
Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press
Vol. 25, no. 2, 343–350
https://doi.org/10.31209/2019.100000095

CONTACT Yu-Seop Kim yskim0@hallym.ac.kr

© 2019 TSI® Press

Predicting Concentration of PM10 Using Optimal Parameters of Deep
Neural Network

Byoung-Doo Oha,b, Hye-Jeong Songa,b, Jong-Dae Kima,b, Chan-Young
Parka,b, Yu-Seop Kima,b
aSchool of Software, Hallym University, Chuncheon, Korea
bBio-IT Research Center, Hallym University, Chuncheon, Korea

KEY WORDS: Deep Neural Network (DNN); PM10; classification

1 INTRODUCTION
AS the use of fossil fuels continues to increase,

there is a growing interest in air pollution both

domestically and internationally. As a result, fine dust

(Particulate Matter 10, PM10) is also increasing

rapidly. Particularly, it is known that PM10 has a very

negative influence on health (Kim et al., 2015; Jang,

An-Soo, 2014). Therefore, accurate prediction of

PM10 concentration is recognized as an important

problem. This problem can be solved using data-

based approach.

One of the data-based approaches is Artificial

Neural Network (ANN). Recently, ANN solved 2

problems. First, the overfitting problem that was

criticized from the past has been solved

(Salakhutdinov et al., 2007; Dahl et al., 2013).

Second, the development of the GPU (Graphic

Processing Unit) has reduced the burden of enormous

computation.

ANN is used in many fields due to its good

performance. And also, ANN is became more

advanced to Deep Neural Network (DNN). When we

use DNN, the used data is important. And the data

pre-processing method also is very important (Hinton

et al., 2006) because it can affect the performance of

the model. And when designing a model, you can get

different performance through setting different

parameters of the model.

Recently, many studies have been conducted on the

prediction of solving problems through machine

learning in the field of environment (Jiang et al.,

2016). Especially, ANN or DNN have been widely

used in many studies (Sakar et al., 2011). At that time,

the meteorological factors were used to as input data

because they have been known to be very important to

affect atmospheric diffusion, migration, and

densification of air pollutants (Khodarahmi et al.,

2016; Shin et al., 2007). In Dedovic, et al. (2016), they

used to meteorological factors, weekdays and hours

data in Bosnia and Herzegovina as input data. When

using day and time data, the data were used after pre-

processing the data with sinusoidal and cosinusoidal

variables. In this study, they tried two cases of

examples using DNN. In the first case, they used 10

neurons with log-sigmoid function in input layer, 15

neurons with tan-sigmoid function in hidden layer,

and 1 neuron with linear function in output layer. In

the second case, they used 11 neurons in the input and

hidden layer. At this time, they evaluated two cases

using Normalized Root Mean Square Error (NRMSE).

In the first case, NRMSE is 0.39. And in the second

case, NRMSE is 0.03.

So, one of the studies using meteorological factors

and DNN, the cosine-similarity for data pre-

ABSTRACT

Accurate prediction of fine dust (PM10) concentration is currently recognized as
an important problem in East Asia. In this paper, we try to predict the
concentration of PM10 using Deep Neural Network (DNN). Meteorological
factors, yellow dust (sand), fog, and PM10 are used as input data. We test two
cases. The first case predicts the concentration of PM10 on the next day using
the day’s weather forecast data. The second case predicts the concentration of
PM10 on the next day using the previous day’s data. Based on this, we compare
the various performance results from the DNN model. In the experiments, we
get about 76% of accuracy with the proposed system.

344 SONG ET AL.

processing was adopted, Hur et al. (2016). In this

study, they used to cosine-similarity for data pre-

processing. And when using DNN, they used a logistic

function as an activation function in the hidden layer.

However, the accuracy is as low as 59% ~ 69%.

Therefore, it is understood that the method of data pre-

processing and setting parameters are very important

when using DNN as mentioned above.

