
Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press
Vol. 25, no. 2, 351–358
https://doi.org/10.31209/2019.100000096

CONTACT Hoyoung Yoo hyyoo@cnu.ac.kr

© 2019 TSI® Press

Modified Viterbi Scoring for HMM‐Based Speech Recognition

Jihyuck Joa, Han‐Gyu Kimb, In‐Cheol Parka, Bang Chul Jungc, and Hoyoung
Yooc

aSchool of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea;
bSchool of Computer Science, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea;
cDepartment of Electronics Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea

KEYWORDS: Viterbi scoring, Dijkstra’s algorithm, hidden Markov model, searching algorithms, speech
recognition.

1 INTRODUCTION
AMONG a variety of speech recognition

algorithms including dynamic time warping (DTW)
and neural network, the hidden Markov model
(HMM) based algorithm has been most widely applied
to speech recognition due to its robustness to speech
and speaker variations (Rabiner & Juang, 1993,
Czyzewski. A., 1996, Macias-Guarasa, J. et. al. 2009,
Xihao, et. al. 2013, Ting, 2013, Paramonov, 2017). In
general, a speech recognition system grounded on the
HMM algorithm consists of two stages (Rabiner,
1989), training and recognition, as depicted in Figure
1. The training stage is to obtain a distinct HMM for
each reference model. In this stage, speech feature
vectors extracted from short-segmented speech signals
are trained to derive HMMs. During the speech
recognition stage, the recognizer computes likelihood
scores to find the best matching model by comparing

the utterance with the trained HMMs. Since the
reference models are generated at the off-line training
stage prior to the on-line recognition stage,
observation probability computation (OPC) and
likelihood score computation (LSC) are the most time
consuming parts of a HMM-based speech recognition
system (Rabiner, 1989).

THE Viterbi algorithm has been widely employed
in the likelihood score computation, as it is efficient in
finding the best matching model (Rabiner & Juang,
1993, Lou, 1995, Prasad, 2018). However, the
computational complexity of the Viterbi algorithm is
linearly proportional to the number of reference
models and their states. Due to its exhaustive
procedure covering the whole reference models, the
speech recognition system inevitably suffers from a
large amount of computation and enormous data
accesses. Moreover, each state in the Viterbi scoring
demands to compute the observation probability. Such

ABSTRACT
A modified Viterbi scoring procedure is presented in this paper based on
Dijkstra’s shortest-path algorithm. In HMM-based speech recognition systems,
the Viterbi scoring plays a significant role in finding the best matching model,
but its computational complexity is linearly proportional to the number of
reference models and their states. Therefore, the complexity is serious in
implementing a high-speed speech recognition system. In the proposed
method, the Viterbi scoring is translated into the searching of a minimum path,
and the shortest-path algorithm is exploited to decrease the computational
complexity while preventing the recognition accuracy from deteriorating. In
addition, a two-phase comparison structure is proposed to manage state
probabilities efficiently. Simulation results show that the proposed method
saves computational complexity and recognition time by more than 21% and
10% compared to the conventional Viterbi scoring and the previous early
termination, respectively. The improvement of the proposed method becomes
significant as the numbers of reference models, states, and Gaussian mixture
models increase, which means that the proposed method is more desirable for
recent speech recognition systems that deals with complex models.

352 JIHYUCK JO, HAN-GYU KIM, IN-CHEOL PARK, BANG CHUL JUNG, AND HOYOUNG YOO

Constants in HMM
Number of states N
Length of times T
Number of candidate words W
Variables in HMM
State index 1 ≤ i , j ≤ N
Time index 1 ≤ t ≤ T
Word index 1≤ v ≤ W
Probabilities in HMM
Initial state probability π={πj},
State transition probability A={aij}
Observation probability B={bj(ot)}
State probability δj(t)
Isolated word probability P(o|λv)

Table 1. Symbol list.

computation is a serious burden in implementing a
high-speed speech recognition system irrespective of
whether it is realized in software or in hardware. This
problem becomes more severe in recent speech
recognition systems that have a large amount of
reference models and states.

A modified Viterbi scoring procedure is proposed
in this paper to eliminate unnecessary computations.
Since the Viterbi scoring algorithm is to find the best
matching model among many reference ones, it is
unnecessary for the speech recognizer to calculate the
remaining score probabilities after the best matching
reference model is found. We apply Dijkstra’s
shortest-path algorithm (Nilsson, 1980) to the scoring
procedure and propose an efficient structure to decide
the best candidate in searching. As a result, the
proposed algorithm achieves a remarkable reduction
of recognition time by avoiding exhaustive
computations.

