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1 INTRODUCTION 
IRIS recognition has several advantages over other 

biometric technologies [1]. Compared with others, 

such as face, speech and finger recognition, iris 

recognition is considered the most reliable because of 

its uniqueness and stability during the life of the 

individual. Iris segmentation plays an important role 

in biometric technology research. A major obstacle for 

iris image segmentation is the noise produced while 

taking the picture. the noises such as occlusion, 

reflections, etc… can affect the performance of the 

segmentation process. To improve the segmentation 

results, we need to maximize the iris data within the 

picture. And to do so, we present in this paper a novel 

statistical technique to segment the iris. Our models 

are based on EM algorithm that utilizes the mixture of 

Gaussian distributions family. Mixtures of Gaussian 

distributions are well recognized in image 

segmentation. Mixtures of Gaussian are flexible to 

accommodate various shapes of continuous 

distributions and able to capture leptokurtic, skewed 

and multimodal characteristics. In this paper, we 

modeled the eye image by a finite mixture of Gaussian 

distributions. In order to estimate the mixture 

parameters, we propose an extension of the EM 

algorithm [2] method. The EM algorithm iterates 

between two steps: an expectation (E) where a created 

function for log-likelihood is evaluated using the 

current estimate for the parameter and a maximization 

(M) step in which the estimates are maximized. In the 

following sections, we introduce the proposed EM 

algorithm called EMG algorithm. Then, we compare 

the behavior of the mixture-estimated model. A novel 

segmentation process is proposed by using the finite 

mixture of Gaussian distributions. Finally, we discuss 

results and conclude. 

2 ESTIMATION OF MIXTURE MODELS  
MIXTURE models play an important role in many 

statistical problems such as for example in 

biostatistics, image segmentation. Many works have 

been devoted to estimation of the density: finite 

mixture, nonparametric maximum likelihood 

estimation [3] give estimates for both mixing 

distribution and number of components. In parametric 

models, when number of components is fixed, the EM 

algorithm introduced by Dempter et al [3] has been 

widely used and extended in the literature.  
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We consider the following model: let 

NXX ,,.........1
  be an independent identically 

distributed random sample from a mixture with K 

components with density f defined as: 
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                                 where K ,...,1   are the mixing proportions (prior 

classification probabilities for each class),  probability 

density )/( kxf   is the  conditional function for 

data from class k, each k is the set of parameters 

defining the kh component, and 
 KK  ,.......,,,......, 11  is the complete set of 

parameters needed to specify the mixture. Being 

probabilities, the  k must   satisfy:  
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In many works, the conditional probability density 

function is assumed as Gaussian distribution [4, 5]. 

Here, we are interesting in finding estimation by 

maximum likelihood of f. Before presenting the EM 

algorithm for mixture density estimation, we intend to 

define the EM algorithm.  

3 EM ALGORITHM FOR MIXTURE DENSITY 
ESTIMATION  

WE will briefly explain the steps of the EM 

algorithm for the mixture density estimation [6, 7]. 

The EM algorithm is a general iterative technique for 

computing maximum-likelihood (ML) when the 

observed data can be regarded as incomplete. In 

maximum-likelihood estimation [7], the unknown 

parameter Θ is estimated so that the log-likelihood 

functions:  
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is maximized by using a set X= {x1...............xN} of 

observable samples drawn independently according to 

the density f(x). Accordingly, an estimate of Θ can 

be obtained as a solution of the likelihood equation 

given by: 
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Unfortunately in mixture density models, 

likelihood equations are usually nonlinear, which 

means that the general analytical solution of the log-

likelihood equation may not exist. The usual EM 

algorithm consists of an E-step and a M-step is 

proposed to resolve this problem. Suppose that 
n  

denotes the estimation of   obtained after the nth 

iteration of the algorithm.  

Then at the (n+1) 
th
 iteration, the E-step computers 

the expected complete data log-likelihood function: 
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where )( i

n

k x  is  a posterior probability and is 

computed as:
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The M-step maximizes ),( nQ  function with 

respect to  Θ to obtain the new parameter value 
1n

. 