In this paper, we chose an uncomplicated method

of data pre-processing and compared various

performance with different parameters of the DNN

model in order to find an optimal condition. So, we

used One-Hot Encoding as a data pre-processing

method. And we have tested two cases. The first is an

experiment that predicts the concentration of PM10 on

the next day by using the weather forecast data of that

day. In this case, parameters of model showed the best

performance when it is set as follows. Tanh is used as

an activation function, He_uniform is used as an

initialization method, 2 hidden layers as number of

hidden layers, dropout and batch normalization are

used. The accuracy was 75.974 %, the f1-measure was

0.76, and the loss was 0.63. The second is an

experiment that predicts the concentration of PM10 on

the next day using the previous day’s data. In this

case, data of PM10 of the previous day was also used

as input data. In this case, parameters of model

showed the best performance when it is set as follows.

ReLU is used as an activation function, 5 hidden

layers as number of hidden layers, and batch

normalization are. The accuracy was 75.8117 %, the

f1-measure was 0.75, and the loss was 0.65.

2 DATA
IN this paper, we used meteorological factors

(weather type, temperature, humidity, wind speed,

wind direction), yellow dust (sand), fog, and PM10 as

features. Data was collected from January 01, 2009 to

August 31, 2016. This is the weather data for Seoul,

Republic of Korea. The data of the meteorological

factors, the sand, the fog, and PM10 corresponding to

the feature were collected by the Korea

Meteorological Administration

(http://www.kma.go.kr/index.jsp).

The weather types are divided into four categories:

Sunny, Cloudy, Rainy, and Snowy. Sand and fog are

used as a feature of each. It is divided into two

categories: True and False. The wind direction was

divided into 16 categories such as North, North-East-

North, North-East. The temperature, humidity, and

wind speed were used as numerical data. PM10 was

classified into four categories. It designated by the

Korea Ministry of Environment

(https://www.me.go.kr/home/web/main.do). The

criteria are as follows: 0 ~ 30 𝜇g/𝑚3 is Low, 31 ~ 80

𝜇g/𝑚3 is Normal, 81 ~ 150 𝜇g/𝑚3 is High, and 150

𝜇g/𝑚3 or more is Danger. Each feature is described in

the following [Table 1]. The data set created with the

features and classified in this way is shown in [Table

2]. The distribution of the PM10 in the dataset

according to the four categories is as shown [Table 3].

Table 1. Value description for each feature

Feature Values

Weather type Sunny, Overcast, Rainy, Snowy

Sand True, False

Fog True, False

Temperature Numerical data

Humidity Numerical data

Wind speed Numerical data

Wind direction North, North-East, North-East-North, …

PM10 (Input) Numerical data

PM10 (Target) Low, Normal, High, Danger

Table 2. The part of the dataset used as input data

Weather Sand Mist Temperature Humidity Speed Direction PM10

Sunny False False 6 50 3 ENE Low
Sunny False False -1 48 2 WSW Normal

Overcast False Ture -2 50 2 WNW High
Overcast Ture Ture 9 75 3 W Danger

Rainy False Ture 9 85 3 WNW Low
Rainy False Ture 5 69 3 WSW Normal
Snowy False False -9 56 2 ENE Normal
Snowy False Ture -5 76 2 ENE High

Table 3. The distribution of PM10 in the dataset

Low
(0~30μ/m3)

Normal
(31~80μ/m3)

High
(81~150 μ/m3)

Danger
(> 150 μ/m3)

723 1775 261 39

3 METHODOLOGY
IN this study, meteorological factors and PM10

data were collected for predicting the concentration of

PM10. We divided the dataset into training data and

test data. Training data was divided as 78 % (2182) of

dataset. Test data was also divided as 22 % (616) of

dataset. This training dataset is used as input data of

DNN model. Based on this data, we have compared

various performance based on various parameter

settings of DNN model.

3.1 One-Hot Encoding
In this study, One-Hot Encoding was used as a data

pre-processing method. One-Hot Encoding is a

method introduced in Collobert et al. (2011). This is a

pre-processing method that transforms categorical

features into a format that works well in classification

and regression algorithms. One-Hot Encoding has two

advantages. It is easy to be designed and modified.

And it is easy to detect illegal states. One-Hot-

Encoding sets the feature corresponding to the value

to 1, and sets the feature to 0 if it is not. How One-Hot

Encoding works is shown in [Table 4].

