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1 INTRODUCTION 
AS the use of fossil fuels continues to increase, 

there is a growing interest in air pollution both 

domestically and internationally. As a result, fine dust 

(Particulate Matter 10, PM10) is also increasing 

rapidly. Particularly, it is known that PM10 has a very 

negative influence on health (Kim et al., 2015; Jang, 

An-Soo, 2014). Therefore, accurate prediction of 

PM10 concentration is recognized as an important 

problem. This problem can be solved using data- 

based approach. 

One of the data-based approaches is Artificial 

Neural Network (ANN). Recently, ANN solved 2 

problems. First, the overfitting problem that was 

criticized from the past has been solved 

(Salakhutdinov et al., 2007; Dahl et al., 2013). 

Second, the development of the GPU (Graphic 

Processing Unit) has reduced the burden of enormous 

computation. 

ANN is used in many fields due to its good 

performance. And also, ANN is became more 

advanced to Deep Neural Network (DNN). When we 

use DNN, the used data is important. And the data 

pre-processing method also is very important (Hinton 

et al., 2006) because it can affect the performance of 

the model. And when designing a model, you can get 

different performance through setting different 

parameters of the model. 

Recently, many studies have been conducted on the 

prediction of solving problems through machine 

learning in the field of environment (Jiang et al., 

2016). Especially, ANN or DNN have been widely 

used in many studies (Sakar et al., 2011). At that time, 

the meteorological factors were used to as input data 

because they have been known to be very important to 

affect atmospheric diffusion, migration, and 

densification of air pollutants (Khodarahmi et al., 

2016; Shin et al., 2007). In Dedovic, et al. (2016), they 

used to meteorological factors, weekdays and hours 

data in Bosnia and Herzegovina as input data. When 

using day and time data, the data were used after pre- 

processing the data with sinusoidal and cosinusoidal 

variables. In this study, they tried two cases of 

examples using DNN. In the first case, they used 10 

neurons with log-sigmoid function in input layer, 15 

neurons with tan-sigmoid function in hidden layer, 

and 1 neuron with linear function in output layer. In 

the second case, they used 11 neurons in the input and 

hidden layer. At this time, they evaluated two cases 

using Normalized Root Mean Square Error (NRMSE). 

In the first case, NRMSE is 0.39. And in the second 

case, NRMSE is 0.03. 

So, one of the studies using meteorological factors 

and DNN, the cosine-similarity for data pre-
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processing was adopted, Hur et al. (2016). In this 

study, they used to cosine-similarity for data pre-

processing. And when using DNN, they used a logistic 

function as an activation function in the hidden layer. 

However, the accuracy is as low as 59% ~ 69%. 

Therefore, it is understood that the method of data pre-

processing and setting parameters are very important 

when using DNN as mentioned above. 

In this paper, we chose an uncomplicated method 

of data pre-processing and compared various 

performance with different parameters of the DNN 

model in order to find an optimal condition. So, we 

used One-Hot Encoding as a data pre-processing 

method. And we have tested two cases. The first is an 

experiment that predicts the concentration of PM10 on 

the next day by using the weather forecast data of that 

day. In this case, parameters of model showed the best 

performance when it is set as follows. Tanh is used as 

an activation function, He_uniform is used as an 

initialization method, 2 hidden layers as number of 

hidden layers, dropout and batch normalization are 

used. The accuracy was 75.974 %, the f1-measure was 

0.76, and the loss was 0.63. The second is an 

experiment that predicts the concentration of PM10 on 

the next day using the previous day’s data. In this 

case, data of PM10 of the previous day was also used 

as input data. In this case, parameters of model 

showed the best performance when it is set as follows. 

ReLU is used as an activation function, 5 hidden 

layers as number of hidden layers, and batch 

normalization are. The accuracy was 75.8117 %, the 

f1-measure was 0.75, and the loss was 0.65. 

