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1 INTRODUCTION 
A system model is the mathematical description of 

a physical, biological, or information system. By using 
system identification process, a compact and accurate 
mathematical model of a dynamic system can be 
found based on experimental data. It is one of the most 
important areas in controller design, optimization, 
fault detection, and system engineering [1, 2] because 
of its applicability to a wide range of problems. 
Typically, the physical models are nonlinear systems 
where the parameter variations are unavoidable. It is 
necessary to develop the efficient and high accuracy 
model estimation approach using suitable and simple 
techniques for different system structures.  

Nonlinear and complex dynamic system 
identification has attracted considerable research 
attention, and many mathematical models are analyzed 
and implemented from given input–output 
measurements. Several modern computing approaches 
such as artificial neural network model [8-18], support 
vector machines [4-6], genetic algorithm [7], and 

particle swarm algorithm [3, 17-31] are applied in 
system modeling. The conventional support vector 
machine (SVM) method [6] presents the linear and 
nonlinear system identification applications. It offers 
the advantage that the number of kernels and center 
parameters are found automatically. The least square 
support vector machine (LS-SVM) [4, 5] has been 
applied in function estimation problems and is used 
for modeling of multi-input multi-output (MIMO) 
Hammerstein autoregressive with exogenous terms 
(ARX) systems. This approach can determine the 
memoryless static nonlinearity as well as the linear 
model parameters from a linear set of equations. 
However, the method of automatic determination of 
the order of process model still has not been 
established. 

In effort to resolve this problem, some artificial 
intelligent and soft computing approaches are recently 
introduced [8-13], such as fuzzy systems, neural 
networks, and particle swarm algorithm [15] applied 
in system identification. The adaptive-network-based 
fuzzy inference system (ANFIS) [9, 10] with 
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backpropagation training is adapted for nonlinear 
system modeling problem. The fuzzy neural network 
(FNN) [11, 12] has become a popular structure for 
system modeling because it incorporates both of their 
advantages. The existing forward FNN is limited to 
static problems due to their feedforward structure, 
which causes the inefficiency for temporal problems. 
So, the recurrent fuzzy neural networks [12-16] are 
proposed to solve this difficulty.  

The recurrent fuzzy neural network (RFNN) [13] 
based on supervised learning is used to identify and 
control a nonlinear dynamic system. It uses a dynamic 
mapping network and is more suitable for representing 
dynamic systems than the conventional FNN. The 
learning algorithm based on the gradient method is 
presented for control and identification. Many 
different optimization methods are used to train the 
parameters of fuzzy systems and neural networks. 
These algorithms can be classified as derivative-free 
and derivative-based optimization methods. Thus, the 
gradient method suffers from slow convergence and 
stability, and it cannot obtain a better approach during 
the learning process. The hybrid learning algorithm 
can adapt the network parameters to increase its 
performance [14-16]. In [14], Takagi-Sugeno-Kang 
(TSK) type recurrent fuzzy network (TRFN) are 
designed and trained by hybrid of a multi-group GA 
and particle swarm optimization (R-MGAPSO) 
algorithms, whose performance is then shown to be 
superior to that of GA method for nonlinear control of 
dynamic plant. Due to the computational simplicity 
and search good solution rapidly, PSO-based 
algorithm [15] is employed for online parameter 
identification. An improve PSO algorithm [31] which 
uses the dynamic decreasing inertia weight is 
presented to identify the Hammerstein model. The 
dynamic inertial weight scheme is designed to 
increase the convergence speed and accuracy during 
the learning process.  

In this paper, the hybrid algorithm composed of 
modified particle swarm optimization and gradient 
descent algorithm is presented for recurrent fuzzy 
neural network in the application of system modeling. 
The MPSO algorithms with linear decreasing inertia 
weight or adaptive inertia weight are proposed to train 
the parameters of the antecedent part of the fuzzy 
system. A large inertia weight has extensive search 
ability while a small inertia weight is beneficial to 
local search and to obtain more precise solution, but 
sometimes it is easy to fall into local optimum. The 
MPSO scheme can achieve better performance in 
terms of convergence rate and quality of solution. The 
GD algorithm is applied to tune the parameters of 
conclusion part. The proposed algorithm can offer the 
recursive propagation and network weight 
computation, and it also provides faster convergence 
and tracking capabilities for nonlinear system 
identification. Three kinds of system are considered, 
namely, (1) Henon system, (2) nonlinear system, and 

(3) Mackey-Glass time series. The simulation results 
of the RFNN trained by hybrid algorithm are obtained 
to verify the performances in terms of mean squared 
error (MSE) under different nonlinear system 
conditions. 