INTELLIGENT AUTOMATION AND SOFT COMPUTING 345

Table 4. The Example of One-Hot Encoding

Sample Human Dog Cat

Human 1 0 0

Dog 0 1 0

Cat 0 0 1

3.2 Deep Neural Network (DNN)
Deep Neural Network (DNN) is a neural network

model with several hidden layers between the input

and output layer. Each input data will go into a node

called neuron. Then, when it is sent from the neuron

of the input layer to the neuron of the next layer, it is

calculated and transmitted along with the weight for

each input data. Based on this process, the results are

derived. The basic structure of DNN is shown in

[Figure 1].

Figure 1. Examples of DNN model

When designing a DNN, we can set various

parameters. [Figure 1] shows that there is a hidden

layer between the input layer and the output layer. In

this study, we have experimented from 1 to 10 hidden

layers. Generally, one layer consists of several

neurons. Inside a neuron, each input data is firstly

multiplied by each weight. Then, the result values are

added, and passed to the activation function. The

result of the calculation of the activation function is

the final result of the neuron. So, this output value

represents the result for input data. The process is

shown in [Figure 2]. In addition, the calculation

method of this process is as follows (1).

Figure 2. . Calculation process in neurons

 (1)

where W is a weight vector including wis as its

elements and b is a bias which is considered to be

multiplied with x0=1.

There are three types of activation functions. The

first is the Rectifier Linear Unit (ReLU) (Nair et al.,

2010). ReLU is a function that computes the result as

0 if the input value is less than or equal to 0, and x if

the input value is greater than 0. ReLU showed good

performance in various studies such as Krizhevsky et

al. (2012) at ImageNet. It’s calculation is as follows

(2).

 (2)

The second is Hyperbolic Tangent (Tanh). Tanh is

a function that computes a result closer to -1 as the

input value approaches negative infinity, and a result

closer to 1 as the input value approaches positive

infinity. Tanh is widely used in Recurrent Neural

Network (RNN) such as Long Short-Term Memory

(Hochreiter et al., 1997). It’s calculation is as follows

(3).

 (3)

The third is the Sigmoid. Sigmoid is a function that

computes a result closer to 0 as the input value

approaches negative infinity, and a result closer to 1 as

the input value approaches positive infinity. It’s

calculation is as follows (4).

 (4)

When creating a neural network, it is very

important how to initialize the weights. This is called

initialization. In this study, we used the He

initialization (He et al., 2015). He initialization adjusts

the initialization value of the weight to the number of

input neurons. This method reduces the initialization

of the weights slightly when the number of input

neuron from the previous layer per neuron is high, so

that the pre-activation value does not become too

large. This method takes into account the activation

function. In particular, ReLU is not activated when x <

0, so it is calculated by adjusting to the neuron

corresponding to half the number of input neurons.

This is the way to do calculations in the range of the

normal distribution (He_normal). It’s calculation is as

follows (5).

 (5)

There is also a method of calculating from the [-

limit, limit] range using the characteristics of uniform

distribution (He_uniform). Its calculation is as follows

(6).

 (6)

346 SONG ET AL.

Next is Dropout (Dahl et al., 2013). Dropout solves

the overfitting that occurs when there are multiple

hidden layers. This is not to involve the entire weight

in the calculation, but only some weight. The process

of this method is shown in [Figure 3] and (Srivastava

et.al., 2014) explained dropout in detail.

Figure 3. Example of applying Dropout (Srivastava et al., 2014)

In general, when learning from DNN, the way to

increase learning speed was to increase the learning

rate. However, high learning rates have caused

gradient vanishing or gradient exploding problems.

So, (Ioffe et al., 2015) introduced a new method called

Batch Normalization. This method assumes that each

feature is already uncorrelated. And for each feature, it

is normalized by calculating mean and variance in

scalar form. Then models add the scale (β) and shift

(𝛾) factor to the normalized values, and these variables

can be determined through training. And we do not

calculate the mean and variance for the whole training

data, but calculate it by mini- batch unit. So, only the

mean and variance are calculated within the currently

selected mini- batch, and normalized by using this

value. The algorithm of batch normalization is the

same as the following formulas (7), (8), (9), (10).

 (7)

 (8)

 (9)

 (10)

4 EXPERIMENT
IN this paper, the input data is meteorological

factors, sand, fog, and PM10. The output data is the

class of expected PM10 concentration. And we

compared the performance of the DNN models

according to the parameter settings. When comparing

performance by parameters, each parameter has the

following number of cases. The number of hidden

layers is from 1 to 10. Activation functions are ReLU,

Tanh, and Sigmoid. Dropout and batch normalization

have two cases whether or not they are used.

