tissue contrast but will not blur tissue borders. 
In the following sections, we first introduce the theory of using histogram curve matching 
to detect speckle and how to define the similarity function by extracting the statistics 
embedded in the histogram shape (Section 2.1). We then present the tissue 
characterization and region growing methods for speckle suppression in Sections 2.2 and 
2.3. In Section 3.1, we try to simulate echo ultrasound signals to determine whether the 
local statistical moments are reliable for speckle detection. The proposed new speckle 
reduction technique is also applied to tissue-mimicking phantom images and in vivo 
ultrasound images for algorithm verification. We compare the results with other speckle 
reduction methods in Section 3.2. 

2 Methods 
2.1 Speckle detection based on histogram curve matching 
From a given reference window located in a speckle area, k bins and n samples can be 
used to calculate the amplitude histogram. The histogram of the reference speckle region 
has a characteristic shape. Other histograms with different shapes are considered to 
deviate from fully developed speckle. 
Mathematically, the optimal number of bins to represent a Gaussian distribution with a 
95% confidence level from n samples is [Li and Zhang (2017)]: 

( )2/5    1.87 1Number of bins n= −                                                                                (1) 

The number of bins could be 8 for 49n = , i.e., from a local 7×7 window. This window 
size should be larger than the speckle size on the image, which can be calculated from the 
imaging system parameters: 

01.447 and 2.36lateral axial s

l c l a

S z S f
D f DD D BW

= =                                                     (2) 

where lateralS and axialS are the averaging speckle sizes in the lateral and axial directions, 
Dl and Da are the lateral and axial envelope sampling distances, respectively, fs is the 
axial envelope sampling frequency, cf  is the center frequency, D is the aperture size of a 
linear transducer in the lateral direction, 0z  is the distance from the transducer to the 
focal zone, and BW is the bandwidth of the envelope spectrum. Eq. (1) could be used to 
approximately determine the number of bins of more practically distributed bins, such as 
the double exponential from the compressed images. Moreover, the number of bins 
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derived from Eq. (1) is assumed for non-empty bins from which we equally group the 
whole range of intensity (e.g., 255 for an 8-bit image), namely, 32 bins to have 
approximately 8 nonzero bins to represent a discrete histogram in practice. 
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Figure 1: (a) The quality box used to define acceptable reference histograms, a, b and c; 
(b) Selected histograms d, e, and f are treated as a bad selection 

A good histogram representation can help users find an “acceptable” reference histogram 
of speckle statistics. In this article, we define a “quality box” bounded by 9 horizontal 
bins and 15 vertical pixels (Fig. 1) for the reference histogram in a 7×7 window. These 
numbers can be estimated theoretically from histograms in the speckle area, which means 
that the reference histogram that the user selected could be verified from the quality box. 
If the processing window contains some resolved structures, then its histogram curve 
always shows a bias with respect to the reference window. For example, the window is 
narrow for echo-free (or signal saturated) regions, wider for specular reflectivity areas, or 
even multimodal for the edges. These windows will result in a “lower similarity” with a 
reference histogram of fully developed speckle. Similarly, the histograms from different 
comparison objects are also different. For instance, the width of the histogram can 
provide insights into the type of scattering related to the tissue type. Therefore, a 
quantitative measurement, namely, the similarity value, is necessary for evaluating the 
similarity between the two histogram shapes. 
The vectors ref and tm are defined as the histogram from the reference speckle area and 
the current processing window with the size of M×N, respectively. The difference 
between these two histogram shapes h can be defined from the sum-absolute-difference 
(SAD) of these two vectors starting from their individual centroid refC  and tmC  to the 
two ends of both vectors. Mathematically, there is 
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where RangeL  and RangeR  are the maximum values of the “left size” and the “right size” of 
ref and tm, respectively: 

),max( tmrefRange LRLRL =                                                                                                (4) 

),max( tmrefRange RRRRR =                                                                                               (5) 

In Eqs. (4) and (5), the operators left size, LR, and right size RR are: 
 –  1,  1ref ref ref tm tm tmLR C L LR C L−= + = +                                                                   (6) 

 –  1,  1ref ref ref tm tm tmRR R C RR R C−= + = +                                                                 (7) 

where ,refL  tmL  are the left end and ,refR  tmR  are the right end from the histogram 

vectors ref and tm , respectively. The centroids refC  and tmC  can be computed from 
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Then, the similarity value is defined as: 
η−= 1S                                                                                                                            (9) 

Note that the denominator 2 M N× ×  is used for normalization in Eq. (3), and the 
procedures from Eqs. (4)-(8) are used to make the similarity value more independent of 
the gain adjustments that are implemented in modern ultrasound scanners. The similarity 
value S shows statistically how similar the current local window is to the referenced 
speckle characteristics. A large S indicates that the processing histogram is similar to the 
reference histogram; otherwise, the processing window is not speckle noise and may 
include more resolvable structures. 

