
Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press
Vol. 25, no. 2, 375–384
https://doi.org/10.31209/2019.100000099

CONTACT Ching‐Han Chen, pierre@csie.ncu.edu.tw

© 2019 TSI® Press

Hardware Design of Codebook‐Based Moving Object Detecting Method
for Dynamic Gesture Recognition

Ching‐Han Chena, Ching‐Yi Chenb, and Nai‐Yuan Liua

aDepartment of Computer Science and Information Engineering, National Central University, Taoyuan, Taiwan, ROC

bDepartment of Information and Telecommunications Engineering, Ming Chuan University, Taoyuan, Taiwan, ROC

KEY WORDS: dynamic gesture recognition, IPTV, hardware accelerator, FNN classifier.

1 INTRODUCTION
HAND gestures offer a natural and intuitive

communication modality for human–computer
interaction. The advantage of controlling remote
devices using gestures is that users do not need to be
in direct contact with the devices to interact with the
relevant applications. The use of gesture recognition
for remote control is an effective strategy for
environments with hygiene and safety concerns, or
with operational restrictions that do not allow users to
be in direct contact with the devices. A vision-based
gesture control system must detect hand position prior
to the recognition of command gestures; meaning that
the entered image sequence must be processed and
analyzed to determine the correct hand position before
gestures can be recognized. Among the various
moving object detection methods, point detectors
possess superior invariance for changes in light and
camera angles, and are often used to locate useful data
points in images that exhibit texture characteristics
(Lowe, 2004). Apart from point detectors, mean-shift
clustering (Comaniciu & Meer, 2002; Yin, Yang,
Chai, & Yang, 2012), graph-cuts (Shi & Malik, 2000),
Kalman filter (Yin, Peng, Chai, & Fan, 2013; Tsui &
Basir, 2013), and supervised learning mechanisms
(Rowley et al., 1998; Viola et al., 2005; Hsia et al.,
2015) are also commonly applied in the processing of
moving object detection and tracking.

The use of background models for object detection
and tracking has also been a popular research topic
(Brutzer et al., 2011). Since the late 1970s, researchers
have been analyzing the color difference between
multiple images to detect moving objects within image
sequences (Jain & Nagel, 1979); other methods such
as the Gaussian mixture model (GMM) (Oliver et al.,
2000) and nonparameter kernel density estimation (
Elgammal et al., 2002) also possess satisfactory
effects for moving object detection. Most methods in
the literature are only capable of processing static
backgrounds, but Zhong et al. (2003) and Monnet et
al. (2003) proposed background modeling methods
with time-varying background capacities to surmount
that limitation. These methods are capable of
processing dynamic backgrounds such as water and
clouds, further expanding the applicable scope of
background modeling methods. Kim et al. (2005)
proposed a real-time codebook model. Sample
background values at each pixel are quantized into
codebooks that represent a compressed form of the
background model. Codewords not appearing for a
long period of time in the video sequence are
eliminated from the codebook model and new images
that have appeared for some time are quantized into
codebooks. This algorithm is also very effective for
dynamic backgrounds (Lee & Park, 2012). Guo et al.
proposed a multi-layer codebook model for
background subtraction method. It can detect the

ABSTRACT
This study introduces a dynamic gesture recognition system applicable in IPTV
remote control. In this system, we developed a hardware accelerator for real-
time moving object detection. It is able to detect the position of hand block in
each frame at high speed. After acquiring the information of hand block, the
system can capture the robust dynamic gesture feature with the moving trail of
hand block in the continuous images, and input to FNN classifier for starting
recognition process. The experimental results show that our method has a good
recognition performance, and more applicable to real gesture-controlled
human-computer interactive environment.

376 CHING-HAN CHEN, CHING-YI CHEN, and NAI-YUAN LIU

moving object efficiency and remove most of the
nonstationary background (Guo et al., 2011; Guo et
al., 2013).

After the removal of complicated backgrounds in
image sequences and the correct segmentation of the
portions of images depicting hands, processes such as
feature extraction and sample classification are
implemented. In general, the greatest challenge of
dynamic gesture recognition is recognizing the same
gestural movements performed by users at differing
times; their speeds, trajectories, or durations differ,
and result in spatial-temporal variability, a feature that
makes the recognition of dynamic gestures more
difficult than the recognition of static gestures.
Therefore, extracting satisfactory gesture features and
choosing suitable classifiers are extremely crucial for
dynamic gesture recognition. During feature
extraction, researchers often obtain useful trajectory
features through analyzing the trajectories of image
sequences, by details such as trajectory points,
trajectory lengths, and orientation features, to ensure
that the satisfactory features enable the system to
accurately distinguish between differing gestures.
Some classifiers that are often used in dynamic
gesture recognition are finite state machines (Hong,
Turk, & Huang, 2000), dynamic time warping
(Corradini, 2001), hidden Markov models (HMMs)
(Elmezain et al., 2008; Elmezain et al., 2009), and
neural networks (Kim & Park, 2013, Kaluri & Reddy,
2018).