From the maximization in the M-step, the 

following constraints are derived: 
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In the case of Gaussian mixture model Table 1, the 

estimator of  k = ( μk  ,  𝜎𝑘
2 )  where  μk   represents 

the mean and  𝜎𝑘
2  is the variance of the class at the 

(n+1) 
th
 iteration is given by: 
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EM algorithm is highly dependent on initialization. 

It is, in general, extremely difficult to set a good initial 

parameter value. In our method, we initialize the 

mixture parameters by K-means algorithm [8]. We 

extend the EM algorithm by using Gaussian 

distributions to introduce our new algorithm called 

EMG. 

4 GAUSSIAN DISTRIBUTION  

4.1 Gaussian Density  
HERE, we are interesting to apply the EM. After 

presenting the EM algorithm for mixture density 
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estimation, we intend to present. Our mixture model is 

based on Gaussian density function given by: 
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4.2 Gaussian mixture curve  
Since the general form of probability, function can 

be expressed in terms of the standard distribution, all 

subsequent formulas in this section are given for the 

standard form of the function. The following is the 

three Gaussian function plots f1, f2, f3 (Figure 1). 

    𝑓(𝑥) = 𝜋1𝑓1 + 𝜋2𝑓2(𝑥) 𝜋3𝑓3       (11) 

 

Figure 1.  Mixture with three Gaussian distributions curve. 

We use the finite mixture of Gaussian distributions. 

It is the classical model and it is used as a reference of 

comparison knowing that we are treating pixels iris 

images that belong to [0, 255] . It has a smooth shape. 

Therefore, we introduce the finite of mixture model 

composed by three Gaussian component distributions.  

5 PROPOSED METHOD  
FIRSTLY, mixture Gaussian distribution family is 

proposed to overcome the impact of noise in the 

images. By incorporating the EM algorithm amongst 

neighborhood pixels and non neighborhood pixels, the 

proposed algorithm is constructed based on a 

comparison of probabilities in order to segment the 

iris in both proposed environment of pixels.  

The proposed iris segmentation algorithm using 

EMG divides the task of finding the accurate eye 

image into three regions. The approximate papillary 

circular denoted by R1, also detecting the iris 

surrounded between the inner and outer limbic 

boundary denoted by R2. The rest of the eye image 

such us the sclera, the eyelid, is presented by R3 as 

shown in Figure 2.  

 

Figure 2. Modelling the eye image. 

In order to segment an iris image using the mixture 

of Gaussian distributions model, we propose to divide 

the iris image into three parts. This section illustrates 

the estimation procedure using the simulated casia iris 

data. First, we generate 100 observations iris images 

for testing. We, then, apply the Chi-Squared test to 

choose one of the two algorithms in order to give the 

most accurate segmentation results for each different 

eye image. The two models for each image are the 

Mixture Markovian Gaussian algorithm and the 

Mixture independent Gaussian algorithm. Knowing 

that we divided the image into three parts, we 

estimate, for each model, three sets of parameters. 

Each image is then segmented using the two models in 

both the Markovian case and the independent case. 

The best model will be choosing due to our learning 

system. The Chi-square test is used to obtain a 

learning system that facilitates the proposed statistical 

model of segmentation process. The following are the 

major steps that constitute our segmentation 

algorithm.  

Step 1 Initialization:  

We apply K-Means method in order to obtain an 

initial segmentation of the eye in three regions R1, R2, 

R3. 

Therefore the number of segmentation regions is 

fixed to K=3. As shown in Figure 2, the desired three 

regions R1, R2, R3, represent respectively as follow: 

the papillary, the iris, and the surrounding area of the 

iris.  

Step 2 Chi-squared Test:  

We apply Chi-squared test to choose the best 

density distribution fi of each region Ri.  

The three regions R1, R2, R3 are treated during 

the segmentation process by using respectively a 

mixture of f1, f2, f3. Each region is affected by the 

adequate distribution in order to have the most 

reliable segmentation.  