This paper is organized as follows. The system 
model problem is introduced in section 2. The 
recurrent fuzzy neural network structure is described 
in section 3. Section 4 presents the proposed MPSO 
algorithm and GD scheme for the various system 
modeling. Section 5 provides the simulation results. 
Lastly, briefly conclusion is given in section 6. 

2 SYSTEM IDENTIFICATION PROBLEM 
SYSTEM identification is a way to build a 

mathematical model of system behavior based on the 
relationship between the input and output 
measurement data. The main purpose hopes that 
through the measured input and output information to 
predict the evolution of the output of the system in the 
future. System identification was also used in various 
fields widely, such as stock forecasting or control 
theory, etc. Before analyzing the unknown system, it 
is assumed that there is a n-dimensional nonlinear 
system which can be represented as follow: 

  θXXX ,,F 0ss   (1) 

where   nT
n21s Rx,,x,x  X  is the system 

state vector, 0X  denotes the initial system state, 

  nT
n21 R,,,    is the system parameter 

vector, and F is a nonlinear system function. In order 
to estimate the unknown system parameters, the 
system identification can be defined as： 

  θXXX ˆ,,ˆFˆ
0ss 


 (2) 

where  T
n21s x̂,,x̂,x̂ˆ X  is the estimated 

system state vector, and  T

n21
ˆ,,ˆ,ˆˆ    is the 

estimated system parameter vector. 
In this study, an objective function needs to be first 

defined. The mean squared error (MSE) between 
actual and estimated value of the output as objective 
function value can be considered as a fitness function. 
The objective function is defined as follows： 

  


N

1k
kk X̂X

N

1
MSE  (3) 

where N  is the length of the data used for system 

identification, kX  is the actual value of the output, 

and kX̂  is the estimated value of the output. 
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3 RECURRENT FUZZY NEURAL NETWORK 
MODEL 

A type of the recurrent fuzzy neural network is 
utilized here. The proposed structure is derived from 
ANFIS structure. In this structure, each membership 
function (MF) has a feedback connection which can 
memorize the past information to establish the 
temporal relations. On the other hand, the whole 
architecture is based on the fuzzy inference system as 
the main body to enhance the processing capabilities 
of uncertainty and imprecisely for the system. 
Moreover, fuzzy inference system also combines with 
the property of self-learning of the neural network to 
adjust parameters. A schematic diagram of the RFNN 
structure is shown in Figure 1. The model in this way 
is consisted of six layers. It is assumed that there are 

M  input nodes, and the inputs can be represented by 
a M dimensional vector  M21 x,,x,x X . 

Layer 0 represents to transmit the input values to 
the next layer directly. The outputs of this layer can be 
written as： 

    kxkO 0
i

0
i   

 M,,2,1i   (4) 

where the superscript indicates the layer number. 
Layer 1 denotes fuzzification layer that makes the 

input variables map to the fuzzy sets by Gaussian 
membership functions. This layer performs the 
fuzzification process of the RFNN. The relationship 
between input and output is as follows： 

       
     
k

kmku
expkO

2
ij

2

ij
1
ij1

ij
















  

 N,,2,1j   (5) 

where  km ij  and  kij  are the center point and 

the standard deviation of the j -th Gaussian MF of the 

i -th input respectively. In addition, for the discrete 

time k , the inputs which contain feedback 
connections in this layer are denoted by： 

      kOkOku f
ij

0
i

1
ij   (6) 

where  kOf
ij  is defined as： 

      1kOkkO 1
ijij

f
ij   (7) 

where  kij  is the feedback weight. The added 

feedback connections to a static ANFIS structure can 

make it become a dynamic RFNN structure. Each 
node in this layer has three adjustable parameters, 
those are parameters ijm , ij ,  and ij . 

Layer 2 denotes the rule layer that makes the fuzzy 
sets of each input variable execute permutation and 
combination. At this layer, the nodes represent fuzzy 
rules and the outputs utilize fuzzy “AND” operation to 
compute the “firing strength” of corresponding rule. 
Where the “AND” operation is represented by 
multiplication of corresponding MFs. 

Layer 3 denotes normalization layer that makes the 
rule of each node in second layer perform 
normalization. The outputs of this layer can be 
expressed as： 

    
 





MN

1p

2
p

2
p3

p

kO

kO
kO        

MN,,2,1p   (8) 

where MN  is the number of rules or nodes in second 
layer. 

Layer 4 denotes conclusion inference layer that 
makes the normalized rules in layer 3 multiply by 
corresponding TSK fuzzy model. The outputs of this 
layer can be expressed as： 

      kFkOkO P
3
p

4
p    (9) 

where  kFp  is the TSK fuzzy model which 

considered here are linear combinations of the current 
inputs of the system plus a constant. It can be written 
as： 

thenAisxandAisxandAisxIf:pRule pMM2p21p1 

  

        MpM11p0pp xkxkkkF  
  (10) 

where the coefficients   are the adjustable 
parameters. 