2 DATA 
IN this paper, we used meteorological factors 

(weather type, temperature, humidity, wind speed, 

wind direction), yellow dust (sand), fog, and PM10 as 

features. Data was collected from January 01, 2009 to 

August 31, 2016. This is the weather data for Seoul, 

Republic of Korea. The data of the meteorological 

factors, the sand, the fog, and PM10 corresponding to 

the feature were collected by the Korea 

Meteorological Administration 

(http://www.kma.go.kr/index.jsp). 

The weather types are divided into four categories: 

Sunny, Cloudy, Rainy, and Snowy. Sand and fog are 

used as a feature of each. It is divided into two 

categories: True and False. The wind direction was 

divided into 16 categories such as North, North-East-

North, North-East. The temperature, humidity, and 

wind speed were used as numerical data. PM10 was 

classified into four categories. It designated by the 

Korea Ministry of Environment 

(https://www.me.go.kr/home/web/main.do). The 

criteria are as follows: 0 ~ 30 𝜇g/𝑚3 is Low, 31 ~ 80 

𝜇g/𝑚3 is Normal, 81 ~ 150 𝜇g/𝑚3 is High, and 150 

𝜇g/𝑚3 or more is Danger. Each feature is described in 

the following [Table 1]. The data set created with the 

features and classified in this way is shown in [Table 

2]. The distribution of the PM10 in the dataset 

according to the four categories is as shown [Table 3]. 

 
Table 1.  Value description for each feature 

Feature Values 

Weather type Sunny, Overcast, Rainy, Snowy 

Sand True, False 

Fog True, False 

Temperature Numerical data 

Humidity Numerical data 

Wind speed Numerical data 

Wind direction North, North-East, North-East-North, … 

PM10 (Input) Numerical data 

PM10 (Target) Low, Normal, High, Danger 

 

Table 2.  The part of the dataset used as input data 

Weather Sand Mist Temperature Humidity Speed Direction PM10 

Sunny False False 6 50 3 ENE Low 
Sunny False False -1 48 2 WSW Normal 

Overcast False Ture -2 50 2 WNW High 
Overcast Ture Ture 9 75 3 W Danger 

Rainy False Ture 9 85 3 WNW Low 
Rainy False Ture 5 69 3 WSW Normal 
Snowy False False -9 56 2 ENE Normal 
Snowy False Ture -5 76 2 ENE High 

 

Table 3.  The distribution of PM10 in the dataset 

Low 
(0~30μ/m3) 

Normal 
(31~80μ/m3) 

High 
(81~150 μ/m3) 

Danger 
( > 150 μ/m3) 

723 1775 261 39 

3 METHODOLOGY 
IN this study, meteorological factors and PM10 

data were collected for predicting the concentration of 

PM10. We divided the dataset into training data and 

test data. Training data was divided as 78 % (2182) of 

dataset. Test data was also divided as 22 % (616) of 

dataset. This training dataset is used as input data of 

DNN model. Based on this data, we have compared 

various performance based on various parameter 

settings of DNN model. 

3.1 One-Hot Encoding 
In this study, One-Hot Encoding was used as a data 

pre-processing method. One-Hot Encoding is a 

method introduced in Collobert et al. (2011). This is a 

pre-processing method that transforms categorical 

features into a format that works well in classification 

and regression algorithms. One-Hot Encoding has two 

advantages. It is easy to be designed and modified. 

And it is easy to detect illegal states. One-Hot-

Encoding sets the feature corresponding to the value 

to 1, and sets the feature to 0 if it is not. How One-Hot 

Encoding works is shown in [Table 4]. 
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Table 4.  The Example of One-Hot Encoding 

Sample Human Dog Cat 

Human 1 0 0 

Dog 0 1 0 

Cat 0 0 1 

3.2 Deep Neural Network (DNN) 
Deep Neural Network (DNN) is a neural network 

model with several hidden layers between the input 

and output layer. Each input data will go into a node 

called neuron. Then, when it is sent from the neuron 

of the input layer to the neuron of the next layer, it is 

calculated and transmitted along with the weight for 

each input data. Based on this process, the results are 

derived. The basic structure of DNN is shown in 

[Figure 1]. 