Initialization has two kids, He_normal, and

He_uniform. Based on this, we have tested two cases,

as mentioned above. We evaluated the performance of

each parameters setting based on the activation

function. We performed 120 experiments for each

activation function. We compared the performance of

the top 10 experimental results. The performance

evaluation used accuracy, F1-scale and training loss.

The results of the first case are shown in [Table 5] -

[Table 7].

The results of ReLU-based experiments showed

good performance when initialization, dropout, and

batch normalization were used together. However, if

we have more than five hidden layers, we can get

better performance by excluding initialization. In

terms of training loss, it is considered that using batch

normalization helps to obtain better performance.

However, when there are more than five hidden

layers, it is good not to use batch normalization.

In the results of Tanh-based experiments, we could

see that it is better not to use initialization when there

have many hidden layers. Training loss results are

slightly different from ReLU. When we used batch

normalization, performance was better in here.

The results of Sigmoid-based experiments were

different from those of ReLU and Tanh. Sigmoid was

able to get good performance using initialization,

dropout, and batch normalization regardless of the

number of hidden layers. And the results of training

loss showed that learning could be better than ReLU

and Tanh.

Next, we tested the second case. The result of this

is shown in the following [Table 9] - [Table 11].

The results of the second experiment with ReLU

were similar to those of the first experiment. However,

the difference is that using batch normalization gives

good performance even when there are many hidden

layers. In terms of performance, the second

experiment based on ReLU yielded better

performance than the first experiment.

The results of the second case based on Tanh were

also slightly different from those of the first case. It is

good performance even when batch normalization is

not used. And the second case showed lower

performance than the first case.

We, then, tested the second case based on Sigmoid.

In this case, we could get better performance than the

first case without using batch normalization. In

addition, the results of this experiment showed better

performance when there were many hidden layers.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 347

Table 5. Top 10 performance results from the first experiment using ReLU (R : ReLU, H : Num of hidden layer, N : He_normal, U :
He_uniform, D : Dropout, B : Batch Normalization)

No Parameters ACC (%) F1 No Parameters Loss

1 R (H=1) + D + B 75.3247 0.75 1 R (H=7) + N 0.61

2 R (H=3) + D + N + B 75.3247 0.75 2 R (H=7) 0.63

3 R (H=6) + D + U + B 75.3247 0.75 3 R (H=1) + D + B 0.63

4 R (H=1) + U + B 75 0.75 4 R (H=3) + U 0.63

5 R (H=1) + D + N + B 75 0.75 5 R (H=10) + N 0.63

6 R (H=10) + N + B 75 0.75 6 R (H=2) + B 0.64

7 R (H=8) + D + U + B 74.84 0.75 7 R (H=3) + B 0.64

8 R (H=7) + D + B 74.84 0.75 8 R (H=2) + N + B 0.64

9 R (H=9) + D + U + B 74.6753 0.74 9 R (H=2) + D + U + B 0.64

10 R (H=8) + D + N + B 74.1883 0.74 10 R (H=2) + D + N + B 0.64

Table 6. Top 10 performance results from the first experiment using Tanh (T : Tanh, H : Num of hidden layer, N : He_normal, U :
He_uniform, D : Dropout, B : Batch Normalization)

No Parameters ACC (%) F1 No Parameters Loss

1 T (H=2) + D + U + B 75.974 0.76 1 T (H=8) 0.6

2 T (H=1) + D + N + B 75.487 0.76 2 T (H=6) 0.62

3 T (H=3) + D + N + B 75.3247 0.75 3 T (H=9) + B 0.63

4 T (H=1) + D + U + B 75.3247 0.75 4 T (H=1) + D + B 0.63

5 T (H=3) + D + U + B 75.3247 0.75 5 T (H=2) + D + B 0.63

6 T (H=5) + D + U + B 75.3247 0.75 6 T (H=1) + U + B 0.63

7 T (H=3) + U + B 75 0.75 7 T (H=2) + D + N + B 0.63

8 T (H=2) + D + B 75 0.75 8 T (H=2) + D + U + B 0.63

9 T (H=6) + D + B 75 0.75 9 T (H=1) + D + N + B 0.64

10 T (H=9) + D + B 75 0.75 10 T (H=5) + D + U + B 0.64

Table 7. Top 10 performance results from the first experiment using Sigmoid (S : Sigmoid, H : Num of hidden layer, N : He_normal,
U : He_uniform, D : Dropout, B : Batch Normalization)