This study proposed a fuzzy neural network
(FNN)-based real-time dynamic gesture recognition
framework using trajectory features. The system uses
the six basic dynamic gestures of the Internet Protocol
Television (IPTV) gesture control interface as the
target of recognition, to establish a gesture control
system suitable for IPTV. To achieve real-time
requirements, a codebook-based target object-
detecting module was implemented as a hardware
accelerator using field-programmable gate array
(FPGA) technology. A pipeline design procedure was
then adopted to segment the background modeling
process into several stages, in order for all hardware
modules to be fully applied and to avoid idle time,
thereby effectively improving system performance.
During the recognition stage, a coarse-to-fine
classifier was established for gesture recognition; in
the coarse classification stage, the FNN-based
classifier divided the input gestures into linear and
circular gestures, after which a detailed categorization
was conducted based on information such as position
changes in the adjacent data points of the trajectories,
to accurately determine the category of the output
gesture. Figure 1 shows the system architecture for the
described method; the real-time object detection
system was implemented on the DE2-115 platform
using FPGA technology, and the gesture recognition
module was implemented on the PC platform.

Codebook Background Model

Background Modeling

Image
sequences

capture

Background
Modeling

Foreground
Segmentation

morphological image
processing

Background model
temporary zone

connected
component

labeling

Altera DE2-115 FPGA platform

Dynamic Gesture Recognition Module

Gesture
controller

Results

Flow control

Moving hand blocks

Dynamic
gesture

recognition

Custom
gestures

IPTV Gesture Control
instruction set

Gesture trajectory
features extraction

VX-7000

Figure 1. System architecture of the real‐time dynamic gesture recognition system.

2 HARDWARE ARCHITECTURE FOR MOVING
OBJECT DETECTION

THE hardware architecture for the object detection
system was divided into several circuit modules such
as the codebook background modeling module, the
morphological image processing module, and the
connected component labeling (CCL) module. Figure
2 shows the Grafcet discrete-event model (David,
1995) for the object detection system. The first n input
images were set as the background-training images;
the n+1th image entered the foreground-segmentation
stage, followed successively by morphological image
processing and CCL.

2.1 Codebook background model
2.1.1 Kim et al.’s codebook method (Kim et al.,
2005)

The basic codebook algorithm was proposed by
Kim et al. (2005). It was based on the construction of
a background model adopting a quantization and
clustering technique from Kohonen (1990) and Ripley
(1996). The algorithm in the present research is as
follows:

Let 	ܺ	 be a training sequence for a single pixel
consisting of N red–green–blue (RGB) vectors:
ܺ ൌ ሼݔଵ, ,ଶݔ … , ேሽݔ ܥ	 , ൌ ሼܿଵ, ܿଶ, … , ܿ௅ሽ	 represent the
codebook for the pixel consisting of L codebooks.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 377

Each codeword ci, i = 1,...,L is represented by a RGB
vector 	ݒ௜ ൌ ሺ തܴ௜, ௜ܩ̅ , ത௜ሻܤ and a 6-tuple ௜ݔݑܽ		 ൌ
൫ܫሙ௜, ,መ௜ܫ ௜݂ , ,௜ߣ ,௜݌ ௜൯ݍ where ܫపෙ and ܫప෡ are the minimum
and maximum brightness of all pixels assigned to
codeword ܿ௜ ; ௜݂ is the frequency with which the
codeword has occurred; ߣ௜ is the maximum negative
run-length defined as the longest interval during the
training period in which the codeword has not
recurred; and ݌௜ and ݍ௜ are the first and last access
times, respectively, at which the codeword has
occurred.

The codebook is created or updated using two
criteria. The first criterion is based on color distortion
ߜ whereas the second is based on brightness
distortion. When we have an input 	ݔ௧	 and a codeword
	ܿ௜	 where 	ݒ௜ ൌ ሺ തܴ௜, ௜ܩ̅ , can ߜ ത௜ሻ, the color distortionܤ
be calculated by:

ߜ ൌ 	ඥ‖ݔ௧‖ଶ െ ߮ଶ (1)

where ߮ଶ is given by (2)

 ߮ଶ ൌ
ሺோത೔ோାீ̅೔ீା஻ത೔஻ሻ

మ

ோത೔
మାீ̅೔

మା஻ത೔
మ (2)

According to Kim et al.’s method (2005), the
brightness I is delimited by two bounds. The lower
bound is ܫ௟௢௪ ൌ መܫߙ and the upper limit is ܫ௛௜ ൌ

݉݅݊ ቄܫߚመ,
ூሙ

ఈ
ቅ. For an input pixel that has red, green, and

blue colors, the formula of the brightness is given by
(3).