2 VITERBI SCORING ALGORITHM
THIS paper focuses on the HMM-based isolated

word recognition systems because the advanced
search network might obstruct the clear understanding
of the proposed modified Viterbi scoring process. A
HMM is characterized by an initial state probability
π={πj}, a state transition probability A={aij}, and an
observation probability B={bj(ot)} (Rabiner, 1989,
Lou, 1995). In the HMM-based isolated word
recognition, each word is individually represented by
a HMM λv for 1≤v≤W, where W is the number of word

models and λ represents a statistical set of π, A, and B.
Given an observation sequence o=[o1, o2, ····, oT],
where T is the number of observations, the speech
recognizer calculates and compares all P(o|λv) for
1≤v≤W so as to find a word with the highest
probability. Table 1 summarize symbols used in this
paper. In general, the conventional word-based HMM
system recognizes a word by using the log-Viterbi
algorithm (Rabiner, 1989, Lou, 1995) described in
Figure 2.

IN the algorithm, indices i and j range from 1 to N,
and t represents the index of observation time ranging
from 1 to T. Given an observation sequence o and
HMM λv, the algorithm finds the most likely state

Figure 1. The typical structure of speech recognition systems.

Log-Viterbi algorithm

for v = 1 step 1 until W
begin

Input: observation sequence o and HMM λv.
Initiation: 1(1) log + log () for 1 .j j jb o j N
for t = 2 step 1 until T
begin

() max{ (1) log } log () for 1 , .j i ij j tt t a b o i j N

end
Termination:

1
(|) max{ ()}. v T

j N
P o j

end

Decision:
1

ˆ arg max{ (|)}.v
v W

v P o

Figure 2. The conventional log‐Viterbi algorithm.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 353

sequence and its probability. At the beginning of the
search, each state is initialized to the initial state
probability π*={logπj} and the first observation
probability logbj(o1). To update the state probability
δj(t), we need to find the most likely transition coming
into each state. This is achieved by adding log
transition probabilities A*={logaij} to their previous
state probability δi(t−1). As the HMM structure
normally simplifies its transitions based on the left-to-
right model, the state transition probability aij=0 if i ≠
j or i ≠ j−1. This sum is then added to the log
observation probability B*={logbj(ot)} assigned to the
given state of the t-th observation. This process is
performed recursively until the observation sequence
is completed. At the end of the recursion, the highest
state probability becomes P(o|λv) representing the
probability of the HMM λv for the given observation.
This log-Viterbi algorithm computes all P(o|λv) for
each word model. At last, a word v with the highest
P(o|λv) is selected as the recognized word for the given
observation sequence o. Figure 3 shows a trellis of the
Viterbi scoring procedure that uses the left-to-right
state transition model. For the purpose of clarification,
only a part of trellis ranging from t−1 to t+2 is
illustrated for a word. Though the Viterbi algorithm
efficiently finds the best matching model, the
algorithm necessitates a tremendous amount of
computation and enormous data accesses, since it
takes into account every state in all the reference
words for the length of the test utterance. More
precisely, the number of states that should be
considered to recognize a word is N×T×W. Moreover,
each state is associated with the most complex
computation of the speech recognizer, the observation
probability computation, which is performed under
multi-dimensional Gaussian mixture model (GMM).

TO lessen the computational complexity, efficient
structures have been proposed for hardware
implementation (Yoshizawa, Wada, Hayakawa, &
Miyanaga, 2006, Nakamura, Shimazaki, Yamamoto,
K. Takagi, & N. Takagi, 2012), most of which employ
parallel and pipelining techniques to achieve high-
speed realizations. Although those approaches made a
success in achieving high-speed speech recognizers,

the amount of computation is still proportional to
N×T×W. Unlike the advanced implementation
techniques, (Park, K. Cho, & J. Cho, 2002, Paramonov
et. al., 2014) presented an early termination technique
to skip a redundant computation of the state
probabilities. As reference words in the Viterbi
algorithm is searched one by one, (Park et. al., 2002)
terminates the scoring computation for a word and
move on to the next testing word when the state
probability of the word is less likely than P(o|λv) of the
previously compared words. The early termination
method can reduce unnecessary state probability
scoring, however, each state probability is demanded
to compare with the most likely P(o|λv) of the
previously tested words, and the improvement
depends on the order of reference models. For
instance, when the last reference model is the desired
word, the computational saving is not as significant as
the case that the first reference model is the word.