Consequently, each pixel of the eye image 

follows our mixture model given by the equation 

(1), with K=3.  
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Step 3 Parameters Estimation:  

We estimate the mixture parameters by applying 

the EMG algorithm.  

We try to create a learning system that makes the 

best distribution choice for each region.  

Step 4 Estimation:  

We apply the Bays formula, in order to segment 

the eye image in to 3 regions. Finally repeat this step 

until convergence. Figure 3 represents a segmentation 

framework to cover up all the mentioned hybrid 

segmentation steps. 

 

Figure 3. Proposed segmentation framework. 

6 EXPERIMENTAL RESULTS AND 
EVALUATION  

The comparison results demonstrate that the 

proposed algorithm can produce higher accuracy 

segmentation and has stronger ability of noising, 

especially in the area within the Markovian 

environment.  

Graphical results show that the EMG algorithm 

performs good segmentation result. Our experimental 

results show that while segmenting the eye images by 

the EMG for Mixture Markovian Gaussian algorithm, 

segmented iris images are obviously close to the 

original ones. Some exceptions exist to prove the 

accuracy of the EMG segmentation using the 

independent algorithm (Figure 2). The Comparison 

tools used in this experimentation for each algorithm 

are the Kullback-Leibler Divergence (KL), the MSE 

(Mean Squared Errors) followed by the mean and the 

standard deviation (Std). The performance of the 

proposed EMG algorithm within the Markovian 

[9,10,11] environment is confirming by the 

computation of the Kullback-Leibler divergence, MSE 

test. The number of classes in our mixture is chosen to 

be equal to 3 by default because we consider the iris 

image is a supervised area. That assumption can fit 

nicely with some iris input and prevent the image from 

losing much of its sharpness and details. Meanwhile, 

the value of K-means can be tuned to be selected a 

little smaller or larger to tolerate the noise of some 

particular cases. The K-means selection is set up in 

this considered application of our model to fixed value 

because it can overcome most of iris data and it can 

affect the level of complexity in the initial 

segmentation step. However the infixed K-means 

value can lead to higher complexity in the proposed 

model, by considering a Chi-squared test to separate 

the different region for each iris image from the data 

set which, would add more complexity and lead the 

estimations results more accurate for the particular 

cases. The following is a sample of some segmented 

data (Figure 4).  

Original Image 
Markovian 

Segmentation 

Independent 

Segmentation 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 4. Illustration of Iris Cassia Segmentation Result. 

To confirm the accuracy of EMG, our statistical 

results are based on minimal Kullback-Leibler 

distances (KL) (mean and Kullback-Leibler distance 

for each class), mean (MSE) and Std (MSE).  

Independent 
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We calculate KL between the empirical density and 

the estimated density of the image in the Markovian 

and independent environments. By observing the 

founding in (Fig 4), we can mention that in both 

environments, results are comparable. 

It should be noted that all these two comparison 

algorithms can only overcome the impact of noise in 

the image without considering intensity in 

homogeneity estimation. Therefore, in this 

experiment, we apply both algorithms on supervised 

images selected from cassia iris database containing 

different levels of noise, but no intensity in 

homogeneity iris image provides full three regions 

data volumes which have been simulated using three 

sequences (K=3) and a variety of slice thicknesses, 

noise levels, and levels of intensity non-uniformity. In 

our experiments, we use the Kullback-Leibler 

divergence images with different levels of noise. To 

make comparison, all algorithms are initialized by 

using 100 existing selected Casia iris data for 

segmentation approaches, including three EMG-based 

algorithms Markovian and EMG based algorithms 

independent. Summary of parameter setting and 

procedures for each comparison algorithm are listed in 

(Figure 4 and Figure 5). Within the Markovian 

environment, the KL distance calculated by mixture of 

Gaussian model distributions is less than the KL 

distance calculated by the mixture of Gaussian model 

distributions in the independent environment. This can 

lead us to mention that the segmentation process using 

mixture of Gaussian distributions within the 

Markovian gives better results than the independent 

environment due to the effects of the weighted 

neighboring pixels. 