Layer 5 denotes output layer that performs 
summation of each output in layer 4. Finally, the 
output of the RFNN can be written as： 

      


MN

1p

4
p

5
1 kOkOky   (11) 

The RFNN structure [13] can be shown to be a 
universal approximation for continuous function over 
compact sets.  
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Figure 1 The structure of the RFNN 

4 MODIFIED PARTICLE SWARM 
OPTIMIZATION (MPSO) 

PARTICLE swarm optimization (PSO) which is 
originally proposed by Kennedy and Eberhart [26] is a 
bionic technique based on swarm intelligence. Two 
scholars got inspiration by observing the behavior of 
birds feeding. The PSO is a stochastic optimization 
algorithm. In the population, each particle is an 
independent individual, and the swarm is composed of 
particles. Through rules of interaction between the 
individual and the individual produce specific group 
behavior to achieve the goal of optimization. 

4.1 Standard PSO algorithm 
In the theory of PSO algorithm, the problem 

solution space is formulated as a search space. Each 
particle in the search space is simulated as a bird, and 
the position of each particle represents a potential 
solution of the problem. In addition, the particles fly in 
a multi-dimensional search space. In order to search 
for the optimal solution, the PSO also develops a way 
to update velocity which can decide the movement 
direction and distance of each particle. Each particle 
updates its velocity based on the current velocity and 
the best position experienced by particle and the best 
position experienced by swarm. Moreover, utilizing an 
objective function value or a fitness value to 
determine the solution is good or bad. 

Assume that there is a d-dimensional search space. 
In this search space, each particle is associated with 

the velocity vector  d
i

2
i

1
ii v,,v,v V  and the 

position vector  d
i

2
i

1
ii x,,x,x X , where the 

subscript i  indicates the i -th particle of the swarm. 
Moreover, the best position which has experienced by 

particle can be expressed as  d
i

2
i

1
ii p,,p,p P  

and the best position which has experienced by the 

whole swarm is  d
g

2
g

1
gg p,,p,p P . According 

to the previous definition, the velocity and position of 
each particle can be updated by the following 
equations： 

             txtprctxtprctwv1tv ig22ii11ii 

   (12) 

      1tvtx1tx iii   (13) 

where t  is the current number of iterations. 1c  and 

2c  are two positive constants which are normally 

taken value in interval  2,0 . 1r  and 2r  are two 

uniformly distributed numbers between 0 and 1. Also, 
w  is the inertia weight which can develop the search 
space. Besides, in every iteration, the particle best 
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position iP  and global best position gP  also need to 

be updated by following conditions： 

         
       








tf1tf     ,1t

tf1tf           ,t
1t

iii

iii
i PXX

PXP
P

   (14) 

                     tf,,tf,tfmintft,,t,tt s10gs10g PPPPPPPP  

  (15) 

where f  is the objective function or fitness function, 
and s  is the total number of particles. 

4.2 Linear decreasing PSO (LDPSO) algorithm 
The inertia weight plays an important role in the 

convergence of the PSO algorithm. The main problem 
of using the inertia weight is how to set a reasonable 
value so that the particles can obtain a better balance 
between the global search and local search. The inertia 
weight was originally designed as a constant. In order 
to improve the convergence property of the PSO 
algorithm, a linear decreasing inertia weight is applied 
as follow: 

    
max

minmaxmax t

t
wwwtw   (16) 

where t  is the current number of iterations, maxt  is 

the maximal number of iterations. maxw  and minw  

are the maximal and minimal weights, respectively. 
The main concept of linear decreasing is to give larger 
inertia weight during the early search, so that the 
particles can keep larger velocity to perform global 
search. Subsequently, with the increase of iterations, 
the inertia weight will decline and cause the velocity 
of particles slow down to perform local search. 

4.3 Adaptive PSO (APSO) algorithm 
In this section, an adaptive inertia weight 

adjustment strategy is introduced. This method must 
determine the updated situation of particles at each 
iteration. In this method, the success of the particle is 
defined as follow: 

        
     








1tftfif    0

1tftfif     1
tS

ii

ii
i PP

PP
  (17) 

where  tiP  is the best position which has 

experienced by particle i  until t -th iteration, and f  
is the objective function or fitness function. Also, the 
success percentage of the swarm is defined as： 

  
 

n

tS
tP

n

1i
i

s


   (18) 

where n  is the number of particles, and sP  belongs 

to the interval  1,0 . A high percentage of success 

expresses that the particles located to a point which is 
far from the optimum point and moved slowly toward 
the optimum. Also, a low percentage of success 
indicates that the particles oscillated around the 
optimum without much improvement. 