,ܫ൫ݏݏ݁݊ݐ݄݃݅ݎܾ ,ሙܫ〉 መ〉൯ܫ ൌ ൜
,݁ݑݎݐ ௟௢௪ܫ ൑ ‖௧ݔ‖ ൑ ௛௜ܫ
,݁ݏ݈݂ܽ ݁ݏ݅ݓݎ݄݁ݐ݋

		 (3)

For each input pixel, if we find a codeword ܿ௠ that
respects these two criteria (distortion criterion and
brightness criterion) then we update this codeword by

setting ݒ௠ to ቀ
௙೘ோത೘ାோ

௙೘ାଵ
,
௙೘ீ̅೘ାீ

௙೘ାଵ
,
௙೘஻ത೘ା஻

௙೘ାଵ
ቁ and 	ܽݔݑ௅ to

{݉݅݊൛ܫ, ሙ௠ൟܫ ,ܫ൛ݔܽ݉ , መ௠ൟܫ , ௠݂ ൅ 1 ,௠ߣሼݔܽ݉ , ݐ െ ௠ሽݍ ,
௠݌ If we do not find a matched codeword, we .{ݐ ,
create a new codeword ܿ௅. In this case, ݒ௅ is equal to
(R, G, B) and 	ܽݔݑ௅ is equal to ሼܫ, ,ܫ 1, ݐ െ 1, ,ݐ .ሽݐ

After the training period, if an incoming pixel
matches a codeword in the codebook, then this
codeword is updated. If the pixel does not match, the
pixel’s information is put into a cache word and this

pixel is treated as a foreground pixel. If a cache word
is matched at other frequencies then that cache word is
put into the codebook.

0

1
Background
Construction

iFrame<=n

2
Foreground

segmentation

iFrame>n

=1 =1

3
Morphological Image

Processing

=1

4
Connected

Component labeling

=1

5 END

Figure 2. Grafcet discrete‐event model of moving object
detection system.

2.1.2 Hardware implementation of codebook
background model

The codebook background modeling was mainly
divided into the background-training stage and
foreground-segmentation stage, thus the overall
system was segmented into two modules; their
architecture diagrams are shown in Figure 3(a) and
3(b) respectively. In addition, background modeling
was further subdivided into three submodules, namely
the sample partitioning module, the codebook update
module, and the λ update module. When training the
background model, the sample partitioning module
inputs the color distortion and brightness of each pixel
to determine whether that pixel belongs to the
foreground or the background. The output results were
binary data, with the result being 1 if the pixel was
foreground, and 0 otherwise. The codebook update
module and λ update module each updated the
background codebook and the parameter λ according
to the update rule in the aforementioned codebook
background-training algorithm.

Samples
partitioning

Codebook
update

λ update

Existing background model

Image sequence

New background
model

Codebook
 array

Codebook
 array

(a)

Samples
partitioning

Codebook
update

λ update

Existing background model

Image sequence
New background

model
Codebook

 array

Codebook
 array

Foreground
Information

(b)

Figure 3. System architecture of codebook background modeling, (a) background model training stage, (b)foreground
segmentation stage.

378 CHING-HAN CHEN, CHING-YI CHEN, and NAI-YUAN LIU

To enhance the operational efficiency of the system,

the design work for the codebook background
modeling was implemented by using a pipelined
architecture. The pipelined design segmented the
overall process of the hardware circuit into several
stages. Each stage was capable of operating
continuously in a cycle; this reduced the idle time of
the hardware components and maximized their
utilization; the system performance was improved
without additional hardware resources. The pipeline
controller designed in this study viewed each circuit

module as a task and implemented conditional control
on them. Figure 4 shows the Grafcet discrete-event
model. In Figure 4, the sample partitioning module,
codebook update module, and λ update module
correspond to tasks controlled by the pipeline
controller; P1–P3 were the main operating functional
modules; T1–T3 and B1–B3 were in the idle state;
their main function was to stabilize the transmission of
control signals.

P0 Initialization

Start

T2

c2_0

P2

s2

c2_1

B2

T3

c3_0

P3

s3

c3_1

B3

P4

=1

END

T1

c1_0

P1

s1

c1_1

B1

Samples
partitioning

Codebook update λ update

Figure 4. Grafcet discrete‐event model of the pipeline controller.

2.2 Morphological image processing module
The opening operator in the mathematical

morphology first performed erosion on images with
filtered backgrounds to eliminate the noisy or sharp
parts of the images; next, the contour gaps in the
foreground objects were filled using dilation to obtain
a complete foreground object contour, as shown in
Figure 5. Figure 6 shows the block diagrams of the
hardware architectures for both erosion and dilation
operations. When the start signal was at logic 1, each
occurrence of a clock signal caused Data_In to shift a
pixel signal into the line buffer; when the data
temporarily stored in the line buffer were 3×3, the 3×3
mask data were then transferred to the compare
module, wherein the maximum value for the 3×3 mask
data was determined and sent to the output terminal.

Erosion
operation

Dilation
operation

ResultBinary
image

Figure 5. The morphological open operation.

Controller

Line BufferData_ In Compare Data_ Out

Clock
Reset
Start

End

Figure 6. The hardware architecture for the dilation and
erosion operation.