3 PROPOSED ALGORITHM
A new modified Viterbi scoring method is

proposed for HMM-based speech recognition systems.
Dijkstra’s shortest-path algorithm (Nilsson, 1980) is
employed so as to eliminate unnecessary state
computations while preventing the recognition
accuracy from deteriorating. We first analyze the
trellis to translate the Viterbi scoring into the shortest-
path searching, and then describe the proposed Viterbi
scoring algorithm.

THE conventional log-Viterbi algorithm described
in Figure 2 decides the reference model v with the
highest P(o|λv) as the recognized word. For this, it
computes the intermediate state probability δj(t) by
summing the most likely transition probability and the
observation probability logbj(ot). To decide the most
likely transition probability for state j at time t, the
comparison is performed to select the maximum sum
of the previous state probability δi(t−1) and transition
probability logaij. The logarithm is applied to convert
multiplication into addition and to avoid the underflow
of state probability. Probability values ranging from 0
to 1 are all negative in the logarithm domain. If all the
log-probabilities associated with πj, aij, bj(ot), and δj(t)

Figure 3. The trellis based on the log‐Viterbi algorithm when the number of state N is 4.

354 JIHYUCK JO, HAN-GYU KIM, IN-CHEOL PARK, BANG CHUL JUNG, AND HOYOUNG YOO

are negated, they are converted to positive values, and
the comparison performed to select the maximum,
max{δi(t−1)+logaij}, is changed to
min{δi(t−1)−logaij}. As the trellis of Viterbi scoring
becomes monotonically increasing in that case, the
Viterbi scoring can be considered as a kind of
shortest-path search that deals with positive costs of
−logaij and −logbj(ot). A word with the lowest P(o|λv)
is determined as the recognized word.

DIJKSTRA’s algorithm is widely used to find the
shortest path in a graph (Nilsson, 1980). It follows the
best-first search and always finds the lowest-cost path
based on the principle of optimality (Dreyfus & Law,
1977). Let us assume that a graph consists of nodes
with given cost values. To find the shortest path,
Dijkstra’s algorithm always finds the best path first
and move further until reach to the goal node. More
precisely, the algorithm runs as shown in Figure 4. As
Dijkstra’s algorithm uses the best-first search, it first
searches for a node that appears to be close to the
goal. Furthermore, unvisited nodes do not need to be
searched after arriving to the goal node. Given the
monotonically increasing trellis, the algorithm can be
employed so as to decrease state computations. The
trellis is easily considered as a tree structure with a
common initial node that is virtually assumed, and
every state in all the reference words is regarded as the
node. The node with the smallest state probability is
selected as the most likely path.

FURTHERMORE, the algorithm is slightly revised
to manage the most likely path efficiently. Although
Dijkstra’s algorithm takes into account all N×W nodes
at a time t, the speech-recognition system decides a
word based on the reference model rather than
individual paths. Thus, we employ two-phase

comparison to efficiently manage the minimum
values. In the proposed algorithm, the first phase
chooses a local minimum (LM) associated with the
minimum state probability for each reference model,
and the second phase compares W local minima to
decide the global minimum (GM). To expedite a
selection of the GM, a min-heap structure (Tarjan,
1983) is used to implement the priority queue. The
GM is effectively managed with a min-heap of size W
to avoid a large amount of comparisons to be
performed for N×W nodes. All the N nodes of the
reference model corresponding to the GM are searched
to find a new LM for the reference model.

THE proposed algorithm is described in Figure 5.
At the beginning of searching, each state is initialized
to the sum of −logπj and −logbj(o1), and for each
reference model v, the LM(v) is selected among N
state probabilities δj(1), 1≤j≤N. The most likely model
is the reference model indicated by the GM. To find
the lowest-cost path, N paths in the reference model v
corresponding to the GM is examined. Based on the
updated state probabilities δj(vt), the LM of v is newly
selected, and the min-heap and the GM are
accordingly updated. When we arrive at the end of a
reference model at time T, the scoring procedure is
terminated and the reference model becomes the
recognized word. Note that the remaining uncalculated
scores are guaranteed to be higher than the score of
the recognized word, since the most likely reference
model is selected as the GM every time. Figure 6
exemplifies a graphical representation of the proposed
algorithm that uses the left-to-right state transition
model. For the sake of simplicity, the numbers of
words and states are both fixed to 4. Word 3 is

Start

Step1. Remove the best node
The node with lowest cost is

removed from queue

Goal node in priority
queue?

