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1 INTRODUCTION 
HAND gestures offer a natural and intuitive 

communication modality for human–computer 
interaction. The advantage of controlling remote 
devices using gestures is that users do not need to be 
in direct contact with the devices to interact with the 
relevant applications. The use of gesture recognition 
for remote control is an effective strategy for 
environments with hygiene and safety concerns, or 
with operational restrictions that do not allow users to 
be in direct contact with the devices. A vision-based 
gesture control system must detect hand position prior 
to the recognition of command gestures; meaning that 
the entered image sequence must be processed and 
analyzed to determine the correct hand position before 
gestures can be recognized. Among the various 
moving object detection methods, point detectors 
possess superior invariance for changes in light and 
camera angles, and are often used to locate useful data 
points in images that exhibit texture characteristics 
(Lowe, 2004). Apart from point detectors, mean-shift 
clustering (Comaniciu & Meer, 2002; Yin, Yang, 
Chai, & Yang, 2012), graph-cuts (Shi & Malik, 2000), 
Kalman filter (Yin, Peng, Chai, & Fan, 2013; Tsui & 
Basir, 2013), and supervised learning mechanisms 
(Rowley et al., 1998; Viola et al., 2005; Hsia et al., 
2015) are also commonly applied in the processing of 
moving object detection and tracking. 

The use of background models for object detection 
and tracking has also been a popular research topic 
(Brutzer et al., 2011). Since the late 1970s, researchers 
have been analyzing the color difference between 
multiple images to detect moving objects within image 
sequences (Jain & Nagel, 1979); other methods such 
as the Gaussian mixture model (GMM) (Oliver et al., 
2000) and nonparameter kernel density estimation ( 
Elgammal et al., 2002) also possess satisfactory 
effects for moving object detection. Most methods in 
the literature are only capable of processing static 
backgrounds, but Zhong et al. (2003) and Monnet et 
al. (2003) proposed background modeling methods 
with time-varying background capacities to surmount 
that limitation. These methods are capable of 
processing dynamic backgrounds such as water and 
clouds, further expanding the applicable scope of 
background modeling methods. Kim et al. (2005) 
proposed a real-time codebook model. Sample 
background values at each pixel are quantized into 
codebooks that represent a compressed form of the 
background model. Codewords not appearing for a 
long period of time in the video sequence are 
eliminated from the codebook model and new images 
that have appeared for some time are quantized into 
codebooks. This algorithm is also very effective for 
dynamic backgrounds (Lee & Park, 2012). Guo et al. 
proposed a multi-layer codebook model for 
background subtraction method. It can detect the 
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moving object efficiency and remove most of the 
nonstationary background (Guo et al., 2011; Guo et 
al., 2013). 

After the removal of complicated backgrounds in 
image sequences and the correct segmentation of the 
portions of images depicting hands, processes such as 
feature extraction and sample classification are 
implemented. In general, the greatest challenge of 
dynamic gesture recognition is recognizing the same 
gestural movements performed by users at differing 
times; their speeds, trajectories, or durations differ, 
and result in spatial-temporal variability, a feature that 
makes the recognition of dynamic gestures more 
difficult than the recognition of static gestures. 
Therefore, extracting satisfactory gesture features and 
choosing suitable classifiers are extremely crucial for 
dynamic gesture recognition. During feature 
extraction, researchers often obtain useful trajectory 
features through analyzing the trajectories of image 
sequences, by details such as trajectory points, 
trajectory lengths, and orientation features, to ensure 
that the satisfactory features enable the system to 
accurately distinguish between differing gestures. 
Some classifiers that are often used in dynamic 
gesture recognition are finite state machines (Hong, 
Turk, & Huang, 2000), dynamic time warping 
(Corradini, 2001), hidden Markov models (HMMs) 
(Elmezain et al., 2008; Elmezain et al., 2009), and 
neural networks (Kim & Park, 2013, Kaluri & Reddy, 
2018). 