No Parameters ACC (%) F1 No Parameters Loss

1 S (H=2) + D + U + B 75.487 0.75 1 S (H=6) + N 0.57

2 S (H=9) + U + B 75.3247 0.74 2 S (H=10) 0.58

3 S (H=9) + D + N + B 75.1623 0.75 3 S (H=1) + B 0.63

4 S (H=1) + D + B 75.1623 0.75 4 S (H=9) + B 0.63

5 S (H=2) + D + B 75.1623 0.75 5 S (H=1) + D + B 0.63

6 S (H=2) + D + N + B 75 0.75 6 S (H=2) + D + B 0.63

7 S (H=7) + N + B 75 0.75 7 S (H=8) + N + B 0.63

8 S (H=5) + D + U + B 75 0.75 8 S (H=9) + U + B 0.63

9 S (H=7) + D + U + B 75 0.75 9 S (H=2) + D + N + B 0.63

10 S (H=5) + D + B 75 0.75 10 S (H=2) + D + U + B 0.64

Table 8. The Confusion Matrix, which represents the best performance of the first experiment

Predicted

Actual
Danger High Normal Low Test data

Danger 0 7 0 3 10

High 0 9 0 47 56

Normal 0 0 66 67 133

Low 0 6 18 393 417

Table 9. Top 10 performance results from the second experiment using ReLU (R : ReLU, H : Num of hidden layer, N : He_normal,
U : He_uniform, D : Dropout, B : Batch Normalization)

No Parameters ACC (%) F1 No Parameters Loss

1 R (H=5) + B 75.8117 0.75 1 R (H=1) + N + B 0.63

2 R (H=2) + D + N 75.487 0.75 2 R (H=7) + N + B 0.63

3 R (H=8) + B 75.1623 0.75 3 R (H=1) + D + U + B 0.63

4 R (H=7) + U + B 75 0.74 4 R (H=2) + U + B 0.63

5 R (H=5) + D + N + B 75 0.74 5 R (H=4) + D + N 0.64

6 R (H=6) + B 74.8377 0.74 6 R (H=4) + U + B 0.64

7 R (H=1) + D + N + B 74.8377 0.73 7 R (H=7) + U + B 0.64

8 R (H=2) + B 74.6753 0.73 8 R (H=6) + B 0.64

9 R (H=1) + D + U + B 74.6753 0.73 9 R (H=8) + B 0.64

10 R (H=9) + D + N + B 74.6753 0.74 10 R (H=9) + B 0.64

348 SONG ET AL.

Table 10. Top 10 performance results from the second experiment using Tanh (T : Tanh, H : Num of hidden layer, N : He_normal,
U : He_uniform, D : Dropout, B : Batch Normalization)

No Parameters ACC (%) F1 No Parameters Loss

1 T (H=3) + D 75.3247 0.74 1 T (H=3) + B 0.62

2 T (H=3) + D + N 75.3247 0.75 2 T (H=2) + B 0.63

3 T (H=8) + D + U + B 75.3247 0.74 3 T (H=5) + U + B 0.63

4 T (H=6) + B 75.3247 0.74 4 T (H=1) + D + U + B 0.63

5 T (H=7) + D 75 0.74 5 T (H=2) + D + U + B 0.63

6 T (H=7) + D + U 75 0.74 6 T (H=5) + D + U + B 0.63

7 T (H=1) + D 74.8377 0.74 7 T (H=3) + D + N + B 0.63

8 T (H=5) + D + U + B 74.8377 0.74 8 T (H=7) + D + N + B 0.63

9 T (H=4) + B 74.8377 0.74 9 T (H=10) + U + B 0.63

10 T (H=5) + N + B 74.6753 0.74 10 T (H=5) + N + B 0.63

Table 11. Top 10 performance results from the second experiment using Sigmoid (S : Sigmoid, H : Num of hidden layer,
N : He_normal, U : He_uniform, D : Dropout, B : Batch Normalization)

