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1 INTRODUCTION  
THE optimization problem is often met in the 

financial, economic, management, computer and other 
fields to seek the best solution in a finite or infinite 
feasible scheme. As a vital branch of applied 
mathematics and operational research, it has aroused 
wide concern and has been deeply infiltrated 
almost everywhere. 

The traditional optimization methods include the 
simplex method (Dantzig, 1951), the steepest descent 
method (Chatterjee, 2013), etc. These approaches have 
shown excellent performance in solving some 
mathematical models, but the actual activities 
optimization model is established gradually to large-
scale, multi-dimensional problem. Moreover, the 
traditional algorithms mostly depend on the initial 
point of objective function, continuity and 
differentiability of functions. Consequently, these 

algorithms are often powerless for the large-scale 
complex optimization problems without explicit 
mathematical expression, which prompts people to 
quest for new algorithms. Later on, the biological 
behavior is abstracted into the mathematical model, 
and intelligent optimization algorithm is invented to 
the specific optimization problem, which shows strong 
vitality and adaptability. Such algorithms have no 
above requirements, and these advantages have 
attracted great attention. 

The intelligent optimization algorithms mainly 
include genetic algorithm (GA) (Lin, et al., 2017), ant 
colony optimization algorithm (ACO) (Zhou, 2009), 
particle swarm optimization algorithm (PSO) (Tian, 
2017), differential evolution algorithm (DE) (Mayer, 
et al., 2005), etc. The artificial bee colony algorithm 
(ABC) (You, et al., 2017) is also such an algorithm, 
proposed by Karaboga in 2005 and especially 
outstanding in intelligent optimization field. The ABC 
has been widely concerned because of its simplicity 
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and easy-implementation. It has been widely used in 
unconstrained numerical optimization, artificial neural 
network training, image segmentation, etc. Hence, 
study on algorithm improvement and theory analysis 
should be further work. 

However, ABC also has deficiencies such as slow 
convergence speed and easy premature (Gao, et al., 
2015). The reasons are as follows. The initial solution 
affects the quality of final solution to a certain extent. 
The more uniform the initial solution is, the wider the 
coverage is, and thus searching the neighborhood of 
the optimal solution is more likely. Yet, the basic 
ABC adopts random method which has blindness and 
is not conducive to find the optimal solution. In 
addition, we all know that exploration and exploitation 
for swarm intelligent optimization algorithm is 
indispensable but contradictory, with great influence 
on the optimization effect. When the two capabilities 
are in a suitable balance, the optimization effect can 
be the best. But the search equation of basic ABC is 
well exploratory, and the exploitation is poor. 
Subsequently, a generalized opposition-based learning 
strategy (GOBL) and two new search equations are 
applied to improve performance. That is the main 
contributions of this paper. 

The rest of this paper is organized as follows. 
Section 2 depicts basic ABC and summarizes the 
related works. The modified ABC called EeABC is 
proposed and analyzed in Section 3. Section 4 
discusses the experimental results. Finally, the 
conclusion is drawn in Section 5. 

2 BASIC ABC ALGORITHM AND RELATED 
WORKS 

2.1 Description of Basic ABC 
THE artificial bee colony algorithm (Basturk, and 

Karaboga, 2006) divides the bees into employed bees, 
onlooker bees and scouter bees, and their roles in the 
optimization process are distinct. 

Employed bees: correspond to the honey source, 
record information about nectar, and share information 
with other bees through swing dance. The nectar 
position is obtained by the following formula, 

 
( )ij ij ij kjrand  V x x x

  (1) 

where Vij is the location of new nectar, xij and xkj are 
ith and kth nectar’s jth position, rand is random number 
subjected to [-1,1]. 

Onlooker bees: share the honey source information 
brought by employed bees. Choose a better nectar and 
search new source in the vicinity by Eq.(1). 

Scouter bees: explore new nectar. If a nectar for a 
continuous generation is not updated, it will start 
scouter bees, randomly generated new honey instead 
of the original source. 

The ABC algorithm searches for optimal solution 
through repeated search and conversion of the three 
bees. 

Due to space limitations, a detailed description of 
the ABC is given by reference  (Basturk and Karaboga, 
2006) (Karaboga, 2005) (Karaboga and Basturk, 2007) 
(Karaboga and Basturk, 2008)  (Karaboga and Akay, 
2009). 