Therefore, the adaptive inertia weight which uses a 

linear function to map the sP  can be written as： 

       minsminmax wtPwwtw   (19) 

where the range of the inertia weight  maxmin w,w  

is usually set as  1,0 . 

5 HYBRID LEARNING ALGORITHM FOR 
TRAINING RFNN 

IN this section, a hybrid learning algorithm which 
is composed of gradient descent (GD) and modified 
particle swarm optimization (MPSO) for training 
RFNN model is discussed. This learning algorithm of 
the RFNN uses MPSO based method to optimize the 
parameters of the antecedent part in fuzzy system and 
GD based method to optimize the parameters of the 
conclusion part. In antecedent part of the RFNN, there 
are three parameters must be trained for each 
membership function (MF). These parameters are the 
center point m  and standard deviation   of MF, and 

the weight   of feedback connection which can 
supply the past information. We utilize MPSO based 
method to adjust these parameters. In population, the 
elements of each particle position mainly consist of 
the parameters, those are mean ( m ), spread ( ), and 

feedback weight ( ). Therefore, the position vector of 

the i -th particle can be expressed as: 

 g
i

2
i

1
i

g
i

2
i

1
i

g
i

2
i

1
ii ,,,,,,,,m,,m,m  X

  (20) 

where g  is the number of MFs. Then the particles can 

update their respective position by the Equations (12-
19) to optimize these parameters. 

In the conclusion part of the RFNN, GD based 
method is used to optimize the coefficients   of the 
TSK fuzzy model. Assumed that the cost function is 
expressed as follow： 

        


N

1k

25
1 kOkT

2

1
kE  (21) 
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where  kT  is the target value of k-th sample. Using 

the chain rule for GD based method to verify the 
update of the coefficients   is developed as follows： 

   
 

 
 

 
 

 
     kOke
k

kO

kO

kO

kO

kE

k

kE
-k 3

p
0p

4
P

4
P

5
1

5
10p

0p 















  (22) 

   
 

 
 

 
 

 
      0i,xkOke
k

kO

kO

kO

kO

kE

k

kE
-k i

3
p

pi

4
P

4
P

5
1

5
1pi

pi 















   (23) 

with 
     kOkTke 5

1  

where ix  is the i -th input of the RFNN, and  is the 

learning rate. 
In our method, the MPSO method can update the 

RFNN membership function parameters, and the GD 
method can tune the consequent parameters using the 
training data information. Then, the MSE of the 
training pattern is calculated after the consequent and 
antecedent parameters are updated. The iteration 
process is operated to minimize the MSE value.  

6 SIMULATION RESULTS 
IN this section, we evaluated the performance of 

the RFNN with MPSO-GD learning algorithm for 
temporal problems. Three simulation results are 
illustrated to compare the LDPSO method and APSO 
method. The proposed prediction system is developed 
to examine the Henon system, nonlinear plant, and 
Mackey-Glass. The population size of the MPSO for 
all of the experiments is set as 10, and the parameters 

1c1   and 1c 2   are selected. Also the velocity 

limit  maxmin v,v  of the MPSO is  1.0,1.0 . 

Moreover the learning rate  is chosen as 0.15. The 

maximum number of iterations is 500. These 
parameters are determined by empirical rules to 
achieve a better MSE in the experimentation 
conditions. Table 1 and Table 2 summarize the 
comparison MSE performances with respect to the 
three identification problem. 

A. Henon system identification 
Henon system is a second order time delay 

difference equation that presents chaotic 
characteristics. This chaotic system which has two 
parameters and one delay is defined as follow: 

      0.11kyQkyP1ky 2    (24) 

where the parameters are 1.4P  , and 0.3Q  . 

The initial values are   4.01y  , and   4.00y  . 

Comparisons of simulation results of LDPSO and 
APSO algorithms are shown in Figure 2. We choose 
1000 training data and 1000 test data. The inputs of 

the RFNN are chosen as  )1k(y)k(y  , and 
each input has four membership functions. In the 
training period, the situation of the MSE convergence 
and inertia weight variation of the LDPSO and APSO 
methods are shown in Figure 2(a) and (b). The 
original data samples of points 1–1000 are used as the 
training dataset, and the prediction results of the 
LDPSO and APSO methods are illustrated in Figure 
2(c). The error of the prediction results of training 
dataset based on the LDPSO and APSO methods are 
shown in Figure 2(d). Also samples 1001 to 2000 are 
the checking dataset for validation. The prediction 
results of the LDPSO and APSO methods are 
illustrated in Figure 2(e). The error of the prediction 
results of checking dataset based on the LDPSO and 
APSO methods are shown in Figure 2(f). On average, 
the MSE of LDPSO method for training data is 

-5102.552   and for validation data is 
-5108.359   while the MSE of APSO method for 

training data is -5105.155  , and for validation data 

is -4101.249  . The LDPSO-based method provides 
the better convergence performance for RFNN state 
estimation. 