This study proposed a fuzzy neural network 
(FNN)-based real-time dynamic gesture recognition 
framework using trajectory features. The system uses 
the six basic dynamic gestures of the Internet Protocol 
Television (IPTV) gesture control interface as the 
target of recognition, to establish a gesture control 
system suitable for IPTV. To achieve real-time 
requirements, a codebook-based target object-
detecting module was implemented as a hardware 
accelerator using field-programmable gate array 
(FPGA) technology. A pipeline design procedure was 
then adopted to segment the background modeling 
process into several stages, in order for all hardware 
modules to be fully applied and to avoid idle time, 
thereby effectively improving system performance. 
During the recognition stage, a coarse-to-fine 
classifier was established for gesture recognition; in 
the coarse classification stage, the FNN-based 
classifier divided the input gestures into linear and 
circular gestures, after which a detailed categorization 
was conducted based on information such as position 
changes in the adjacent data points of the trajectories, 
to accurately determine the category of the output 
gesture. Figure 1 shows the system architecture for the 
described method; the real-time object detection 
system was implemented on the DE2-115 platform 
using FPGA technology, and the gesture recognition 
module was implemented on the PC platform. 
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Figure 1.  System architecture of the real‐time dynamic gesture recognition system. 

 

2 HARDWARE ARCHITECTURE FOR MOVING 
OBJECT DETECTION 

THE hardware architecture for the object detection 
system was divided into several circuit modules such 
as the codebook background modeling module, the 
morphological image processing module, and the 
connected component labeling (CCL) module. Figure 
2 shows the Grafcet discrete-event model (David, 
1995) for the object detection system. The first n input 
images were set as the background-training images; 
the n+1th image entered the foreground-segmentation 
stage, followed successively by morphological image 
processing and CCL. 

2.1  Codebook background model 
2.1.1  Kim et al.’s codebook method (Kim et al., 
2005) 

The basic codebook algorithm was proposed by 
Kim et al. (2005). It was based on the construction of 
a background model adopting a quantization and 
clustering technique from Kohonen (1990) and Ripley 
(1996). The algorithm in the present research is as 
follows: 

Let 	ܺ	  be a training sequence for a single pixel 
consisting of N red–green–blue (RGB) vectors: 
ܺ ൌ ሼݔଵ, ,ଶݔ … , ேሽݔ ܥ	 , ൌ ሼܿଵ, ܿଶ, … , ܿሽ	  represent the 
codebook for the pixel consisting of L codebooks. 
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Each codeword ci, i = 1,...,L is represented by a RGB 
vector 	ݒ ൌ ሺ തܴ, ܩ̅ , തሻܤ  and a 6-tuple ݔݑܽ		 ൌ
൫ܫሙ, ,መܫ ݂ , ,ߣ , ൯ݍ  where ܫపෙ  and ܫప  are the minimum 
and maximum brightness of all pixels assigned to 
codeword ܿ ; ݂  is the frequency with which the 
codeword has occurred; ߣ  is the maximum negative 
run-length defined as the longest interval during the 
training period in which the codeword has not 
recurred; and   and ݍ  are the first and last access 
times, respectively, at which the codeword has 
occurred. 

The codebook is created or updated using two 
criteria. The first criterion is based on color distortion 
ߜ  whereas the second is based on brightness 
distortion. When we have an input 	ݔ௧	 and a codeword 
	ܿ	 where 	ݒ ൌ ሺ തܴ, ܩ̅ ,  can ߜ തሻ, the color distortionܤ
be calculated by: 

ߜ  ൌ 	ඥ‖ݔ௧‖ଶ െ ߮ଶ (1) 

where ߮ଶ is given by (2) 

 ߮ଶ ൌ
ሺோതோାீ̅ீାതሻ

మ

ோത
మାீ̅

మାത
మ   (2) 

According to Kim et al.’s method (2005), the 
brightness I is delimited by two bounds. The lower 
bound is ܫ௪ ൌ መܫߙ  and the upper limit is ܫ ൌ

݉݅݊ ቄܫߚመ,
ூሙ

ఈ
ቅ. For an input pixel that has red, green, and 

blue colors, the formula of the brightness is given by 
(3). 