No Parameters ACC (%) F1 No Parameters Loss

1 S (H=9) 75.8117 0.75 1 S (H=4) + U + B 0.57

2 S (H=10) 75.8117 0.75 2 S (H=4) + B 0.58

3 S (H=6) + N 75.6494 0.76 3 S (H=6) + N 0.63

4 S (H=5) + D + N 75.3247 0.74 4 S (H=7) + N 0.63

5 S (H=7) + N 75.3247 0.75 5 S (H=10) + N 0.63

6 S (H=5) + N + B 75.3247 0.75 6 S (H=3) + N + B 0.63

7 S (H=8) + U 75.3247 0.75 7 S (H=5) + N + B 0.63

8 S (H=3) + D + U 75.1623 0.75 8 S (H=7) + U + B 0.63

9 S (H=9) + U 75.1623 0.75 9 S (H=2) + B 0.63

10 S (H=3) + D + N 75 0.75 10 S (H=3) + D + U 0.64

Table 12. The Confusion Matrix, which represents the best performance of the second experiment

Predicted

Actual
Danger High Normal Low Test data

Danger 3 1 0 2 6

High 4 6 1 45 56

Normal 1 1 76 71 149

Low 4 6 37 358 405

And Sigmoid showed the best performance in

terms of training loss. However, when we compare the

overall performance, we can determine that ReLU has

the best performance. The best performance was seen

when using the top first parameters in ReLU table. In

this case, the accuracy was 75.8117% that low class

predicts 358 from 405 in real answer, normal class

predicts 76 from 149, high class predicts 6 from 56

and the danger class predicts 3 from 6. And also it is

more judged to distinguish between high and danger

classes. The result confusion matrix is shown in

[Table 12].

5 CONCLUSION
IN this study, we predicted the concentration of

PM10 using meteorological factors, sand, fog, PM10,

and DNN. When conducting the experiment, we

considered two cases. The first is an experiment to

predict the concentration of PM10 on the next day

using the weather forecast data of that day. The

second experiment was to predict the concentration of

PM10 on the next day using the previous day's data.

At this time, we tried to find optimal parameters by

comparing various parameters of DNN. When we look

at the confusion matrix of results, it seems that

because there was not enough data, it was very

difficult to distinguish between the High class and the

Danger class.

In the future, we will try to predict PM10

concentration with higher performance by extracting

data of various features. In addition, we will design

DNNs of various structures to solve this problem by

finding a structure optimized for this problem.

6 ACKNOWLEDGEMENT
THIS research was supported by Basic Science

Research Program through the National Research

Foundation of Korea (NRF) funded by the Ministry of

Science, ICT and Future Planning

(2015R1A2A2A01007333) and by the Naitonal

Research Foundation of Korea Grant funded by the

Korean Government (NRF-2017M3C4A7068188).

7 REFERENCE
R. Collobert, Weston, J., Bottou, L., Karlen, M.,

Kavukcuoglu, K., & Kuksa, P. (2011). "Natural

language processing (almost) from scratch."

INTELLIGENT AUTOMATION AND SOFT COMPUTING 349

Journal of Machine Learning Research, 12.Aug,

2493-2537.

G. E. Dahl, Tara N. Sainath, & Geoffrey E. Hinton.

(2013). "Improving deep neural networks for

LVCSR using rectified linear units and dropout."

Acoustics, Speech and Signal Processing

(ICASSP), IEEE International Conference on.

IEEE.

M. M. Dedovic, Avdakovic, S., Turkovic, I.,

Dautbasic, N., & Konjic, T. (2016). "Forecasting

PM10 concentrations using neural networks and

system for improving air quality."

Telecommunications (BIHTEL), 2016 XI

International Symposium on. IEEE.

K. He, Zhang, X., Ren, S., & Sun, J. (2015). "Delving

deep into rectifiers: Surpassing human-level

performance on imagenet classification."

Proceedings of the IEEE international conference

on computer vision.

G, E, Hinton, Osindero, S., & Teh, Y. W. (2006). "A

fast learning algorithm for deep belief nets."

Neural computation, 18.7, 1527-1554.

S. Hochreiter & Schmidhuber, J. (1997). "Long short-

term memory." Neural computation, 9.8, 1735-

1780.