We calculate the KL between the distributions of 

the original image and the segmented image for each 

model in each case. The results are divided into two 

sets of KL for each iteration. 

These algorithms are also applied to the   

segmentation of the same 100 iris images, in which 

the segmentation accuracy is measured in terms of the 

average MSE and graphical. To prove the 

performance of our EMG model verses the classical 

model, we compute the mean squared errors MSE 

graphical representation (Figure 6) followed by the 

numeric results of the men (MSE) and standard 

deviation as shown in (Table 2). 

 

 

Figure 5. MSE between the Markovian and the independent 
environment. 

 

 
Figure 6. Class distances between the Markovian and the 
independent environment. 

As shown in (Figure 7) the Markovian curve is 

obviously higher than the independent curve. Theses 

Graphical variations results proof the performance of 

the EMG in the Markovian case.  

In the Markovian case, according to (Table 2), the 

MSE calculated for EMG in the independent 

environment is slightly lower than the MSE calculated 

for EMG in the Markovian environment (0, 0023 < 0, 

0037), which means that MEG model is slightly better 

within the Markovian environment. The standard 

deviation mean Std (MSE) results (Table 2) confirm 

the performance of the proposed algorithm. 
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Table 1. Mean (MSE) and Std (MSE) 

Eye Num G - Markov G - Indep 

Mean (MSE) 0.0023606375 0.0037261213 
     

 Std(MSE) 
 

0.003099956 
 

0.004189272 
 

Segmenting the iris using EMG algorithm tuned 

CASIA image type may fail partially in the Markovian 

cases. This is explains when the independent 

algorithm behaves better than the Markovian 

algorithm in few particular cases. Both visual and 

quantitative comparisons show that the proposed 

EMG algorithm in the Markovian environment is so 

robust for the selected cassia iris data and produce 

more accurate segmentation results except for few 

exceptions.  

The novelties of our algorithm are the idea of 

segmenting the iris by using probabilistic techniques. 

Our algorithm is characterized by the creation of 

Gaussian mixture distributions in both environments 

the Markovian and the independent one. Due to the 

proposed learning system, a mixture of Gauss 

algorithm is used to segment the iris for each eye 

image. For each iris segmentation process the most 

adequate environment is chosen where the EMG can 

fit better with each eye image and give better 

segmentation results (Figure 5, Figure 6). Probabilistic 

adequate segmentation provides results by our new 

approach that is proved by EMG. The probabilistic 

segmentation method using the EMG algorithm is 

enhanced in the Markovian case. But, we cannot deny 

that the independent environment can deliver better 

segmentation results in few cases. 

7 CONCLUSION AND PERSPECTIVE 
In this paper, the mixture of Gaussian distribution 

model is used in order to segment the iris image. Our 

objective is to introduce a novel probabilistic 

algorithm EMG to segment the iris based on EM 

algorithm. It is an extension of the classical 

Expectation-Maximization (EM) algorithm. EMG is 

developed for iris images segmentation within two 

different environments: The Markovian case and the 

independent case of pixels.  

The proposed approach uses different steps. First, 

K-Means method is set up to initialize the parameters 

of each mixture model. Second, choosing the optimal 

environment for each iris input. and creating the most 

fitted Gaussian mixture model for the desired 

observation. Then, estimating the parameters by EMG, 

and finally starting the segmenting process until 

convergence.  

Therefore, the proposed EMG algorithm is flexible 

and easy to implement. To segment each iris image, a 

specific EMG mixture is created. This robustness 

made from EMG a novelty in the iris segmentation 

field in general. 

A possible way to extend this work is to benefit 

from other distributions mixture models. We can 

extend the EM algorithm by: inverse-gamma, Gamma, 

Laplace… and analyze the segmentation results in the 

independent case and the Markovian case. 
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