Step2. Update neighbors
The cost values of the removed
node's neighbors are updated

Step3. Insert the neighbors
The updated neighbors are

inserted into the queue

End

Initialization
Initial node is inserted
into a priority queue

Figure 4. Dijkstra’s algorithm

INTELLIGENT AUTOMATION AND SOFT COMPUTING 355

selected as the recognized word since it is arrived first,
and its final LM is smaller than those of the other
words. Consequently, the overall computational
complexity of speech recognition can be decreased
due to the skipped OPCs and LSCs. Note that the
proposed method always need less computations
without any recognition degradation. Unlike the
previous early termination (Park et. al., 2002), in
addition, the computational reduction does not depend
on the testing order of reference models.

4 SIMULATION RESULTS
TO compare the computational complexities of

different scoring algorithms, we have simulated three
different ones: the conventional Viterbi algorithm
(Nilsson, 1980), the early termination method (Park et.
al., 2002), and the proposed modified Viterbi

algorithm with various configurations of words, states,
and Gaussian mixture models. In general, the pruning
technique (Huang, Alejandro, & Hon, 2001) that
removes unlikely paths is one of fascinating methods
to decrease the computational complexity, but it
degrades the recognition accuracy inherently due to
the finite beam width and threshold. Note that the
three scoring algorithms do not induce any searching
errors degrading the recognition accuracy. For fair
comparison, the typical speech recognition systems
shown in Figure 1 is assumed and the pruning
technique is not considered in the comparison.

FOR speech-recognition experiments, the speech
signal is sampled at 16 KHz with 16-bit quantization,
and 39 feature vectors are extracted for every 32ms
overlapped frame. In a speech corpus collected from
32 female and 38 male speakers from Korean

Figure 6. The tree structure based on the proposed algorithm when the numbers of words and states are 4.

Proposed algorithm

Input: observation sequence o and HMM λv.

Initiation:
for v = 1 step 1 until W
begin

1

*

(1) log log () for 1 .

() min{ (1)} for 1 .

1.

j j j

j

v

b o j N

LM v j N

t

end
Best-first scoring:

Step1: * { ()} for 1 .H LM v v W

Step2:
* min{ ()},
argmin{ ()} for 1 .

is deleted.
v

GM LM v
v LM v v W

H GM

Step3:
() min{ (1) log }

 log () for 1 , .

1.
v

j v i v ij

j t

v v

t t a

b o i j N

t t

Step4: () min{ ()} for 1 .

() is inserted.
j vLM v t j N

H LM v

Step5: if T, quit. Otherwise, go to Step2.vt

Decision: ˆ .v v
 *H: min-heap, LM: local min., GM: global min.

Figure 5. The proposed modified Viterbi scoring algorithm.

356 JIHYUCK JO, HAN-GYU KIM, IN-CHEOL PARK, BANG CHUL JUNG, AND HOYOUNG YOO

Phonetically Balanced Words (KPBW) (ETRI, 1995),
60% utterances are used for training and the remaining
40% are used for testing. More precisely, Hidden
Markov Model Toolkit (HTK) developed from
Cambridge University (Yong et. al., 2002) is used for
obtain trained HMM sets. For the three scoring
algorithms, Figure 7 shows how the ratio of the
calculated states to the overall N×T×W states depends
on the numbers of reference models, states, and
GMMs. Since the effectiveness of the early
termination method (Park et. al., 2002) is dependent
on the testing order of reference models, the correct
word model is tested at the middle of the reference
word sequences. On the average, the proposed
modified Viterbi algorithm saves the computational
complexity by more than 21% and 10%, compared to
the conventional Viterbi scoring and early termination
algorithms, respectively. In order to bring a practical
contribution, the overall recognition time including
comparison computations is measured in a 2.4 GHz
computer system. The results are plotted in Figure 8,
where it is clear that the less computational
complexity leads to the faster recognition. From
Figure 7 and Figure 8, we can see that the
improvement of the proposed algorithm becomes
more significant as the numbers of the words, states,
and GMMs increase. Furthermore, an advanced tree
searching algorithm including A-Star algorithm is
currently investigated so as to achieve a further
improvement (Nilsson, 1980).