2.3 Connected component labeling module
The CCL module was able to determine whether a

pixel point in the foreground shared a connected
relationship with an adjacent foreground pixel point,
that is, it determined whether the two foreground pixel
points belonged to the same object. Binary images
were scanned by the CCL using raster scanning from
left to right and top to bottom; when each pixel was
scanned, only the four points q, r, s, and t in its
neighboring pixels needed to be considered, as shown
in Figure 7. The CCL algorithm was divided into two

INTELLIGENT AUTOMATION AND SOFT COMPUTING 379

stages: in the first stage, each pixel in the foreground
was assigned a number based on the concept of the 8-
connected component; the interconnected blocks with
differing numbers were then merged in the second
stage.

q r s

t p

Figure 7. Adjacent points of the 8‐connected component.

Figure 8 shows the hardware architecture for the
CCL. The data for the four pixels of q, r, s, and t in the
8-connected component were stored using the line
buffer, whereas the labeling information was obtained
through the label assigner module and merge
controller module, after which the labeling
information was stored in the merge table and data
table.

Line Buffer

qt s r

Label Assigner

Merge Controller

Data In

Merge Table
(SRAM)

Data Table
(SRAM)

Figure 8. The hardware architecture for the connected
component labeling module.

3 RECOGNITION SYSTEM STRUCTURE

3.1 Gesture feature extraction
(1) Ratio of major axis to minor axis

FOR a sequence of M images, the central location
of the hand for each image was recorded, and the four
boundary values of the gesture trajectories established
by the M coordinate points were located: ܺ௠௔௫, ܺ௠௜௡,
௠ܻ௔௫	, ௠ܻ௜௡.The major axis a and minor axis b for the

gesture trajectories were then calculated, as shown in
Figure 9(a). The first feature of the dynamic gesture
 :ଵ was defined asݐ	

ଵݐ	 ൌ
௔

௕
ൌ

௑೘ೌೣି௑೘೔೙

௒೘ೌೣି௒೘೔೙
 (4)

(2) Difference between major axis and minor axis
Similar to the approach for ଵݐ	 , the difference

between the major and minor axes (ݐଶ) for the second
feature of the dynamic gesture was defined as:

ଶݐ	 ൌ ܽ െ ܾ ൌ ሺܺ௠௔௫ െ ܺ௠௜௡ሻ െ ሺ ௠ܻ௔௫ െ ௠ܻ௜௡ሻ			 (5)

(3) Occurring frequencies of the clockwise and
counterclockwise elements
After ܺ௠௔௫, ܺ௠௜௡, ௠ܻ௔௫	, ௠ܻ௜௡ had been located, the

intersection of a and b was viewed as the central point

C of a virtual circle, with ݎ ൌ
௔ା௕

ଶ
		 being the radius of

the virtual circle, as shown in Figure 9(b). For the
central coordinates of each block, the angle θ between
the connecting line from the point to the center C and
the horizontal line of the circle was determined, as
shown in Figure 9(c) (Chen et al., 2013). We can
decide the gesture is clockwise or counterclockwise by
M different angels (θ), and record the numbers of
times that clockwise (஼݂ௐ) and counterclockwise
(஼݂஼ௐ) occur. We make the clockwise and
counterclockwise frequency t3 as ஼݂ௐ െ ஼݂஼ௐ.

(a)

centre r

C

 (b)

(c)

Figure 9. Definition of the three feature parameters of the
gesture trajectory, (a) Ratio of major axis to minor axis, (b)
Difference between major axis and minor axis, (c) Occurring
frequencies of the clockwise and counterclockwise.

3.2 Dynamic gesture classifier design
The gestures identified in this study were the six

most commonly used dynamic gestures in the IPTV
gesture instruction set, namely left, right, up, down,
clockwise, and counterclockwise, as shown in Figure
10.

(a)

(b)

(c)

(d)

(e)

(f)

Figure 10. Six basic gestures in the IPTV gesture instruction
set: (a)left, (b)right, (c)up, (d)down, (e)clockwise,
(f)counterclockwise

380 CHING-HAN CHEN, CHING-YI CHEN, and NAI-YUAN LIU

The classifier design for the dynamic gestures was
implemented using a FNN classifier (Chen et al.,
2013), and its architecture is shown in Figure 11. The
classifier was constituted of multiple Mamdani-type
fuzzy rules and a single neuron. A classical fuzzy
system consists of 3 stage: input stage, processing
stage, and output stage. The input stage converts the
crisp input into fuzzified variables using the
membership functions. The processing stage invokes
each appropriate rule and generates a result for each,
then combines the results of the rules. Finally, the
output stage converts the combined result back into a
specific control output value. In this paper, a fuzzy
rule has the form shown in (6):