,ܫ൫ݏݏ݁݊ݐ݄݃݅ݎܾ ,ሙܫ〉 መ〉൯ܫ ൌ ൜
,݁ݑݎݐ ௪ܫ  ‖௧ݔ‖  ܫ
,݁ݏ݈݂ܽ ݁ݏ݅ݓݎ݄݁ݐ

		 (3) 

For each input pixel, if we find a codeword ܿ that 
respects these two criteria (distortion criterion and 
brightness criterion) then we update this codeword by 

setting ݒ  to ቀ
ோതାோ

ାଵ
,
ீ̅ାீ

ାଵ
,
തା

ାଵ
ቁ  and 	ܽݔݑ  to 

{݉݅݊൛ܫ, ሙൟܫ ,ܫ൛ݔܽ݉ , መൟܫ , ݂  1 ,ߣሼݔܽ݉ , ݐ െ ሽݍ , 
  If we do not find a matched codeword, we .{ݐ ,
create a new codeword ܿ. In this case, ݒ is equal to 
(R, G, B) and 	ܽݔݑ is equal to ሼܫ, ,ܫ 1, ݐ െ 1, ,ݐ  .ሽݐ

After the training period, if an incoming pixel 
matches a codeword in the codebook, then this 
codeword is updated. If the pixel does not match, the 
pixel’s information is put into a cache word and this 

pixel is treated as a foreground pixel. If a cache word 
is matched at other frequencies then that cache word is 
put into the codebook. 
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Figure 2.  Grafcet discrete‐event model of moving object 
detection system. 

2.1.2  Hardware implementation of codebook 
background model 

The codebook background modeling was mainly 
divided into the background-training stage and 
foreground-segmentation stage, thus the overall 
system was segmented into two modules; their 
architecture diagrams are shown in Figure 3(a) and 
3(b) respectively. In addition, background modeling 
was further subdivided into three submodules, namely 
the sample partitioning module, the codebook update 
module, and the λ update module. When training the 
background model, the sample partitioning module 
inputs the color distortion and brightness of each pixel 
to determine whether that pixel belongs to the 
foreground or the background. The output results were 
binary data, with the result being 1 if the pixel was 
foreground, and 0 otherwise. The codebook update 
module and λ update module each updated the 
background codebook and the parameter λ according 
to the update rule in the aforementioned codebook 
background-training algorithm. 
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Figure 3.  System architecture of codebook background modeling, (a) background model training stage, (b)foreground 
segmentation stage. 
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To enhance the operational efficiency of the system, 

the design work for the codebook background 
modeling was implemented by using a pipelined 
architecture. The pipelined design segmented the 
overall process of the hardware circuit into several 
stages. Each stage was capable of operating 
continuously in a cycle; this reduced the idle time of 
the hardware components and maximized their 
utilization; the system performance was improved 
without additional hardware resources. The pipeline 
controller designed in this study viewed each circuit 

module as a task and implemented conditional control 
on them. Figure 4 shows the Grafcet discrete-event 
model. In Figure 4, the sample partitioning module, 
codebook update module, and λ update module 
correspond to tasks controlled by the pipeline 
controller; P1–P3 were the main operating functional 
modules; T1–T3 and B1–B3 were in the idle state; 
their main function was to stabilize the transmission of 
control signals. 
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Figure 4.  Grafcet discrete‐event model of the pipeline controller. 

 

2.2   Morphological image processing module 
The opening operator in the mathematical 

morphology first performed erosion on images with 
filtered backgrounds to eliminate the noisy or sharp 
parts of the images; next, the contour gaps in the 
foreground objects were filled using dilation to obtain 
a complete foreground object contour, as shown in 
Figure 5. Figure 6 shows the block diagrams of the 
hardware architectures for both erosion and dilation 
operations. When the start signal was at logic 1, each 
occurrence of a clock signal caused Data_In to shift a 
pixel signal into the line buffer; when the data 
temporarily stored in the line buffer were 3×3, the 3×3 
mask data were then transferred to the compare 
module, wherein the maximum value for the 3×3 mask 
data was determined and sent to the output terminal. 

Erosion 
operation

Dilation 
operation

ResultBinary 
image

 
Figure 5.  The morphological open operation.  
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Figure 6.  The hardware architecture for the dilation and 
erosion operation. 