B. Nonlinear plant system identification 
In this example, a nonlinear plant with multiple 

time delays is defined by the following difference 
equation： 

            1ku,ku,2ky,1ky,kyf1ky pppppp 

  (25) 

with 

   
2
3

2
2

435321
54321 xx1

x1xxxxx
x,x,x,x,xf





 

where the initial values are   00y p  , and 

  00u p  . The current output of the nonlinear plant 

relates to three previous outputs and two previous 
inputs. The inputs of the RFNN are chosen as 

 )k(y)k(u pp
  and each input has four 

membership functions. We chose 900 training data to 
train the RFNN, and the equation is shown in below： 

 













 




900k450 
45

k
sin05.1

450k02,2- over uniform ddistribute
)k(up

   (26) 

There is no repetition of these 900 training data. 
On the other hand, the 1000 checking data are 
generated to verify the estimation results by the 
following equation. That is  
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Table 1 The MSE performances of training data for three different systems. 

 
Henon system Nonlinear plant model Mackey-Glass system 

LDPSO APSO LDPSO APSO LDPSO APSO 
1 4.186e-05 4.436e-05 5.230e-02 5.890e-02 1.184e-04 1.469e-04 
2 3.999e-05 5.685e-05 5.020e-02 5.180e-02 1.478e-04 1.751e-04 
3 5.126e-06 6.087e-05 4.600e-02 4.790e-02 9.282e-05 1.369e-04 
4 2.859e-05 7.905e-05 5.090e-02 5.380e-02 1.029e-04 1.654e-04 
5 2.141e-05 5.506e-05 5.320e-02 5.850e-02 1.203e-04 1.658e-04 
6 3.495e-05 4.516e-05 4.900e-02 5.780e-02 1.797e-04 1.742e-04 
7 1.661e-05 4.485e-05 5.060e-02 5.580e-02 1.684e-04 1.856e-04 
8 2.383e-05 4.436e-05 4.970e-02 5.350e-02 1.217e-04 1.593e-04 
9 1.424e-05 5.926e-06 5.260e-02 5.400e-02 1.453e-04 1.955e-04 
10 2.859e-05 7.905e-05 5.330e-02 5.880e-02 1.184e-04 1.469e-04 

Averaged 
MSE 

2.552e-05 5.155e-05 5.078e-02 5.508e-02 1.316e-04 1.652e-04 

 
Table 2 The MSE performances of validation results for three different systems. 

 
Henon system Nonlinear plant model Mackey-Glass system 

LDPSO APSO LDPSO APSO LDPSO APSO 
1 5.191e-05 7.520e-05 3.800e-03 3.300e-03 8.152e-05 1.799e-04 
2 5.557e-05 6.650e-05 2.500e-03 1.900e-03 8.996e-05 1.088e-04 
3 1.208e-05 2.047e-04 2.700e-03 2.200e-03 7.412e-05 8.222e-05 
4 3.226e-05 7.120e-05 3.000e-03 2.500e-03 7.152e-05 1.077e-04 
5 2.915e-04 6.740e-05 3.240e-02 2.700e-03 7.767e-05 1.143e-04 
6 7.386e-05 2.597e-04 3.300e-03 2.200e-03 1.327e-04 1.176e-04 
7 2.161e-04 3.124e-04 2.500e-03 3.100e-03 1.668e-04 1.160e-04 
8 5.191e-05 7.520e-05 2.200e-03 2.000e-03 7.425e-05 8.764e-05 
9 1.844e-05 4.607e-05 2.000e-03 2.600e-03 1.077e-04 1.361e-04 
10 3.226e-05 7.120e-05 6.800e-03 2.300e-03 8.152e-05 1.799e-04 

Averaged 
MSE 

8.359e-05 1.249e-04 6.120e-03 2.480e-03 9.576e-05 1.230e-04 
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 (a) (b) 

  

 (c) (d) 

  

 (e) (f) 