			ܴ௝：If	ݔଵ	is	ܣଵ
୨ 	, . . , and	ݔ௡	is		ܣ௡

୨ ,

									then	ܺ	belong	class		ݕ୨	with	ܨܥ ൌ (6)	୨ܨܥ

where x1, …, xn are input variables of the fuzzy rule,
௝ݕ ∊ ሼ1,2,… , ܵሽ is the output variable of the jth fuzzy

rule, which is one for the S class. ܣ௞
୨ is the fuzzy set of

the kth input variable, ܨܥ୨	 represents the reliability of
the fuzzy rule ܴ௝, j=1,2,…,r. We apply the generalized
modus ponens and max-min composition operation,
and the fuzzy inference outputs expressed as follows:

஺ߤ
௝ ሺܺሻ ൌ ݉݅݊ ቄߤ

஺భ
ೕ ሺݔଵሻ, … , ஺೙ೕߤ

ሺݔ௡ሻቅ (7)

௬ݑ
௝ ൌ ஺ߤ

௝ ሺܺሻ ∙ (8)	୨ܨܥ	

The output values ݑ௬
௝ of each fuzzy rule were

linked to the input terminal of a single neuron, which
executed the defuzzification process to obtain a crisp
output. The r inputs transmitted to the single neuron
were first calculated with the weight values of the
neuron, after which the result was input into the
transfer function ߮ to obtain the final output, ݒ , as
follows:

ݒ ൌ ∑ ௝ܹ ∙ ௝ݑ
௥
௝ୀ଴ (9)

ݕ ൌ ߮ሺݒሻ ൌ
ఈమ

ଵା௘షഀభ∙ೡ
 (10)

where ߙଵ controls the shape of the transfer function,
ଶߙ adjusts the size of scale. Figure12 shows the
combination of the fuzzy system and the single
neuron.

Fuzzy rule R1

Fuzzy rule R2

Fuzzy rule Rr

w2

w1

Input Output

wr

∑ φ (v)

u1

u2

ur

Figure 11. The architecture of the proposed fuzzy neural
network classifier.

3.2.1 Coarse classification of dynamic gestures
Based on the classifier architecture in Figure 11,

the two classifiers used to determine the circular
gestures and linear gestures were established
separately, as shown in Figure 12(a) and 12(b). The
input features of the linear gesture classifier were t1
and t2, and its output value O1 was the inferred
probability of the input gesture belonging to the set of
linear gestures; the input features of the circular
gesture classifier were t1 and t3, and its output value O2
was the inferred probability of the input gesture
belonging to the set of circular gestures.

Fuzzy rule R1

Fuzzy rule R2

Fuzzy rule Rr

t1 O1∑ φ (v)

t2

A

A

A

u1
A

u2
A

ur
A

W1
A

W2
A

Wr
A

(a)

Fuzzy rule R1

Fuzzy rule R2

Fuzzy rule Rr

t1 O2∑ φ (v)

t3

B

B

B

u1
B

u2
B

ur
B

W1
B

W2
B

Wr
B

(b)
Figure 12. The FNN classifier used for dynamic gesture
recognition, (a) linear gesture classifier, (b) circular gesture
classifier.

The FNN classifier can roughly determine the
dynamic gestures to be either linear gestures or
circular gesture. Further, in accordance with the
positional relationship of the gesture trajectory
coordinates, it determines the dynamic gesture to be
up, down, left, right, clockwise, or counterclockwise.

3.2.2 Fine classification of dynamic gestures
The position changes between all adjacent points

ሺݔ௜, ,௜ାଵݔ௜ሻ and ሺݕ ௜ାଵሻ were determined using the Mݕ
coordinate points that constituted the dynamic gesture
trajectory. To reflect the fact that the gesture
movements captured by the camera moved in
directions opposite to the directions perceived by the
users, the determined formula definitions are shown in
(11)：

ە
۔

ۓ
௟௘௙௧ܥ ൌ ௟௘௙௧ܥ ൅ 1									, ௜ାଵݔ	݂݅ ൐ ௜ݔ
௥௜௚௛௧ܥ ൌ ௥௜௚௛௧ܥ ൅ 1				, ௜ݔ	݂݅ ൐ ௜ାଵݔ
௨௣ܥ ൌ ௨௣ܥ ൅ 1												, ௜ݕ	݂݅ ൐ ௜ାଵݕ
ௗ௢௪௡ܥ ൌ ௗ௢௪௡ܥ ൅ 1			, ௜ାଵݕ	݂݅ ൐ ௜ݕ

 (11)

INTELLIGENT AUTOMATION AND SOFT COMPUTING 381

where ܥ௟௘௙௧ ௥௜௚௛௧ܥ , ௨௣ܥ , , and ୢܥ୭୵୬ are the times of
waving in different directions.