2.3   Connected component labeling module 
The CCL module was able to determine whether a 

pixel point in the foreground shared a connected 
relationship with an adjacent foreground pixel point, 
that is, it determined whether the two foreground pixel 
points belonged to the same object. Binary images 
were scanned by the CCL using raster scanning from 
left to right and top to bottom; when each pixel was 
scanned, only the four points q, r, s, and t in its 
neighboring pixels needed to be considered, as shown 
in Figure 7. The CCL algorithm was divided into two 
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stages: in the first stage, each pixel in the foreground 
was assigned a number based on the concept of the 8-
connected component; the interconnected blocks with 
differing numbers were then merged in the second 
stage. 

q r s

t p

 
Figure 7.  Adjacent points of the 8‐connected component. 

Figure 8 shows the hardware architecture for the 
CCL. The data for the four pixels of q, r, s, and t in the 
8-connected component were stored using the line 
buffer, whereas the labeling information was obtained 
through the label assigner module and merge 
controller module, after which the labeling 
information was stored in the merge table and data 
table. 

Line Buffer

qt s r
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Merge Controller

Data In
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Figure 8.  The hardware architecture for the connected 
component labeling module. 

3 RECOGNITION SYSTEM STRUCTURE 

3.1  Gesture feature extraction 
(1) Ratio of major axis to minor axis 

FOR a sequence of M images, the central location 
of the hand for each image was recorded, and the four 
boundary values of the gesture trajectories established 
by the M coordinate points were located: ܺ௫, ܺ, 
ܻ௫	, ܻ.The major axis a and minor axis b for the 

gesture trajectories were then calculated, as shown in 
Figure 9(a). The first feature of the dynamic gesture 
 :ଵ was defined asݐ	

ଵݐ	  ൌ



ൌ

ೌೣି

ೌೣି
   (4) 

(2) Difference between major axis and minor axis 
Similar to the approach for ଵݐ	 , the difference 

between the major and minor axes (	ݐଶ) for the second 
feature of the dynamic gesture was defined as: 

ଶݐ	 ൌ ܽ െ ܾ ൌ ሺܺ௫ െ ܺሻ െ ሺ ܻ௫ െ ܻሻ			 (5) 

(3) Occurring frequencies of the clockwise and 
counterclockwise elements 
After ܺ௫, ܺ, ܻ௫	, ܻ had been located, the 

intersection of a and b was viewed as the central point 

C of a virtual circle, with ݎ ൌ
ା

ଶ
		 being the radius of 

the virtual circle, as shown in Figure 9(b). For the 
central coordinates of each block, the angle θ between 
the connecting line from the point to the center C and 
the horizontal line of the circle was determined, as 
shown in Figure 9(c) (Chen et al., 2013). We can 
decide the gesture is clockwise or counterclockwise by 
M different angels (θ), and record the numbers of 
times that clockwise ( ݂ௐ ) and counterclockwise 
( ݂ௐ ) occur. We make the clockwise and 
counterclockwise frequency t3 as ݂ௐ െ ݂ௐ. 

 

  
(a) 

centre r

C

 
 (b) 

 
(c) 

Figure 9.  Definition of the three feature parameters of the 
gesture trajectory, (a) Ratio of major axis to minor axis, (b) 
Difference between major axis and minor axis, (c) Occurring 
frequencies of the clockwise and counterclockwise. 

3.2  Dynamic gesture classifier design 
The gestures identified in this study were the six 

most commonly used dynamic gestures in the IPTV 
gesture instruction set, namely left, right, up, down, 
clockwise, and counterclockwise, as shown in Figure 
10. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 10.  Six basic gestures in the IPTV gesture instruction 
set: (a)left, (b)right, (c)up, (d)down, (e)clockwise, 
(f)counterclockwise 
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The classifier design for the dynamic gestures was 
implemented using a FNN classifier (Chen et al., 
2013), and its architecture is shown in Figure 11. The 
classifier was constituted of multiple Mamdani-type 
fuzzy rules and a single neuron. A classical fuzzy 
system consists of 3 stage: input stage, processing 
stage, and output stage. The input stage converts the 
crisp input into fuzzified variables using the 
membership functions. The processing stage invokes 
each appropriate rule and generates a result for each, 
then combines the results of the rules. Finally, the 
output stage converts the combined result back into a 
specific control output value. In this paper, a fuzzy 
rule has the form shown in (6): 