5 CONCLUSION
THE Viterbi scoring that compares test utterances

with reference models to find the best matching model
suffers from huge computational complexity. This
paper has presented a modified Viterbi scoring
algorithm so as to effectively eliminate unnecessary
computations. In the proposed method, the Viterbi
scoring is translated into the shortest-path search, and
Dijkstra’s shortest-path algorithm is applied to
decrease the computational complexity without
sacrificing recognition accuracy. Moreover, a two-
phase comparison method has been proposed to
manage the state probabilities efficiently. The
proposed method reduces the computational
complexity and recognition time by more than 21%

and 10% compared to the conventional Viterbi scoring
and the early termination (Park et. al., 2002)
algorithms, respectively. The complexity reduction
becomes more significant if the numbers of words,
states, and GMMs increase. Furthermore, the proposed
method can be applied to the connected word
recognition and continuous speech recognition when
the Viterbi searching is employed.

ACKNOWLEDGMENT
THIS work was supported by research fund of

Chungnam National University in 2017.

REFERENCES
Czyzewski, A. (1996). Speaker-Independent

Recognition of Digitsmdash Experiments with
Neural Networks, Fuzzy Logic and Rough Set.
Intelligent Automation & Soft Computing. Pp.
133-145: TSI Press. doi:
10.1080/10798587.1996.10750662

Dreyfus, S.E., & Law, A.M. (1977). The art and
theory of dynamic programming. New York, NY:
Academic Press Inc.

Electronics and Telecommunications Research
Institute (ETRI). (1995). Research on the Korean
Speech Synthesis Technology (V):
5KT21000481420F.

Huang, X., Alejandro, A., & Hon, H.W. (2001).
Spoken language processing. Upper Saddle
River, NJ: Prentice Hall.

Lou, H.-L. (1995). Implementing the Viterbi
algorithm. IEEE Signal Processing Magazine, 12,
42-52. doi: 10.1109/79.410439.

0.5

1.0

1.5

2.0

2.5

Number of words, W

R
ec

og
ni

tio
n

tim
e

(s
ec

.)

100 200 300 400

W words, 20 states, 8 GMMs

Early termination
Proposed

 Viterbi

Figure 8. Recognition time versus number of words W.

Number of words, W Number of states, N

70

80

90

100

R
at

io
 o

f c
al

cu
la

te
d

st
at

es
 (%

)

70

80

90

100

R
at

io
 o

f c
al

cu
la

te
d

st
at

es
 (%

)

Early termination
Proposed

 Viterbi

Early termination
Proposed

 Viterbi

100 200 300 400 5 10 15 20

W words, 20 states, 8 GMMs 200 words, N states, 8 GMMs

(a) (b)

1 2 4 8
70

80

90

100

Number of GMMs, M

R
at

io
 o

f c
al

cu
la

te
d

st
at

es
 (%

)

EarlyTermination
Proposed

 Viterbi

200 words, 20 states, M GMMs

(c)

Figure 7. Ratio of calculated states versus numbers of (a) words W, (b) states N, and (c) GMMs M.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 357

Macias-Guarasa, J. et. al. (2009). Novel Applications
of Neural Networks in Speech Technology
Systems: Search Space Reduction and Prosodic
Modeling. Intelligent Automation & Soft
Computing. pp. 631-646: TSI Press. doi:
10.1080/10798587.2009.10643054

Nakamura, K., Shimazaki, R., Yamamoto, M., Takagi,
K., & Takagi, N. (2012). A VLSI architecture
with multiple fast store-based block parallel
processing for output probability and likelihood
score computations in HMM-based isolated word
recognition. IEICE Transactions on Electronics,
E95-C, 456-467. doi:
10.1587/transele.E95.C.456.

Nilsson, N.J. (1980). Principles of artificial
intelligence. Palo Alto, CA: Tioga Publishing Co.

Paramonov, P. & Sutula, N. (2014). Simplified
Scoring Methods in HMM Based Speech
Recognition. International Conference on Soft
Computing and Machine Intelligence. (pp. 154-
156) New Delhi, India: IEEE. doi:
10.1109/ISCMI. 2014.32

Paramonov, P. (2017). Fast algorithm for isolated
words recognition based on Hidden Markov
model stationary distribution. International
Conference on Soft Computing & Machine
Intelligence (pp. 128-132). Port Louis, Mauritius:
IEEE. doi: 10.1109/ISCMI.2017.8279612

Park, B.-G., Cho, K.-S., & Cho, J.-D. (2002, March).
Low power VLSI architecture of Viterbi scorer
for HMM-based isolated word recognition.
International Symposium on Quality Electronic
Design (pp. 235-239). San Jose, California, USA:
IEEE. doi: 10.1109/ISQED.2002.996739.