Combining with the times of waving clockwise
஼݂ௐ (CCW) and counterclockwise ஼݂஼ௐ (CCCW), we

define the probabilities of the six dynamic gestures
and the formula is as following:

ە
ۖ
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۖ
ۓ ଵ݌ ൌ

஼೗೐೑೟

஼೗೐೑೟ା஼ೝ೔೒೓೟ା஼ೠ೛ା஼೏೚ೢ೙
ൈ ଵܱ

ଶ݌ ൌ
஼ೝ೔೒೓೟

஼೗೐೑೟ା஼ೝ೔೒೓೟ା஼ೠ೛ା஼೏೚ೢ೙
ൈ ଵܱ

ଷ݌ ൌ
஼ೠ೛

஼೗೐೑೟ା஼ೝ೔೒೓೟ା஼ೠ೛ା஼೏೚ೢ೙
ൈ ଵܱ

ସ݌ ൌ
஼೏೚ೢ೙

஼೗೐೑೟ା஼ೝ೔೒೓೟ା஼ೠ೛ା஼೏೚ೢ೙
ൈ ଵܱ

ହ݌		 ൌ
஼಴ೈ

஼಴ೈା஼಴಴ೈ
ൈ ܱଶ																							

଺݌	 ൌ
஼಴಴ೈ

஼಴ೈା஼಴಴ೈ
ൈ ܱଶ																						

 (12)

where ݌ଵ,…,݌଺ are the probabilities of different
dynamic gestures. O1 and O2 are the outputs of the
linear classifier and the circular classifier.

4 EXPERIMENTAL RESULTS AND DISCUSSION
THE program was tested on Intel Core (TM)2

Quad CPU Q6660 with 4GB DDRIII RAM, and the
spec of CMOS sensor was 2 million pixels. The

designed hardware accelerator were described in
VHDL and synthesized for Altera Cyclone Ⅳ FPGA,
with the aid of the tool Quartus II 12.1.

4.1 Real‐time object detection system
The results for the real-time object detection

system under differing color temperatures are shown
in this section. The color temperature level varied
according to the viewers’ various external conditions,
such as weather conditions, environments, and objects;
its unit was Kelvin (K); a lower value indicated a
stronger red, whereas a higher value indicated a
stronger blue. The experiment was conducted using
four image sequences of differing color temperatures,
which were an outdoor environment in the early
morning (1600 K), an indoor environment under a
fluorescent lamp (4000 K), and outdoor environment
at noon (5200 K), and a cloudy day (7000 K). Figure
13 shows the results of the hand detection
segmentation. The measured results indicated that
even under distinct color temperatures, the real-time
object detection system was capable of successfully
segmenting the areas of the users’ hands.

(a)

(b)

(c)

(d)

Figure 13. Results of image sequence and its segmented hand areas captured at different time periods (a) outdoor environment
in the early morning, (b) indoor environment under a fluorescent lamp, (c) outdoor environment at noon, and, (d) outdoor
environment on a cloudy day.

4.2 Dynamic gesture recognition results
For the gesture recognition experiment, the six

dynamic gestures were captured as image sequences.
Each gesture was recorded 10 times for each of 10
users, thus a total of 600 gesture data were stored in
the gesture database, with each dynamic gesture
having an image sequence length of 10 frames. At the
training stage of the recognition architecture, 70 data
were randomly selected from each dynamic gesture
for FNN classifier training; the initial values for Wj of
the FNN classifier were all preset to 1, and particle
swarm optimization was employed during the training

stage to optimize the parameters to improve the
recognition rate of the classifier.

After obtaining a sequence of data showing moving
hands, the real-time object detection system
implemented on the FPGA board then sent the
sequence to the gesture recognition system at the PC
end to infer the probability that the sequence might
belong to a known gesture category. Table 1 shows
the experimental results for the recognition rate of
dynamic gestures.

382 CHING-HAN CHEN, CHING-YI CHEN, and NAI-YUAN LIU

4.3 Computation efficiency analysis of the
system

This study used Quartus II software, version 12.1,
to implement and verify the hardware design of the

real-time object detection system, which consisted of
three circuit modules. Table 2 shows the analysis
results for the FPGA resources consumed by the final
implemented system.

Table 1. The recognition rate of dynamic gesture.

 1 2 3 4 5 6 7 8 9 10 Avg
Left 100% 100% 100% 100% 80% 90% 90% 90% 100% 80% 93%

Right 90% 100% 90% 100% 100% 100% 100% 90% 100% 100% 97%
Up 90% 100% 100% 100% 70% 80% 100% 90% 100% 100% 93%

Down 100% 100% 50% 100% 80% 70% 80% 70% 60% 60% 77%
Clockwise 100% 80% 100% 70% 100% 100% 90% 100% 100% 90% 93%

C-clockwise 100% 100% 100% 80% 100% 80% 100% 100% 90% 100% 95%
Avg. 97% 97% 90% 92% 92% 87% 93% 90% 92% 88% 92%

Table 2. Resource usage analysis of the object detection system on the DE2‐115 development board