2.2 Tissue characterization based on similarity values 
An ultrasound B-mode image usually covers diverse tissue structures, including edges, 
cysts, lesions and so on. Lesions, for example, from the diffuse scattering of tissues may 
be revealed in the speckle statistics and a change in the mean grey level. Moreover, if a 
local scattering density is not related to fully developed speckle, then this density-
dependent speckle characteristic can be detected from the similarity value of Eq. (9), i.e., 
from the curve matching of gray level histograms. 
Assuming that the local statistics of pixels in the lesion area are continuous in terms of 
the change in its histogram shape, we may segment tissue types by grouping the derived 
similarity into the characterization function, iType : 

iiyxi SSSiIType ≤<= −1,  if    )(                                                                               (10) 

where ,x yI is the pixel value at ( ),x y  on the processing image and Si is a predefined 

threshold for the i-th category of the tissue type. Since iS  lies in the range of (0, 1], 
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theoretically, it is a probe-dependent parameter that can be determined from tissue-
mimicking phantom images. For system optimization, however, we can conduct in vivo 
experiments to collect pixels selected by the user and their corresponding local 
histograms to determine those thresholds for different exam types. 

2.3 Speckle reduction using region growing 
The first purpose of the proposed speckle reduction algorithm is to categorize each pixel 
into one of the tissue types defined in Eq. (10). The collection of pixels belonging to the 
same tissue type in a concatenated region is called a homogeneous area. Therefore, each 
pixel defines its own homogeneous area, and the intended speckle reduction will be 
performed by smoothing each pixel’s homogeneous area. Obviously, this homogeneous 
area is connected but could be very irregular. 
From the viewpoint of system implementation, the detection of an irregular shape 
requiring smoothing is time-consuming and difficult to execute in real time. Therefore, 
we propose an adjustable rectangular window that approximates the homogeneous region 
by reducing or increasing the size of the window, which depends on a function of the 
number of pixels with the same tissue type as the seed pixel (i.e., the current processing 
pixel). Note that pixels with the same tissue type are over the local window in terms of 
the seed pixel under the assumption of a continuous change in similarity values. We now 
summarize our speckle reduction algorithm as follows and give detailed descriptions in 
Section 2.4. 
Algorithm: Speckle Reduction Based on Histogram Curve Matching and Region 
Growing 
(1) Calculate the similarity value of Eq. (9) for every pixel from a local window of 
M N× and assign each pixel belonging to a tissue type i  defined in Eq. (10), 1≤ i ≤ TN , 
where TN is the total number of tissue types for one exam; 

(2) Define a set of smoothing windows of j jM N×  in ascending order where 1≤  j ≤NS, 
where NS represents the total number of windows to be smoothed; 
(3) Starting from the seed pixel ( )0 ,I x y  with a tissue type of 0i , calculate the histogram 

of the tissue type jH in the initial window of j jM N× , where 1≤ j≤NS. The histogram 

[ ]jH i , 1 ≤ i ≤NT indicates the number of pixels inside a window of j jM N×  whose 
assigned tissue type is the same as that of the seed pixel; 
(4) Region reduction: while [ ]0  j j jH i M Nη<  reduces the region by decreasing  j  by 1 
and keeps shrinking the region, otherwise increase  j  by 1 and go to Step 5. Note that if 
the updated j  is either less than 1 or greater than SN , set its value to 1 or SN , 
respectively, and go to Step 6; 
(5) Region growing: if [ ]0 ³j j jH i M Nη≥  expands the region by increasing j  by 1 and 
maintains the growth; otherwise, decrease j by 1 and go to Step 6. Note that if the 
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updated j is larger than 
SN , set its value to SN  and go to Step 6; 

(6) Filtering: replace the pixel value of the current seed ( )0 ,I x y  with the average 
value of pixels in j jM N×  and go to Step 3 for a new seed pixel until the entire image 
has been processed. 