Figure 2 Henon system identification (a) the convergence curve for the two kinds of methods, (b) inertia weight of LDPSO and 
APSO methods applied to Henon system, (c) results of identification of train data for Henon system time series, (d) the error 
results of training data for the two kinds of methods, (e) results of identification of test data for Henon system time series, (f) the 
error results of test data for the two kinds of methods. 
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Comparisons of simulation results of LDPSO and 
APSO algorithms are shown in Figure 3. In the 
training period, the situation of the MSE convergence 
and inertia weight variation of the LDPSO and APSO 
methods are shown in Figure 3(a) and (b). For the 
training dataset, the prediction results of the LDPSO 
and APSO methods are illustrated in Figure 3(c). The 
error of the prediction results of training dataset based 
on the LDPSO and APSO methods are shown in 
Figure 3(d). For the checking dataset, the prediction 
results of the LDPSO and APSO methods are 
illustrated in Figure 3(e). The error of the prediction 
results of checking dataset based on the LDPSO and 
APSO methods are shown in Figure 3(f). On average, 
the MSE of LDPSO method for training data is 
0.05078  and for test data is 0.00612  while the 

MSE of APSO method for training data is 0.05508  

and for test data is 0.00248 . The LDPSO based 
method provides the better convergence and accuracy 
for nonlinear system modelling. 

C. Mackey‐Glass system 
Mackey-Glass equation is a nonlinear time delay 

differential equation that presents chaotic 
characteristics. It is originally proposed to model the 
physiological signals generated and sensed from a 
nonlinear system. The system can be described by the 
following equation： 

 )k(x
)k(x1

)k(x
)k(x 




 
  (28) 

where the parameters are 2.0 , 1.0 , 

10 , and 17 . One thousand data samples 

are generated with an initial value of 1.0)0(x   

based on numerical integration using fourth-order 
Runge–Kutta method and a time step of 0.1. 

Comparisons of simulation results of LDPSO and 
APSO algorithms are shown in Figure 4. We chose 
600 training data and 400 test data. The inputs of the 
RFNN are chosen as 

 )3k(x)2k(x)1k(x)k(x  , and 
each input has four membership functions. In the 
training period, the situation of the MSE convergence 
and inertia weight variation of the LDPSO and APSO 
methods are shown in Figure 4(a) and (b). The 
original data samples of points 1–600 are used as the 

training dataset, and the prediction results of the 
LDPSO and APSO methods are illustrated in Figure 
4(c). The error of the prediction results of training 
dataset based on the LDPSO and APSO methods are 
shown in Figure 4(d). Also samples 601 to 1000 are 
the checking dataset for validation. The prediction 
results of the LDPSO and APSO methods are 
illustrated in Figure 4(e). The error of the prediction 
results of checking dataset based on the LDPSO and 
APSO methods are shown in Figure 4(f). On average, 
the MSE of LDPSO method for training data is 

-4101.316   and for test data is -5109.576   
while the MSE of APSO method for training data is 

-4101.652   and for validation data is 
-4101.230  . Also, the MPSO-GD RFNN structure 

can achieve the better convergence performances for 
signal prediction and modeling. 

In this research, we have chosen the MSE as the 
criterion of performance evaluation. The MSE of all 
experimental results are tabulated in Table 1 (training 
results) and Table 2 (validation results). The 
predictions of averaged MSE of the nonlinear system 
models which are divided into LDPSO and APSO 
methods are simulated and computed by 10 runs, 
respectively. It is shown that the LDPSO method 
outperforms APSO method for modelling of Mackey-
Glass chaotic system. 

7 CONCLUSIONS 
THIS research presents an RFNN with hybrid 

training algorithm for system modeling and 
identification of measurement data. The recurrent 
structure RFNN with university approximation 
property is developed to deal with the temporal 
problem. The LDPSO and APSO schemes with inertia 
weight adjustment are investigated to train the 
parameters of the antecedent part of the fuzzy 
membership function. With the use of MPSO-GD 
algorithm, the weight parameters are tuned to optimize 
the MSE metric. The modified recursions are derived 
and the corresponding identification performances for 
three types of dynamic system datasets, which are 
Henon system, nonlinear plant, and Mackey-Glass 
time series, are tested. The MPSO schemes can 
achieve superior accuracy to robustly identify the 
nonlinear system and time series signals. On average, 
the proposed LDPSO-GD RFNN offers the better 
MSE performances and faster adaptation capability 
than the APSO-GD method in the nonlinear system 
modeling problem. This research can establish a good 
promising MPSO RFNN for online system 
identification. This method can set the path for more 
research related to identification problem, and it can 
be developed and implemented to be a useful PSO 
algorithm for industry applications in the future.  
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 (a) (b) 

  

 (c) (d) 

  

 (e) (f) 

Figure 3 Nonlinear plant system identification (a) the convergence curve for the two kinds of methods, (b) inertia weight of LDPSO 
and APSO methods applied to nonlinear plant, (c) results of identification of train data for nonlinear plant time series, (d) the 
error results of train data for the two kinds of methods, (e) result of identification of test data for nonlinear plant time series, (f) 
the error results of test data for the two kinds of methods. 
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 (a) (b) 

  

 (c) (d) 

  

 (e) (f) 

Figure 4 Mackey‐Glass chaotic signal prediction (a) the convergence curve for the two kinds of methods, (b) inertia weight of 
LDPSO and APSO methods applied to Mackey‐Glass, (c) results of identification of train data for Mackey‐Glass time series, (d) the 
error results of train data for the two kinds of methods, (e) result of identification of test data for Mackey‐Glass time series, (f) 
the error results of test data for the two kinds of methods. 