 Pins Memory Bits
Embedded Multiplier

9-bit Elements
Logic Elements

Total Number of DE2-
115 Resources

529 3,981,312 532 114,480

System Resource Usage 149 148,160 39 4,788
Resource Use Ratio 28% 3% 7% 4%

Next, the operating clock frequencies of the three

hardware modules were analyzed using the Quartus II
12.1 synthesis software. The operating speed of the
background modeling module was affected by two
factors; the first factor was the operating clock
frequency of image processing by the FPGA internal
execution; the second factor was the operating clock
frequency of the external synchronous dynamic
random access memory (SDRAM) for storing
information. If that SDRAM had frequently been
required to switch between reading and writing, that
would have affected the operational performance; to
avoid inefficiency, the circuit was designed to use two
SDRAM units, of which one was responsible for
writing whereas the other was for reading. Read–write
exchange was performed by the two SDRAM units
after an image had been processed, thereby ensuring
that the external SDRAM was capable of operating
under the default operating clock frequency. Table 3
shows the operating clock frequencies for the three
hardware modules in the real-time object detection
system, with the operating clock frequency of the
overall system reaching 107.63 MHz.

Table 3. Performance index table

Module clock frequency

codebook background model 107.63 MHz

opening module 254.52 MHz

CCL module 149.50 MHz

system clock frequency 107.63 MHz

Table 4 compares the performance levels of the
codebook model hardware architecture designed and
implemented in this study and the embedded
architectures described in other articles. Table 4
indicates that when the codebook model was
implemented as a hardware circuit, its operating speed
was indeed capable of achieving the purpose of real-
time processing. Compared to the architectures
proposed in other papers, the research method
described in this study possessed the advantage of
operating speed.

Table 4. Performance comparison with existing background
model.

Method
Time cost
(ms/frame)

Speed (fps)

Codebook model
(FPGA hardware)

3.8 262.76

Codebook model
(Intel CPU)

45.2 22.12

Frame differencing
(Apewokin et al., 2009)

7.6 131.96

Approximate median
(Apewokin et al., 2009)

8.5 117.33

Weighted mean
(Apewokin et al., 2009)

26.8 37.28

MoG
(Apewokin et al., 2009)

273.6 3.65

5 CONCLUSION
THE construction of background modeling in the

foreground-segmentation stage can achieve a

INTELLIGENT AUTOMATION AND SOFT COMPUTING 383

satisfactory effect; however, because of the long
computation times required for background modeling,
object detection systems based on background
modeling are incapable of real-time processing. This
study introduced a remote gesture recognition system
applicable for IPTV; the overall system functionality
comprised real-time object detection and gesture
recognition. To achieve the requirement for real-time
processing, FPGA technology was used to implement
the real-time object detection system. An FNN-based
real-time dynamic gesture recognition architecture
using gesture trajectory features was proposed,
thereby enabling the system to deliver satisfactory
performance regardless of its operating speed or the
gesture recognition accuracy. In addition, to provide
users with more versatile gesture operations and
enhance the expandability of the system, the Grafcet
model was also used to establish a hybrid gesture
command system model, enabling users to create new
gestures according to their own requirements apart
from the six basic gestures.

REFERENCES
S. Apewokin, B. Valentine, D. Forsthoefel, L. Wills,

S. Wills, and A. Gentile, (2009). Embedded real-
time surveillance using multimodal mean
background modeling. In Embedded Computer
Vision, B. Kisacanin, S. Bhattacharyya, & S.
Chai, Eds., 163-175, Springer, New York, USA.

S. Brutzer, B. Hoferlin, and G. Heidemann, (2011).
Evaluation of Background Subtraction
Techniques for Video Surveillance. 2011 IEEE
Conference on Computer Vision and Pattern
Recognition (CVPR), 1937-1944.

C.H. Chen, K. Chang, N.Y. Liu, and G. Su, (2013).
Dynamic Gesture Recognition Based on Fuzzy
Neural Network Classifier. International
Conference on Advances in Computer-Human
Interactions, 57–61.

D. Comaniciu and P. Meer, (2002). Mean shift: A
robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 24(5), 603-619.

A. Corradini, (2001). Dynamic TimeWarping for Off-
line Recognition of a Small Gesture Vocabulary.
IEEE ICCV Workshop on Recognition, Analysis,
and Tracking of Faces and Gestures in Real-Time
System, 82-89.

R. David, (1995). Grafcet: a powerful tool for
specification of logic controllers. IEEE
Transactions on Control Systems Technology.
3(3), 253-268.

A. Elgammal, R. Duraiswami, D. Harwood, and L.S.
Davis, (2002). Background and foreground
modeling using nonparametric kernel density
estimation for visual surveillance. Proceedings of
the IEEE, 90(7), 1151-1163.

M. Elmezain, A. Al-Hamadi, and B. Michaelis,
(2008). Real-time capable system for hand gesture

recognition using hidden markov models in stereo
color image sequences. Journal of WSCG, 16(1-3),
65–72.

M. Elmezain, A. Al-Hamadi, and B. Michaelis,
(2009). Hand Trajectory-based Gesture Spotting
and Recognition Using HMM. IEEE International
Conference on Image, 3541-3544.