 

Figure 1.  Examples of DNN model 

When designing a DNN, we can set various 

parameters. [Figure 1] shows that there is a hidden 

layer between the input layer and the output layer. In 

this study, we have experimented from 1 to 10 hidden 

layers. Generally, one layer consists of several 

neurons. Inside a neuron, each input data is firstly 

multiplied by each weight. Then, the result values are 

added, and passed to the activation function. The 

result of the calculation of the activation function is 

the final result of the neuron. So, this output value 

represents the result for input data. The process is 

shown in [Figure 2]. In addition, the calculation 

method of this process is as follows (1). 

 

Figure 2.  . Calculation process in neurons 

  (1) 

where W is a weight vector including wis as its 

elements and b is a bias which is considered to be 

multiplied with x0=1. 

There are three types of activation functions. The 

first is the Rectifier Linear Unit (ReLU) (Nair et al., 

2010). ReLU is a function that computes the result as 

0 if the input value is less than or equal to 0, and x if 

the input value is greater than 0. ReLU showed good 

performance in various studies such as Krizhevsky et 

al. (2012) at ImageNet. It’s calculation is as follows 

(2). 

  (2) 

The second is Hyperbolic Tangent (Tanh). Tanh is 

a function that computes a result closer to -1 as the 

input value approaches negative infinity, and a result 

closer to 1 as the input value approaches positive 

infinity. Tanh is widely used in Recurrent Neural 

Network (RNN) such as Long Short-Term Memory 

(Hochreiter et al., 1997). It’s calculation is as follows 

(3). 

  (3) 

The third is the Sigmoid. Sigmoid is a function that 

computes a result closer to 0 as the input value 

approaches negative infinity, and a result closer to 1 as 

the input value approaches positive infinity. It’s 

calculation is as follows (4). 

  (4) 

When creating a neural network, it is very 

important how to initialize the weights. This is called 

initialization. In this study, we used the He 

initialization (He et al., 2015). He initialization adjusts 

the initialization value of the weight to the number of 

input neurons. This method reduces the initialization 

of the weights slightly when the number of input 

neuron from the previous layer per neuron is high, so 

that the pre-activation value does not become too 

large. This method takes into account the activation 

function. In particular, ReLU is not activated when x < 

0, so it is calculated by adjusting to the neuron 

corresponding to half the number of input neurons. 

This is the way to do calculations in the range of the 

normal distribution (He_normal). It’s calculation is as 

follows (5). 

  (5) 

There is also a method of calculating from the [-

limit, limit] range using the characteristics of uniform 

distribution (He_uniform). Its calculation is as follows 

(6). 

 (6) 



346 SONG ET AL. 

 

Next is Dropout (Dahl et al., 2013). Dropout solves 

the overfitting that occurs when there are multiple 

hidden layers. This is not to involve the entire weight 

in the calculation, but only some weight. The process 

of this method is shown in [Figure 3] and (Srivastava 

et.al., 2014) explained dropout in detail. 

 

Figure 3.  Example of applying Dropout (Srivastava et al., 2014) 

In general, when learning from DNN, the way to 

increase learning speed was to increase the learning 

rate. However, high learning rates have caused 

gradient vanishing or gradient exploding problems. 

So, (Ioffe et al., 2015) introduced a new method called 

Batch Normalization. This method assumes that each 

feature is already uncorrelated. And for each feature, it 

is normalized by calculating mean and variance in 

scalar form. Then models add the scale (β) and shift 

(𝛾) factor to the normalized values, and these variables 

can be determined through training. And we do not 

calculate the mean and variance for the whole training 

data, but calculate it by mini- batch unit. So, only the 

mean and variance are calculated within the currently 

selected mini- batch, and normalized by using this 

value. The algorithm of batch normalization is the 

same as the following formulas (7), (8), (9), (10). 