Prasad, N., Chakrabarti, I., & Chattopadhyay, S.
(2018). An Energy-Efficient Network-on-Chip-
Based Reconfigurable Viterbi Decoder
Architecture. Transactions on Circuits and
Systems I: Regular Papers. Early Access. IEEE:
doi: 10.1109/ TCSI.2018.2825362

Rabiner, L.R., & Juang, B.H. (1993). Fundamentals of
speech recognition. Englewood Cliffs, NJ:
Prentice Hall Inc.

Rabiner, L.R. (1989). A tutorial on hidden Markov
models and selected applications in speech
recognition. Proceedings of the IEEE, 77, 257-
286. doi: 10.1109/5.18626.

Tarjan, R.E. (1983). Data structures and network
algorithms. Philadelphia, PA: Society for
Industrial and Applied Mathematics.

Ting, H.-N., Yong, B.-F., & Mirhassani, S. M. (2013).
Self-Adjustable Neural Network for Speech
Recognition. Engineering Applications of
Artificial Intelligence. pp. 2022-2027: Elsevier.
doi.org/10.1016/j.engappai.2013.06.004

Xihao, S. & Miyanaga, Y. (2013). Dynamic time
warping for speech recognition with training part
to reduce the computation. International
Symposium on Signals, Circuits and Systems. (pp.

1-4). Iasi, Romania: IEEE. doi: 10.1109/ISSCS.
2013.6651269.

Yoshizawa, S., Wada, N., Hayakawa, N., &
Miyanaga, Y. (2006). Scalable architecture for
word HMM-based speech recognition and VLSI
implementation in complete system. IEEE
Transactions on Circuits and Systems I: Regular
Papers, 53, 70-77. doi:
10.1109/TCSI.2005.854408.

Young, S. J., Evermann, G., & Gales, M. J. F., et. al.
(2009). The HTK book (version3.4): Cambrige
University Engineering Department.

DISCLOSURE STATEMENT
NO potential conflict of interest was reported by

the authors.

NOTES ON CONTRIBUTORS

Jihyuck Jo received the B.S.,
M.S., and Ph.D. degrees in
electrical engineering from the
Korea Advanced Institute of
Science and Technology,
Daejeon, Korea, in 2012, 2014,
and 2018, respectively. Since
2018, he has been a Senior
Engineer at Samsung Electronics.

His current research interests include VLSI
architectures for general-purpose microprocessors and
neural network processors.

Han-Gyu Kim received the B.S.
degree in electronic engineering
from Tsinghua University,
Beijing, China, in 2009 and the
M.S. and the Ph.D. degree in
School of Computing, KAIST,
Daejeon, South Korea, in 2011
and 2018. He is currently working
as a researcher in Clova Speech,

Naver Corp. His research interests include speech
recognition, source separation and deep learning.

 In-Cheol Park received the B.S.
degree in electronic engineering
from Seoul National University,
and the M.S. and Ph.D. degrees in
electrical engineering from
KAIST. He is currently a
Professor with the School of
Electrical Engineering, KAIST.

His research interests include computer-aided design
algorithms for high-level synthesis and very large
scale integration architectures for general-purpose
microprocessors.

358 JIHYUCK JO, HAN-GYU KIM, IN-CHEOL PARK, BANG CHUL JUNG, AND HOYOUNG YOO

Bang Chul Jung received the
Ph.D. degrees in Electrical &
Computer Engineering from
KAIST, Daejeon, Korea, in 2008.
He is currently an Associate
Professor of the Department of
Electronics Engineering,
Chungnam National University,

Daejeon, Korea. His research interests include
wireless communication systems, statistical signal
processing, and machine learning.

Hoyoung Yoo received Ph.D.
degrees in Electronics Engineering
from KAIST, Daejeon, Korea, in
2016. Since September 2016, he
has been an assistant professor in
the department of Electronics
Engineering at Chungnam
National University. Specific
areas of current interest include

VLSI design for Error Correction Codes and 5G
communication systems.