2.4 System implementation 
In general, the clinical application of ultrasound is performed using different types of 
probes. For example, we can set 7TN =  in Step 1 of the algorithm to perform a more 
detailed speckle classification in the abdominal examination from a 3.5 MHz curved 
array, and we can set 4TN =  for the shallow depth small parts scanned from a 7.5 MHz 
linear array. A setting of 7TN =  means that up to 7 different sizes of windows can be 
used for smoothing. This setting is a tradeoff between the level of smoothing and 
processing speed. 
In Step 2 of the proposed algorithm, we can define a set of windows with the size of 

3 3,  5 5,  7 7,  9 9,  11 11,  13 13,  15 15{ }j jM N = × × × × × × ×× for later smoothing. Note that 
the number of tissue type NT is always larger than or equal to the number of smoothing 
windows NS. 
The calculation of the histogram of the tissue type 

jH  in Step 3 of the proposed algorithm 
is for speeding up the process of counting the number of pixels in the processing window 
with the same tissue type as the seed pixel. During region shrinkage or growth, the counting 
of the seed tissue type can be obtained quickly by keeping the histogram vector to avoid 
deleting or adding the outermost pixels of the processing window. 
The constant η  used in Steps 4 and 5 of the proposed algorithm is to determine if the 
number of pixels that have the same tissue type as the seed pixel is dominant in the 
processing window. For instance, 0.7h =  in the conditional check of [ ]0  j j jH i M Nη<  
means that the number of pixels whose assigned tissue type is the same as the seed pixel is 
less than 70% of the total j jM N  pixels of the processing window. 

The constant η  used in Steps 4 and 5 of the proposed algorithm is used to decide if the 
number of pixels that have the same tissue type as the seed pixel is dominant in the 
processing window. For instance, 0.7h =  in the conditional check of [ ]0   j j jH i M Nη<  
means that the number of pixels whose assigned tissue type is the same as the seed pixel 
is less than 70% of the total j jM N pixels. Moreover, the constant η  could be extended 
according to the type of tissue. For example, we can set a larger η  for the low level of 
tissue type (i.e., smaller similarity values) so that a smaller size of smoothing window is 
used to preserve the non-speckle tissue, such as the edges. Similarly, setting a smaller η  
for a higher level of tissue type will make region growing easier to occur, which is 
equivalent to having more smoothing in the speckle area. 
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3 Testing and discussion 
Statistical moments are used in almost all the statistics-based image processing methods 
for speckle reduction, including the ratio of the mean to the standard deviation, the 
variance, and the ratio of the mean to the variance. These moments basically serve as 
criteria to check if the processed pixel could be classified as “speckle”. In this section, it 
is verified that it is not reliable to use statistical moments obtained from a local window 
of a limited size as the criterion for speckle detection. 
Moreover, a well-known rule that “the statistics of pre-compressed envelope signals within a 
fully developed speckle area has a Rayleigh distribution and its signal-to-noise ratio (SNR) 
is defined as the ratio of the mean to the standard deviation of 1.91” may not be valid from 
the viewpoint of the discrete domain of the image processing. This rule means that an 
estimated SNR from the processing window with a limited size could be close to 1.91, even 
if the statistics of the signals in this local window are far away from the Rayleigh 
distribution. The histogram shape offers more information than the histogram statistics, can 
be used for speckle detection and performs well in actual situations. 

3.1 Analysis of statistical moments and the histogram curve 
Ultrasound images come from the envelope (or the amplitude) of the raw radio-frequency 
(RF) data and has no phase information. Without loss of generality, we now directly test 
the statistical moments from its random number generator (i.e., uncorrelated data) instead 
of using a convolution of the pulses and random scatters (correlated data) to generate the 
windowed pixels. 
To obtain the random deviation from the given probability distribution function (pdf), we 
can use the transformation method [Gonzalez and Woods (2002)]: Given a pdf ( )p y , 
find the function ( )y x from a uniform deviation x  such that ( )y x  is distributed in ( )p y . 
The pdf of y, i.e., ( )p y dy , is determined by the transformation law of probabilities, 

( )  dx
dyp y dy dy= , which implies ( )dx p y dy= ± . 

If the integral of ( )p y  is known and invertible, then we can find the random variable 

( )y x  as ( ) ( )1y x F x−= , where 1F − is the inverse function of the integration of ( )p y  in 
y . Considering the Rayleigh distribution of 

2

2

2
2)( σ

σ

y

eyyp
−

=                                                                                                          (11) 

The random variable y(x) will be 

xxy ln2)( 2σ−=                                                                                                        (12) 

where x is a uniform deviation between 0 and 1. 
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Figure 2: The histogram from a Rayleigh distribution (N=1,000) 
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Figure 3: The statistical moments of a Rayleigh distribution (N=1,000) 