S. K. Hur, Oh, H. R., Ho, C. H., Kim, J., Song, C. K.,

Chang, L. S., & Lee, J. B. (2016). "Evaluating the

predictability of PM 10 grades in Seoul, Korea

using a neural network model based on synoptic

patterns." Environmental Pollution, 218, 1324-

1333.

S. Ioffe & Szegedy, C. (2015). "Batch normalization:

Accelerating deep network training by reducing

internal covariate shift." arXiv preprint arXiv,

1502.03167.

A.-S. Jang. (2014). "Impact of particulate matter on

health." Journal of the Korean Medical

Association in Korea, 57.9. 763-768.

T, Jiang, Peng Lei., & Qin Qin. (2016). “An

Application of SVM-Based Classification in

Landslide Stability.” Intelligent Automation &

Soft Computing, 22.2, 267-271.

F. Khodarahmi, Soleimani, Z., Yousefzadeh, S., Alavi,

N., Babaei, A. A., Mohammadi, M. J., &

Goudarzi, G. (2016). "Levels of PM10, PM2. 5

and PM1 and Impacts of Meteorological Factors

on Particle Matter Concentrations in Dust Events

and non Dusty Days." International Journal of

Health Studies, 1.3, page-7.

K. H. Kim, Kabir, E., & Kabir, S. (2015). "A review

on the human health impact of airborne

particulate matter." Environment international,

74, 136-143.

A. Krizhevsky, Sutskever, I., & Hinton, G. E. (2012).

"Imagenet classification with deep convolutional

neural networks." Advances in neural information

processing systems.

V. Nair & Hinton, G. E. (2010). "Rectified linear units

improve restricted boltzmann machines."

Proceedings of the 27th international conference

on machine learning (ICML-10).

C. O. Sakar, Demir, G., Kursun, O., Ozdemir, H.,

Altay, G., & Yalcin, S. (2011). "Feature Selection

for The Prediction Of Tropospheric Ozone

Concentration Using A Wrapper Method."

Intelligent Automation & Soft Computing, 17(4),

403-413.

R. Salakhutdinov, Mnih, A., & Hinton, G. E. (2007).

"Restricted Boltzmann machines for collaborative

filtering." Proceedings of the 24th international

conference on Machine learning. ACM.

M. K. Shin, Lee, C. D., Ha, H. S., Choe, C. S., & Kim,

Y. H. (2007). "The Influence of Meteorological

Factors on PM1 Concentration in incheon."

Journal of Korean Society for Atmospheric

Environment in Korean, 23.3, 322-331

N. Srivastava, Hinton, G., Krizhevsky, A., Sutskever,

I, & Salakhutdinov, R. (2014). “Dropout: A

Simple Way to Prevent Neural Networks from

Overfitting.” Journal of Machine Learning

Research, 15, 1929-1958.

8 DISCLOSURE STATEMENT
NO potential conflict of interest was reported by

the authors.

9 NOTES ON CONTRIBUTORS
Byoung-Doo Oh is a graduate

student in the School of

Software at Hallym University.

He is now studying natural

language processing and

machine learning.

350 SONG ET AL.

Hye-Jeong Song, received the

ph.D. degree in Computer

Engineering from Hallym

University. She is a professor in

School of Software of Hallym

University, Korea. Her recent

interests focus on biomedical

system and bioinformatics.

Jong-Dae Kim, received the

M.S. and the Ph.D. degrees in

Electrical Engienering from

Korea Advanced Institute of

Science n Technology, Seoul,

Korea, in 1984 an 1990,

respectively. He worked for

Samsung Electronics from

1988 to 2000 as an electrical

engineer. He is a Professor in School of Software,

Hallym University. His recent interests focus on

biomedical system and bioinformatics

Chan-Young Park, received

the B.S. and the M.S. from

Seoul National University and

the ph.D. degree from Korea

Advanced Institute of Science

and Technology in 1995. From

1991 to 1999, he worked at

Samsung Electronics. He is

currently a Professor in the

School of Software of Hallym

University, Korea. His research interests are in Bio-IT

convergence and sensor networks.

Yu-Seop Kim, received the

Ph.D. degree in Computer

Engineering from Seoul

National University. He is

currently a Professor in the

School of Software of Hallym

University, Korea. His research

interests are in the areas of

bioinformatics, machine

learning, and natural language processing.