			ܴ：If	ݔଵ	is	ܣଵ
୨ 	, . . , and	ݔ	is		ܣ

୨ , 

									then	ܺ	belong	class		ݕ୨	with	ܨܥ ൌ       (6)	୨ܨܥ

where x1, …, xn are input variables of the fuzzy rule, 
ݕ ∊ ሼ1,2,… , ܵሽ is the output variable of the jth fuzzy 

rule, which is one for the S class. ܣ
୨  is the fuzzy set of 

the kth input variable, ܨܥ୨	 represents the reliability of 
the fuzzy rule ܴ, j=1,2,…,r. We apply the generalized 
modus ponens and max-min composition operation, 
and the fuzzy inference outputs expressed as follows: 

ߤ 
 ሺܺሻ ൌ ݉݅݊ ቄߤ

భ
ೕ ሺݔଵሻ, … , ೕߤ

ሺݔሻቅ  (7) 

௬ݑ 
 ൌ ߤ

 ሺܺሻ ∙   (8)	୨ܨܥ	

The output values ݑ௬
  of each fuzzy rule were 

linked to the input terminal of a single neuron, which 
executed the defuzzification process to obtain a crisp 
output. The r inputs transmitted to the single neuron 
were first calculated with the weight values of the 
neuron, after which the result was input into the 
transfer function ߮  to obtain the final output, ݒ , as 
follows: 

ݒ  ൌ ∑ ܹ ∙ ݑ

ୀ   (9) 

ݕ  ൌ ߮ሺݒሻ ൌ
ఈమ

ଵାషഀభ∙ೡ
  (10) 

where ߙଵ controls the shape of the transfer function, 
ଶߙ  adjusts the size of scale. Figure12 shows the 
combination of the fuzzy system and the single 
neuron. 

Fuzzy rule R1

Fuzzy rule R2

Fuzzy rule Rr

w2

w1

Input Output

wr

∑ φ (v)

u1

u2

ur

Figure 11.  The architecture of the proposed fuzzy neural 
network classifier. 

3.2.1  Coarse classification of dynamic gestures 
Based on the classifier architecture in Figure 11, 

the two classifiers used to determine the circular 
gestures and linear gestures were established 
separately, as shown in Figure 12(a) and 12(b). The 
input features of the linear gesture classifier were t1 
and t2, and its output value O1 was the inferred 
probability of the input gesture belonging to the set of 
linear gestures; the input features of the circular 
gesture classifier were t1 and t3, and its output value O2 
was the inferred probability of the input gesture 
belonging to the set of circular gestures. 
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(a) 

 

Fuzzy rule R1
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t1 O2∑ φ (v)

t3

B

B

B

u1
B

u2
B

ur
B

W1
B

W2
B

Wr
B

(b) 
Figure 12.  The FNN classifier used for dynamic gesture 
recognition, (a) linear gesture classifier, (b) circular gesture 
classifier. 

The FNN classifier can roughly determine the 
dynamic gestures to be either linear gestures or 
circular gesture. Further, in accordance with the 
positional relationship of the gesture trajectory 
coordinates, it determines the dynamic gesture to be 
up, down, left, right, clockwise, or counterclockwise. 

3.2.2  Fine classification of dynamic gestures 
The position changes between all adjacent points 

ሺݔ, ,ାଵݔሻ and ሺݕ  ାଵሻ were determined using the Mݕ
coordinate points that constituted the dynamic gesture 
trajectory. To reflect the fact that the gesture 
movements captured by the camera moved in 
directions opposite to the directions perceived by the 
users, the determined formula definitions are shown in 
(11)： 

 

ە
۔

ۓ
௧ܥ ൌ ௧ܥ  1									, ାଵݔ	݂݅  ݔ
௧ܥ ൌ ௧ܥ  1				, ݔ	݂݅  ାଵݔ
௨ܥ ൌ ௨ܥ  1												, ݕ	݂݅  ାଵݕ
ௗ௪ܥ ൌ ௗ௪ܥ  1			, ାଵݕ	݂݅  ݕ

       (11) 
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where ܥ௧ ௧ܥ , ௨ܥ , , and ୢܥ୭୵୬  are the times of 
waving in different directions. 