  (7) 

  (8) 

  (9) 

  (10) 

4 EXPERIMENT 
IN this paper, the input data is meteorological 

factors, sand, fog, and PM10. The output data is the 

class of expected PM10 concentration. And we 

compared the performance of the DNN models 

according to the parameter settings. When comparing 

performance by parameters, each parameter has the 

following number of cases. The number of hidden 

layers is from 1 to 10. Activation functions are ReLU, 

Tanh, and Sigmoid. Dropout and batch normalization 

have two cases whether or not they are used. 

Initialization has two kids, He_normal, and 

He_uniform. Based on this, we have tested two cases, 

as mentioned above. We evaluated the performance of 

each parameters setting based on the activation 

function. We performed 120 experiments for each 

activation function. We compared the performance of 

the top 10 experimental results. The performance 

evaluation used accuracy, F1-scale and training loss. 

The results of the first case are shown in [Table 5] - 

[Table 7]. 

The results of ReLU-based experiments showed 

good performance when initialization, dropout, and 

batch normalization were used together. However, if 

we have more than five hidden layers, we can get 

better performance by excluding initialization. In 

terms of training loss, it is considered that using batch 

normalization helps to obtain better performance. 

However, when there are more than five hidden 

layers, it is good not to use batch normalization. 

In the results of Tanh-based experiments, we could 

see that it is better not to use initialization when there 

have many hidden layers. Training loss results are 

slightly different from ReLU. When we used batch 

normalization, performance was better in here. 

The results of Sigmoid-based experiments were 

different from those of ReLU and Tanh. Sigmoid was 

able to get good performance using initialization, 

dropout, and batch normalization regardless of the 

number of hidden layers. And the results of training 

loss showed that learning could be better than ReLU 

and Tanh. 

Next, we tested the second case. The result of this 

is shown in the following [Table 9] - [Table 11]. 

The results of the second experiment with ReLU 

were similar to those of the first experiment. However, 

the difference is that using batch normalization gives 

good performance even when there are many hidden 

layers. In terms of performance, the second 

experiment based on ReLU yielded better 

performance than the first experiment. 

The results of the second case based on Tanh were 

also slightly different from those of the first case. It is 

good performance even when batch normalization is 

not used. And the second case showed lower 

performance than the first case. 

We, then, tested the second case based on Sigmoid. 

In this case, we could get better performance than the 

first case without using batch normalization. In 

addition, the results of this experiment showed better 

performance when there were many hidden layers.  
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Table 5.  Top 10 performance results from the first experiment using ReLU (R : ReLU, H : Num of hidden layer, N : He_normal, U : 
He_uniform, D : Dropout, B : Batch Normalization) 

No Parameters ACC (%) F1  No Parameters Loss 

1 R (H=1) + D + B 75.3247 0.75  1 R (H=7) + N 0.61 

2 R (H=3) + D + N + B 75.3247 0.75  2 R (H=7) 0.63 

3 R (H=6) + D + U + B 75.3247 0.75  3 R (H=1) + D + B 0.63 

4 R (H=1) + U + B 75 0.75  4 R (H=3) + U 0.63 

5 R (H=1) + D + N + B 75 0.75  5 R (H=10) + N 0.63 

6 R (H=10) + N + B 75 0.75  6 R (H=2) + B 0.64 

7 R (H=8) + D + U + B 74.84 0.75  7 R (H=3) + B 0.64 

8 R (H=7) + D + B 74.84 0.75  8 R (H=2) + N + B 0.64 

9 R (H=9) + D + U + B 74.6753 0.74  9 R (H=2) + D + U + B 0.64 

10 R (H=8) + D + N + B 74.1883 0.74  10 R (H=2) + D + N + B 0.64 

 
Table 6. Top 10 performance results from the first experiment using Tanh (T : Tanh, H : Num of hidden layer, N : He_normal, U : 
He_uniform, D : Dropout, B : Batch Normalization) 