By using the Rayleigh random number generator of Eq. (12), we can easily generate the 
datasets with different combinations of pdfs. Fig. 2 shows the histogram of a Rayleigh 
random generator where we generate 100 datasets with 1,000 numbers in each dataset. 
The histogram is the average of 100 histograms in Fig. 2, so that the statistics of the 
estimators can be ensured accurately. Fig. 3 records the statistical moments in 100 
datasets, and the corresponding SNR is 1.9125, which is close to the theoretical value of a 
Rayleigh distribution of 1.91. 
Note that the calculated kurtosis has a large variance in a set of 1,000 numbers; thus, it could 
be an unreliable parameter in general windowed processing (due to the limited number of 
pixels). The histogram and statistical moments of a uniform distribution are shown in Figs. 
2-5, where the computed kurtosis of -1.2 matches the theoretical value. 
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Figure 4: The histogram from a uniform distribution (N=1,000) 
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Figure 5: The statistical moments of a uniform distribution (N=1,000) 

From Figs. 2-5, it seems that the computed SNR from very different statistical 
distributions can show comparable values. This phenomenon may indicate that it is 
unreliable to use computed statistical moments to identify the inherent statistics (e.g., the 
distribution). Any misidentification will become serious when computed statistical 
moments come from pixels of limited size in an imaging window. 
In our application, we usually handle a small imaging window (for instance, 7×7), where 
the data length is 8 bits. We then compute the histogram from 49 numbers (Fig. 5), where 
the pixel amplitude has been grouped into 32 bins, as discussed in Section 2.1. The 
statistical moments from this small dataset show a large variance, as shown in Fig. 7. 
Similar results can be observed in the uniform distributions illustrated in Figs. 8 and 9. 
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Figure 6: The histogram from a Rayleigh distribution (N=49) 
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Figure 7: The statistical moments of a Rayleigh distribution (N=49) 

From Figs. 2-9, we can see that it is not reliable to use statistical moments as the criterion 
for image segmentation; we then verify our argument of better segmentation by using the 
proposed similarity values of histogram shapes. We can set up the data from a 
combination of the Rayleigh and uniform distributions by taking a certain percentage of 
our samples from one distribution and the remaining from the other distribution, i.e., 90%, 
80%, 70%, 60%, and 50% from the Rayleigh distribution, and 10%, 20%, 30%, 40%, and 
50% from the uniform distribution. The motivation for such a setup is the area of an 
image where the speckle borders significant electronic noise. Fig. 10 shows the histogram 
of the Rayleigh and uniform distributions since we tested 20 datasets, each with 49 
numbers. Obviously, if more pixels come from the uniform distribution, then the 
histogram shape becomes flatter. A reference histogram can be obtained by averaging 20 
histogram curves from the pixels that originate from the 100% Rayleigh distribution, as 
shown with the red curve (i.e., the bottom one) in Fig. 10. Similarity values of other 
histogram curves with different combinations of Rayleigh and uniform distributions are 
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shown in Fig. 11, where 0.9269 is the mean of 20 similarity values relative to the 
reference histogram in the case of an 80% Rayleigh distribution. 
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Figure 8: The histogram from a uniform distribution (N=49) 
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Figure 9: The statistical moments of a uniform distribution (N=49) 

Moreover, we can compute the SNR from each 49 pixel set, where 1.63 is the mean of 20 
SNRs from the 80% Rayleigh distribution. The standard deviation in Tab. 1 is 0.35, and the 
similarity value is recorded in Fig. 11. As shown in Tab. 1, the bias measurement is defined 
as the relative error of either the SNR or similarity value of a certain level of the Rayleigh 
distribution compared to the reference of the 100% Rayleigh distribution. It can be seen 
clearly from Tab. 1 that using the similarity value (i.e., the information from the histogram 
shape) as the criterion to detect how a certain level of the Rayleigh distribution deviates 
from the fully developed speckle (in our application, the ideal Rayleigh distribution) is 
much better than using the statistical moment (i.e., the SNR). This finding has been 
confirmed from the very high bias in the similarity compared with that in the SNR when 
the governing distribution increasingly deviates from the ideal Rayleigh distribution. 
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Table 1: SNR and similarity values of mixed distributions (N=49) 

Distribution 
(Rayleigh) SNR SNR 

(bias) Similarity Similarity 
(bias) 