 
 
 

  



340 HUNG, MAO, and HAUNG 

 

8 ACKNOWLEDGMENT 
THE authors would like to thank the Ministry of 

Science and Technology of the Republic of China, 
Taiwan, for financially supporting this research under 
Contract No. MOST 105-2622-E-224 -010 –CC3 and 
MOST 106-2221-E-224-025-.  

9 REFERENCES 
Alfi, A. (2012). Particle swarm optimization algorithm 

with dynamic inertia weight for online parameter 
identification applied to Lorenz chaotic system. 
ICIC International Journal of Innovative 
Computing, Information and Control, 8(2), 1191-
1203.  

Bansal, J. C., Singh, P. K., Saraswat, M., Verma, A., 
Jadon, S. S., Abraham, A. (2011, Nov.). Inertia 
weight strategies in particle swarm optimization. 
2011 third world congress on nature and 
biologically Inspired Computing (pp. 633-640). 
Salamanca, Spain: IEEE. 

Chen, D. W., Zhang, J. P. (2005, Aug.). Time series 
prediction based on ensemble ANFIS. IEEE 
International Conference on Machine Learning 
and Cybernetics (pp. 3552-3556), Guangzhou, 
China: IEEE.  

Drezet, P. M. L., Harrison, R. F. (1998, Sep.). Support 
vector machines for system identification. 
International Conference on Control (pp. 688-
692). Swansea, UK: IET.  

Engelbrecht, A. P. (2005). Fundamentals of 
computational swarm intelligence. Wiley.  

Fu, L., Li, P. (2003, Aug.). The Research Survey of 
System Identification Method. International 
conference on intelligent human-machine systems 
and cybernetics (pp. 397–401). Hangzhou, China: 
IEEE.  

Ge, H. W., Liang, Y. C., & Marchese M. (2007). A 
modified particle swarm optimization-based 
dynamic recurrent neural network for identifying 
and controlling nonlinear systems. Computers and 
Structures, 85(21-22), 1611-1622.  

Goethals, I., Pelckmans, K., Suykens, J. A. K., & De 
Moor, B. (2005) Identification of MIMO 
Hammerstein models using least squares support 
vector machines. Automatica, 41, 1263–1272.  

Hammar, K., Djamah, T., Bettayeb, M., (2015, Dec.). 
Fractional Hammerstein system identification 
using particle swarm optimization. 2015 7th 
International conference on modeling, 
identification and control (ICMIC) (pp. 1-6). 
Sousse, Tunisia: IEEE. 

Han, M., Xi, J., Xu, S. & Yin, F. L. (2004) Prediction 
of chaotic time series based on the recurrent 
predictor neural network. IEEE Trans. on Signal 
Processing, 52(12), 3409-3416.  

Hatalis, K., Alnajjab, B., Kishore, S., Lamadrid, A., 
(2014, Dec.). Adaptive particle swarm 
optimization learning in a time delayed recurrent 

neural network for multi-step prediction. 2014 
IEEE symposium on foundations of 
Computational Intelligence (pp. 84-91). Orlando, 
FL, USA: IEEE.  

Hou, Z., Shen, Q., & Li, H. (2003, DEC.). Nonlinear 
system identification based on ANFIS. IEEE 
international conference on neural networks and 
signal processing (pp. 510-512). Nanjing, China: 
IEEE.  

Jiao, B., Lian, Z., & Gu, X. (2008). A dynamic inertia 
weight particle swarm optimization algorithm. 
Chaos, Solitions and Fractals, 37(3), 698-705.  

Juang, C. F., & Chung, I. F. (2007). Recurrent fuzzy 
network design using hybrid evolutionary learning 
algorithms. Neurocomputing, 70(16-18), 3001-
3010.  

Kang, D., Lee, B., Won, S. (2007, Nov.). Nonlinear 
System Identification using ARX and SVM with 
Advanced PSO. The 33rd Annual Conference of 
the IEEE Industrial Electronics Society (IECON) 
(pp. 598-603), Taipei, Taiwan: IEEE.   

Keesman, K. J. (2011). System Identification. New 
York, NY, Springer.   

Kennedy, J., Eberhart, R. (1995, Nov.). Particle swarm 
optimization. IEEE International Conference on 
Neural Networks (pp. 1942-1948). Perth, WA, 
Australia: IEEE.  