No Parameters ACC (%) F1  No Parameters Loss 

1 T (H=2) + D + U + B 75.974 0.76  1 T (H=8) 0.6 

2 T (H=1) + D + N + B 75.487 0.76  2 T (H=6) 0.62 

3 T (H=3) + D + N + B 75.3247 0.75  3 T (H=9) + B 0.63 

4 T (H=1) + D + U + B 75.3247 0.75  4 T (H=1) + D + B 0.63 

5 T (H=3) + D + U + B 75.3247 0.75  5 T (H=2) + D + B 0.63 

6 T (H=5) + D + U + B 75.3247 0.75  6 T (H=1) + U + B 0.63 

7 T (H=3) + U + B 75 0.75  7 T (H=2) + D + N + B 0.63 

8 T (H=2) + D + B 75 0.75  8 T (H=2) + D + U + B 0.63 

9 T (H=6) + D + B 75 0.75  9 T (H=1) + D + N + B 0.64 

10 T (H=9) + D + B 75 0.75  10 T (H=5) + D + U + B 0.64 

 
Table 7. Top 10 performance results from the first experiment using Sigmoid (S : Sigmoid, H : Num of hidden layer, N : He_normal, 
U : He_uniform, D : Dropout, B : Batch Normalization) 

No Parameters ACC (%) F1  No Parameters Loss 

1 S (H=2) + D + U + B 75.487 0.75  1 S (H=6) + N 0.57 

2 S (H=9) + U + B 75.3247 0.74  2 S (H=10) 0.58 

3 S (H=9) + D + N + B 75.1623 0.75  3 S (H=1) + B 0.63 

4 S (H=1) + D + B 75.1623 0.75  4 S (H=9) + B 0.63 

5 S (H=2) + D + B 75.1623 0.75  5 S (H=1) + D + B 0.63 

6 S (H=2) + D + N + B 75 0.75  6 S (H=2) + D + B 0.63 

7 S (H=7) + N + B 75 0.75  7 S (H=8) + N + B 0.63 

8 S (H=5) + D + U + B 75 0.75  8 S (H=9) + U + B 0.63 

9 S (H=7) + D + U + B 75 0.75  9 S (H=2) + D + N + B 0.63 

10 S (H=5) + D + B 75 0.75  10 S (H=2) + D + U + B 0.64 

 
Table 8. The Confusion Matrix, which represents the best performance of the first experiment 

Predicted 

Actual 
Danger High Normal Low Test data 

Danger 0 7 0 3 10 

High 0 9 0 47 56 

Normal 0 0 66 67 133 

Low 0 6 18 393 417 

 
Table 9. Top 10 performance results from the second experiment using ReLU (R : ReLU, H : Num of hidden layer, N : He_normal, 
U : He_uniform, D : Dropout, B : Batch Normalization) 

No Parameters ACC (%) F1  No Parameters Loss 

1 R (H=5) + B 75.8117 0.75  1 R (H=1) + N + B 0.63 

2 R (H=2) + D + N 75.487 0.75  2 R (H=7) + N + B 0.63 

3 R (H=8) + B 75.1623 0.75  3 R (H=1) + D + U + B 0.63 

4 R (H=7) + U + B 75 0.74  4 R (H=2) + U + B 0.63 

5 R (H=5) + D + N + B 75 0.74  5 R (H=4) + D + N 0.64 

6 R (H=6) + B 74.8377 0.74  6 R (H=4) + U + B 0.64 

7 R (H=1) + D + N + B 74.8377 0.73  7 R (H=7) + U + B 0.64 

8 R (H=2) + B 74.6753 0.73  8 R (H=6) + B 0.64 

9 R (H=1) + D + U + B 74.6753 0.73  9 R (H=8) + B 0.64 

10 R (H=9) + D + N + B 74.6753 0.74  10 R (H=9) + B 0.64 
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Table 10. Top 10 performance results from the second experiment using Tanh (T : Tanh, H : Num of hidden layer, N : He_normal, 
U : He_uniform, D : Dropout, B : Batch Normalization) 