100% 1.94±0.20 0% 0.98 0% 
90% 1.70±0.31 12% 0.96 2% 
80% 1.63±0.35 16% 0.93 6% 
70% 1.62±0.36 16% 0.72 28% 
60% 1.62±0.36 16% 0.53 46% 
50% 1.63±0.35 16% 0.49 50% 
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Figure 10: The histogram from mixed distributions (N=49) 
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Figure 11: The computed similarity values of mixed distributions (N=49) 
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3.2 Experimental results from ultrasound signals 
We used Saset Healthcare’s iMago c21, a commercial digital ultrasound scanner designed 
and built by Saset (Chengdu) Inc., China for data acquisition. Fig. 12(a) shows the 
unprocessed phantom images from a 5 MHz linear probe scanned at a depth of 8 cm. Fig. 
12(b) is the speckle reduction result from Dutt et al.’s method [Dutt and Greenleaf (1996)] 
based on a statistical moment (i.e., the variance) with a 7 7×  processing window for log-
compressed ultrasound images. The result of our proposed algorithm is shown in Fig. 
12(c), where the reference histogram is derived from a 7 7× window selected manually 
in the speckle area from the original image. It is clear that, from Fig. 12, our result shows 
much better contrast resolution with largely smoothed speckle and preserved tissue 
structures (i.e., the point targets and a cyst). 
We then acquired in vivo images to verify our techniques. Fig. 13(a) is the human neck 
image from a 7.5 MHz linear array scanning at a depth of 4 cm. Fig. 13(b) shows the result 
from Dutt et al.’s method [Dutt and Greenleaf (1996)], and Fig. 13(c) demonstrates the 
speckle reduced image via our proposed method. In addition to linear scanning, we also 
tested a human liver image from a 3.5 MHz curved array (Fig. 14(a)) and speckle reduced 
image from Dutt et al.’s method and our proposed method (Figs. 14(b) and 14(c)), 
respectively. The speckle reduced images from our method visually show better contrast 
resolution where the detailed tissue structure features were basically preserved without 
missing useful clinical information. 
Furthermore, to analyze the performance of the proposed speckle reduction algorithm in 
terms of the contrast improvement, we calculate the contrast-to-noise ratio (CNR) as 
[Chen, Yin, Flynn et al. (2003)]: 

22
sc

sc uu
CNR

σσ +

−
=                                                                                                    (16)

 

Here, µc denotes the mean of the “object”, µs is the average value of the background 
speckle that encloses the object, and σ2

c and σ2
s are variances of the object and the speckle 

areas, respectively. In general, the image area with a larger CNR shows better contrast 
resolution. Tab. 2 lists the CNR measurements where each value is an arithmetical mean 
of CNRs from the five selected areas with identified objects and speckle pixels large 
enough for comparison. 
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(a)                             (b)                         (c) 

Figure 12 (a) Phantom image; (b) result from Dutt et al.’s method with a 7×7 window; 
and (c) result from the proposed method 

(a) (b) (c) 

Figure 13: (a) Human neck image; (b) result from Dutt et al.’s method with a 7×7 
window; and (c) result from the proposed method 

 
(a)                              (b)                               (c) 

Figure 14: (a) Human liver image; (b) result from Dutt et al.’s method with a 7×7 
window; and (c) result from the proposed method 

It can clearly be seen from Tab. 2 that our proposed method always displays the largest 
CNR among the three sets of test images, which is consistent with the visual grayscale 
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results presented in Figs. 12-14. This finding means that our techniques are promising for 
reducing ultrasound speckle. 

Table 2: Quantitative comparison in terms of the CNR 
CNR Phantom image (Fig. 12) Neck image (Fig. 13) Liver image (Fig. 14) 
(a) 0.1340 0.1692 0.1560 
(b) 0.1632 0.2040 0.2294 
(c) 0.2049 0.2318 0.2509 

4 Conclusions 
We have proposed an ultrasound speckle reduction method based on local histogram curve 
matching and region growing filtering in the hope of adaptively reducing speckle noise 
while keeping the structure region unchanged. We have applied a SAD-based histogram 
matching technique of extracting the embedded statistical information from an image 
processing window with a limited size to differentiate ultrasound speckle from tissue 
structure. This scheme will output a similarity value from histogram matching, which can 
be used to adaptively classify the current region into a certain level of tissue type. We then 
smooth this processing area with the optimal region growing according to the classified 
tissue type. 
Since smoothing always occurs within the same tissue type, our proposed method not only 
offers a significant average value to reduce the local variance to improve the SNR but also 
preserves structure differentiation, which always shows different tissue types. This 
property has been verified by the CNR of the improved testing images. 
In this article, we tested ultrasound phantom images and in vivo images. The results have 
shown that better contrast resolution can be achieved with our approach than with other 
speckle reduction methods, while the structure can also be preserved without losing useful 
clinical information. 
Currently, we are studying ways to speed up processing both on DSP [Li and Liu (2009)] 
and GPU [Cook (2012)] platforms. More in vivo images are needed to fine-tune 
algorithms and parameters optimized specifically for the setting of feature patterns. 
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