Khanesar, M. A., Shoorehdeli, M. A., Teshnehlab, M. 
(2007, Aug.). Hybrid training of recurrent fuzzy 
neural network model. IEEE International 
Conference on Mechatronics and Automation (pp. 
2598-2603). Harbin, China: IEEE.  

Ko, C. N., Lee, C. I., (2016, July). Identification of 
nonlinear system with outliers using modified 
quantum particle swarm optimization. 2016 
International conference on system science and 
engineering (ICSSE) (pp. 1-4). Puli, Taiwan: 
IEEE.  

Kristinsson, K. & Dumont, G. A. (1992) System 
identification and control using genetic algorithms. 
IEEE Transactions on Systems, Man, and 
Cybernetics, 22(5), 1033-1046.  

Lee, C. H., & Teng, C. C. (2000). Identification and 
control of dynamic systems using recurrent fuzzy 
neural networks. IEEE Transactions on Fuzzy 
Systems, 8(4), 349-366.  

Li, C., & Cheng, K. H. (2007). Recurrent neuro-fuzzy 
hybrid learning approach to accurate system 
modeling. Fuzzy sets and systems, 158, 194-212.   

Lin, C. J., Chen, C. H. (2006). A compensation-based 
recurrent fuzzy neural network for dynamic 
system identification. European Journal of 
Operational Research, 172, 696-715.  

Lin, C. T., & Lee, C. S. G. (1996). Neural fuzzy 
systems: a neuro-fuzzy synergism to intelligent 
system, Englewood Cliffs, NJ, Prentice-Hall.  

Nickabadi, A., Ebadzadeh, M. M., & Safabakhsh, R. 
(2011). A novel particle swarm optimization 



INTELLIGENT AUTOMATION AND SOFT COMPUTING  341 

 

algorithm with adaptive inertia weight. Applied 
Soft Computing, 11(4), 3658-3670.  

Ojha, R., & Das, M. (2012). An adaptive approach for 
modifying inertia weight using particle swarm 
optimization. IJCSI International Journal of 
Computer Science Issues, 9(5), 105-111. 

Shi, Y., & Eberhart, R. (2000). Comparing inertia 
weights and constriction factors in particle swarm 
optimization. IEEE Evolutionary Computation, 1, 
84-88.  

Shi, Y., Eberhart, R. (1998, May). A modified particle 
swarm optimizer. IEEE International Conference 
on Evolutionary Computation proceeding (pp.69-
73). Anchorage, AK, USA: IEEE.  

Xu, X., Wang, F., Liu, G., Qian, F., (2013). 
Identification of Hammerstein systems using key-
term separation principle, auxiliary model and 
improved particle swarm optimization algorithm. 
IET Signal Processing, 7(8), 766-773.  

Yan, C. M., Guo, B. L., & Xu, X. X. (2012). 
Empirical study of the inertia weight particle 
swarm optimization with constraint factor. JSCSE 
International Journal of Soft Computing and 
Software Engineering, 2(2), 1-8.  

Yang, X., Yuan, J., Yuan, J., & Mao, H. (2007). A 
modified particle swarm optimizer with dynamic 
adaptation. Applied Mathematics and 
Computation, 189(2), 1205-1213. 

10 NOTES ON CONTRIBUTORS 
Chung-Wen Hung received his 
B.S. degree from Feng Chia 
University, Taiwan, and his M.S. 
and Ph.D. degrees from the 
National Taiwan University, 
Taiwan. From 2009 to 2016, he 
was an assistant professor at 
National Yunlin University of 
Science and Technology, Taiwan. 
Since 2016, he has been an 

associate professor at the same university. His 
research interests are in motor control, internet of 
thing (IOT), signal processing, and MCU applications. 
 

Wei–Lung Mao received a 
B.S. degree in electrical 
engineering from National 
Taiwan University of Science 
and Technology in 1994, and 
M.S. and Ph.D. degrees in 
electrical engineering from 
National Taiwan University in 
1996 and 2004, respectively. 

He is now a professor in the Department of Electrical 
Engineering and Graduate School of Engineering 
Science and Technology, National Yunlin University 
of Science and Technology. His research interests are 
precision motion control, intelligent and adaptive 
control systems, satellite navigation systems, adaptive 
signal processing, neural networks, and 
communication electronics. 
 
Han-Yi Huang received the B.S. degree in electrical 
engineering from Southern Taiwan University of 
Science and Technology in 2014, the M.S. degrees in 
electrical engineering from National Yunlin 
University of Science and Technology in 2017. His 
research interests are system identification, adaptive 
control system, fuzzy control system and precision 
control. 

 




	Blank Page