No Parameters ACC (%) F1  No Parameters Loss 

1 T (H=3) + D 75.3247 0.74  1 T (H=3) + B 0.62 

2 T (H=3) + D + N 75.3247 0.75  2 T (H=2) + B 0.63 

3 T (H=8) + D + U + B 75.3247 0.74  3 T (H=5) + U + B 0.63 

4 T (H=6) + B 75.3247 0.74  4 T (H=1) + D + U + B 0.63 

5 T (H=7) + D 75 0.74  5 T (H=2) + D + U + B 0.63 

6 T (H=7) + D + U 75 0.74  6 T (H=5) + D + U + B 0.63 

7 T (H=1) + D 74.8377 0.74  7 T (H=3) + D + N + B 0.63 

8 T (H=5) + D + U + B 74.8377 0.74  8 T (H=7) + D + N + B 0.63 

9 T (H=4) + B 74.8377 0.74  9 T (H=10) + U + B 0.63 

10 T (H=5) + N + B 74.6753 0.74  10 T (H=5) + N + B 0.63 

 

Table 11. Top 10 performance results from the second experiment using Sigmoid (S : Sigmoid, H : Num of hidden layer, 
N : He_normal, U : He_uniform, D : Dropout, B : Batch Normalization) 

No Parameters ACC (%) F1  No Parameters Loss 

1 S (H=9) 75.8117 0.75  1 S (H=4) + U + B 0.57 

2 S (H=10) 75.8117 0.75  2 S (H=4) + B 0.58 

3 S (H=6) + N 75.6494 0.76  3 S (H=6) + N 0.63 

4 S (H=5) + D + N 75.3247 0.74  4 S (H=7) + N 0.63 

5 S (H=7) + N 75.3247 0.75  5 S (H=10) + N 0.63 

6 S (H=5) + N + B 75.3247 0.75  6 S (H=3) + N + B 0.63 

7 S (H=8) + U 75.3247 0.75  7 S (H=5) + N + B 0.63 

8 S (H=3) + D + U 75.1623 0.75  8 S (H=7) + U + B 0.63 

9 S (H=9) + U 75.1623 0.75  9 S (H=2) + B 0.63 

10 S (H=3) + D + N 75 0.75  10 S (H=3) + D + U 0.64 

 

Table 12. The Confusion Matrix, which represents the best performance of the second experiment 

Predicted 

Actual 
Danger High Normal Low Test data 

Danger 3 1 0 2 6 

High 4 6 1 45 56 

Normal 1 1 76 71 149 

Low 4 6 37 358 405 

 

And Sigmoid showed the best performance in 

terms of training loss. However, when we compare the 

overall performance, we can determine that ReLU has 

the best performance. The best performance was seen 

when using the top first parameters in ReLU table. In 

this case, the accuracy was 75.8117% that low class 

predicts 358 from 405 in real answer, normal class 

predicts 76 from 149, high class predicts 6 from 56 

and the danger class predicts 3 from 6. And also it is 

more judged to distinguish between high and danger 

classes. The result confusion matrix is shown in 

[Table 12]. 

5 CONCLUSION 
IN this study, we predicted the concentration of 

PM10 using meteorological factors, sand, fog, PM10, 

and DNN. When conducting the experiment, we 

considered two cases. The first is an experiment to 

predict the concentration of PM10 on the next day 

using the weather forecast data of that day. The 

second experiment was to predict the concentration of 

PM10 on the next day using the previous day's data. 

At this time, we tried to find optimal parameters by 

comparing various parameters of DNN. When we look 

at the confusion matrix of results, it seems that 

because there was not enough data, it was very 

difficult to distinguish between the High class and the 

Danger class. 

In the future, we will try to predict PM10 

concentration with higher performance by extracting 

data of various features. In addition, we will design 

DNNs of various structures to solve this problem by 

finding a structure optimized for this problem. 
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