Combining with the times of waving clockwise 
݂ௐ  (CCW) and counterclockwise ݂ௐ  (CCCW), we 

define the probabilities of the six dynamic gestures 
and the formula is as following: 

 

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ ଵ ൌ



ାೝାೠାೢ
ൈ ଵܱ

ଶ ൌ
ೝ

ାೝାೠାೢ
ൈ ଵܱ

ଷ ൌ
ೠ

ାೝାೠାೢ
ൈ ଵܱ

ସ ൌ
ೢ

ାೝାೠାೢ
ൈ ଵܱ

ହ		 ൌ
ೈ

ೈାೈ
ൈ ܱଶ																							

	 ൌ
ೈ

ೈାೈ
ൈ ܱଶ																						

 (12) 

where ଵ,…,  are the probabilities of different 
dynamic gestures. O1 and O2 are the outputs of the 
linear classifier and the circular classifier. 

4 EXPERIMENTAL RESULTS AND DISCUSSION 
THE program was tested on Intel Core (TM)2 

Quad CPU Q6660 with 4GB DDRIII RAM, and the 
spec of CMOS sensor was 2 million pixels. The 

designed hardware accelerator were described in 
VHDL and synthesized for Altera Cyclone Ⅳ FPGA, 
with the aid of the tool Quartus II 12.1. 

4.1  Real‐time object detection system 
The results for the real-time object detection 

system under differing color temperatures are shown 
in this section. The color temperature level varied 
according to the viewers’ various external conditions, 
such as weather conditions, environments, and objects; 
its unit was Kelvin (K); a lower value indicated a 
stronger red, whereas a higher value indicated a 
stronger blue. The experiment was conducted using 
four image sequences of differing color temperatures, 
which were an outdoor environment in the early 
morning (1600 K), an indoor environment under a 
fluorescent lamp (4000 K), and outdoor environment 
at noon (5200 K), and a cloudy day (7000 K). Figure 
13 shows the results of the hand detection 
segmentation. The measured results indicated that 
even under distinct color temperatures, the real-time 
object detection system was capable of successfully 
segmenting the areas of the users’ hands. 
 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 13.  Results of image sequence and its segmented hand areas captured at different time periods (a) outdoor environment 
in the early morning, (b) indoor environment under a fluorescent lamp, (c) outdoor environment at noon, and, (d) outdoor 
environment on a cloudy day. 

 

4.2  Dynamic gesture recognition results 
For the gesture recognition experiment, the six 

dynamic gestures were captured as image sequences. 
Each gesture was recorded 10 times for each of 10 
users, thus a total of 600 gesture data were stored in 
the gesture database, with each dynamic gesture 
having an image sequence length of 10 frames. At the 
training stage of the recognition architecture, 70 data 
were randomly selected from each dynamic gesture 
for FNN classifier training; the initial values for Wj of 
the FNN classifier were all preset to 1, and particle 
swarm optimization was employed during the training 

stage to optimize the parameters to improve the 
recognition rate of the classifier. 

After obtaining a sequence of data showing moving 
hands, the real-time object detection system 
implemented on the FPGA board then sent the 
sequence to the gesture recognition system at the PC 
end to infer the probability that the sequence might 
belong to a known gesture category. Table 1 shows 
the experimental results for the recognition rate of 
dynamic gestures. 
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4.3  Computation efficiency analysis of the 
system 

This study used Quartus II software, version 12.1, 
to implement and verify the hardware design of the 

real-time object detection system, which consisted of 
three circuit modules. Table 2 shows the analysis 
results for the FPGA resources consumed by the final 
implemented system. 

 
Table 1.  The recognition rate of dynamic gesture. 