J.M. Guo, C.H. Hsia, Y.F. Liu, M.H. Shih, C.H.
Chang, and J.Y. Wu, (2013). Fast background
subtraction based on a multi-layer codebook
model for moving object detection. IEEE
Transactions on Circuits and Systems for Video
Technology, 23(10), 1809–1821.

J.M. Guo, Y.F. Liu, C.H. Hsia, M.H. Shih, and C.S.
Hsu, (2011). Hierarchical method for foreground
detection using codebook model. IEEE
Transactions on Circuits and Systems for Video
Technology, 21(6), 804–815.

P. Hong, M. Turk, and T.S. Huang, (2000). Gesture
modeling and recognition using finite state
machines, IEEE International Conference on
Automatic Face and Gesture Recognition, 410–
415.

C.H. Hsia, J.S. Chiang, and C.Y. Lin, (2015). A face
detection method for illumination variant
condition. Scientia Iranica, 22(6), 2081–2091.

R. Jain and H. Nagel, (1979). On the analysis of
accumulative difference pictures from image
sequences of real world scenes. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 1(2), 206-214.

R. Kaluri and C.H.P. Reddy, (2018). Optimized
feature extraction for precise sign gesture
recognition using self-improved genetic
algorithm. International Journal of Engineering
and Technology Innovation, 8(1), 25-37.

H.J. Kim and S.J. Park, (2013). Rule Extraction for
Dynamic Hand Gesture Recognition using a
Modified FMM Neural Network. International
Journal of Software Engineering and Its
Applications, 7(6), 367- 374.

K. Kim, T.H. Chalidabhongse, D. Harwood, and L.
Davis, (2005). Real-time foreground-background
segmentation using codebook model. Real-Time
Imaging, 11, 172-185.

T. Kohonen, (1990). Improved versions of learning
vector quantization, International Joint
Conference on Neural Networks, 1, 545–550.

J. Lee and M. Park, (2012). An Adaptive Background
Subtraction Method Based on Kernel Density
Estimation. Sensors, 12(9), 12279–12300.

D.G. Lowe, (2004). Distinctive image features from
scale-invariant keypoints. International Journal of
Computer Vision, 60(2), 91-110.

A. Monnet, A. Mittal, N. Paragios, and V. Ramesh.
(2003). Background modeling and subtraction of
dynamic scenes. International conference on
computer vision (ICCV 2003), 1305-1312.

384 CHING-HAN CHEN, CHING-YI CHEN, and NAI-YUAN LIU

N.M. Oliver, B. Rosario, and A.P. Pentland, (2000). A
Bayesian computer vision system for modeling
human interactions. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8),
831-843.

B.D. Ripley, (1996). Pattern recognition and neural
networks. Cambridge University Press,
Cambridge.

H.A. Rowley, S. Baluja, and T. Kanade, (1998).
Neural network-based face detection, IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 20(1), 23-38.

J. Shi and J. Malik, (2000). Normalized cuts and
image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8),
888-905.

P. C. P. Tsui and O. A. Basir, (2013). An evolutionary
model for optimizing sensor pose in object motion
estimation applications, Intelligent Automation &
Soft Computing, 12(2), 127-149.

P. Viola, M. J. Jones, and D. Snow, (2005). Detecting
pedestrians using patterns of motion and
appearance. International Journal of Computer
Vision, 63(2), 153-161.

H. Yin, C. Peng, Y. Chai, and Q. Fan, (2013). A
robust object tracking algorithm based on surf
and Kalman filter. Intelligent Automation & Soft
Computing, 19(4), 567-579.

H. Yin, J. Yang, Y. Chai, and S.X. Yang, (2012). An
improved mean-shift tracking algorithm using
PSO-based adaptive feature selection. Intelligent
Automation & Soft Computing, 18(6), 647-657.

J. Zhong and S. Sclaroff, (2003). Segmenting
foreground objects from a dynamic textured
background via a robust kalman filter. IEEE
International Conference on Computer
Vision(ICCV), 44-50.

NOTES ON CONTRIBUTORS

Ching-Han Chen received the
D.E.A degree in Informatique,
Automatique et Productique in
1992 and Ph.D. degree in 1995
from the Franche-Comte
University, France. He was an
associate professor in the
department of electrical
engineering, I-Shou University

from 1995. Since 2006, he is now an associate
professor in the Department of Computer Science and
Information Engineering, NCU, Taiwan. His research
interests include embedded system design, multimedia
signal processing, and robotics.

Ching-Yi Chen received his Ph.D.
degree in Electrical Engineering
from Tamkang University, New
Taipei City, Taiwan, R.O.C., in
2006. He joined the Department of
Information and
Telecommunications Engineering,

Ming Chuan University in 2007 and is now an
Associate Professor. His main research interests
include swarm intelligence, pattern recognition, and
embedded systems.

Nai-Yuan Liu received her M.S. degree in the
Department of Computer Science and Information
Engineering from National Central University,
Taiwan, R.O.C., in 2013. Her research interests
include image processing and fuzzy system.