 1 2 3 4 5 6 7 8 9 10 Avg 
Left 100% 100% 100% 100% 80% 90% 90% 90% 100% 80% 93% 

Right 90% 100% 90% 100% 100% 100% 100% 90% 100% 100% 97% 
Up 90% 100% 100% 100% 70% 80% 100% 90% 100% 100% 93% 

Down 100% 100% 50% 100% 80% 70% 80% 70% 60% 60% 77% 
Clockwise 100% 80% 100% 70% 100% 100% 90% 100% 100% 90% 93% 

C-clockwise 100% 100% 100% 80% 100% 80% 100% 100% 90% 100% 95% 
Avg. 97% 97% 90% 92% 92% 87% 93% 90% 92% 88% 92% 

 
Table 2.  Resource usage analysis of the object detection system on the DE2‐115 development board  

 Pins Memory Bits 
Embedded Multiplier 

9-bit Elements 
Logic Elements 

Total Number of DE2-
115 Resources 

529 3,981,312 532 114,480 

System Resource Usage 149 148,160 39 4,788 
Resource Use Ratio 28% 3% 7% 4% 

 
 
Next, the operating clock frequencies of the three 

hardware modules were analyzed using the Quartus II 
12.1 synthesis software. The operating speed of the 
background modeling module was affected by two 
factors; the first factor was the operating clock 
frequency of image processing by the FPGA internal 
execution; the second factor was the operating clock 
frequency of the external synchronous dynamic 
random access memory (SDRAM) for storing 
information. If that SDRAM had frequently been 
required to switch between reading and writing, that 
would have affected the operational performance; to 
avoid inefficiency, the circuit was designed to use two 
SDRAM units, of which one was responsible for 
writing whereas the other was for reading. Read–write 
exchange was performed by the two SDRAM units 
after an image had been processed, thereby ensuring 
that the external SDRAM was capable of operating 
under the default operating clock frequency. Table 3 
shows the operating clock frequencies for the three 
hardware modules in the real-time object detection 
system, with the operating clock frequency of the 
overall system reaching 107.63 MHz. 

 
Table 3.  Performance index table 

Module clock frequency 

codebook background model 107.63 MHz 

opening module 254.52 MHz 

CCL module 149.50 MHz 

system clock frequency 107.63 MHz 

 

Table 4 compares the performance levels of the 
codebook model hardware architecture designed and 
implemented in this study and the embedded 
architectures described in other articles. Table 4 
indicates that when the codebook model was 
implemented as a hardware circuit, its operating speed 
was indeed capable of achieving the purpose of real-
time processing. Compared to the architectures 
proposed in other papers, the research method 
described in this study possessed the advantage of 
operating speed. 

 
Table 4.  Performance comparison with existing background 
model. 

Method 
Time cost  
(ms/frame) 

Speed (fps) 

Codebook model  
(FPGA hardware) 

3.8 262.76 

Codebook model  
(Intel CPU) 

45.2 22.12 

Frame differencing  
(Apewokin et al., 2009) 

7.6 131.96 

Approximate median 
(Apewokin et al., 2009) 

8.5 117.33 

Weighted mean  
(Apewokin et al., 2009) 

26.8 37.28 

MoG  
(Apewokin et al., 2009) 

273.6 3.65 

5 CONCLUSION 
THE construction of background modeling in the 

foreground-segmentation stage can achieve a 
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satisfactory effect; however, because of the long 
computation times required for background modeling, 
object detection systems based on background 
modeling are incapable of real-time processing. This 
study introduced a remote gesture recognition system 
applicable for IPTV; the overall system functionality 
comprised real-time object detection and gesture 
recognition. To achieve the requirement for real-time 
processing, FPGA technology was used to implement 
the real-time object detection system. An FNN-based 
real-time dynamic gesture recognition architecture 
using gesture trajectory features was proposed, 
thereby enabling the system to deliver satisfactory 
performance regardless of its operating speed or the 
gesture recognition accuracy. In addition, to provide 
users with more versatile gesture operations and 
enhance the expandability of the system, the Grafcet 
model was also used to establish a hybrid gesture 
command system model, enabling users to create new 
gestures according to their own requirements apart 
from the six basic gestures. 
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