2.2 Related Works about ABC 
ABC is presented by Karaboga, a Turkish scholar 

in his technical report in 2005 (Karaboga, 2005). In 
2006, Basturk and Karaboga(2006)  first introduced 
ABC algorithm at the International Conference. In 
2007, the research was published in academic journal 
for the first time, which described ABC algorithm, and 
compares with other well-known intelligent 
algorithms (Karaboga and Basturk, 2007). In 2008, 
Karaboga and Basturk(2008) were studied on 
optimization performance of ABC algorithm in detail, 
and then illustrated the performance]. In 2009, the 
ABC algorithm website (http://mf.erciyes.edu.tr/abc) 
was built to provide information for the researchers 
(Karaboga and Akay,2009). Since ABC was proposed, 
numerous scholars conducted researches. Zhu and 
Kwong(2010) proposed a gbest-guided ABC 
algorithm(denoted as GABC) which introduced 
current global optimal solution information into the 
search equation.  Gao, Liu and Huang (2010) 
presented a modified ABC algorithm(denoted as 
ABC/best) inspired by DE algorithm, where novel 
search equation, chaotic systems and opposition-based 
learning method were introduced to enhance the 
global convergence. Gao and Liu(2012) improved the 
algorithm's exploitation capability by searching 
around current best solution. Kiran et al(2015) 
proposed the integration of multiple solution update 
rules with ABC, which adopted five search strategies 
to efficiently solve different types of optimization 
problems. Shan. Yasuda and Ohkura (2015) proposed 
a self-adaptive hybrid enhanced ABC algorithm to 
improve the convergence ability, search speed and 
control the balance between exploration and 
exploitation. Cui et al. (2016) introduced two novel 
search equations and a depth-first search (DFS) 
framework which was to allocate more computing 
resources for nectar and obtain better quality solution. 
Zhang et al. (2017) developed a distributed dynamic 
ABC based on fuzzy C-means clustering. In addition, 
a search equation based on the Gaussian attractor was 
proposed to further accelerate the diffusion of optimal 
solution.  

The recent research on ABCs discussed above 
cannot be covered in this section. More recent studies 
can be found in related literature. 
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3 PROPOSED APPROACH 

3.1 The Generalized Opposition‐Based 
Learning Strategy (GOBL) 

THE uniformity of initial population distribution 
directly affects the convergence speed and the solution 
quality of the algorithm. Therefore, it plays a pivotal 
role to design a reasonable initialization method for 
improving optimization performance. In the initial 
phase, it is blind to the solution spatial distribution 
information, which requires the initial population is to 
be evenly distributed in the solution space so that the 
algorithm can uniformly search. Generally, the initial 
population is randomly generated, so it cannot 
guarantee the uniformity of population distribution. 
Consequently, this paper presents the generalized 
opposition-based learning strategy (GOBL), which 
can simultaneously generate a solution and the 
corresponding inverse solution and then ensure that 
the initial population is evenly distributed in the 
search space(Zhou, et al., 2015)(Wang, et al., 2011). 
The details are described as follows. 

Let Xi = (xi,1, xi,2, ... , xi,D) be a feasible solution of 
the current optimization problem, and its 

corresponding inverse solution OXi = (oxi,1, oxi,2, ... , 
oxi,D) can be defined as: 

 
 i, j j j i, jk  ox a b x

  (2) 

 
   min , maxj i, j j i, j a x b x

 (3) 

 1, 2,..., 1, 2 ... ,i = SN j = ,  D，  

where 
, , ,,i j min j max j  x x x , k∈[0,1] is the generalized 

coefficient, ,j j  a b  is the dynamic boundary of the jth 

dimension search space. 
If the opposite solution is out of dynamic bounds, it 

is reset by randomly method: 

 
 rand ,i, j min, j max, jox x x

  (4) 

where  rand   is random number between 
,min jx  and 

,max jx . 

The  pseudo-code description of GOBL is shown in 
Table 1. 

Table 1.  The  pseudo‐code description of GOBL 

01:  SN: Number of Foods 
02:  D: Dimensionality of problem 
03:   // Initialization 
04:   for i = 1 to SN do 
05:  for j = 1 to D do 
06:    Randomly generated solutions Xij by Xij = xmin,j + rand ( xmax,j - xmin,j ) ; 
07:  end 
08:   end 
09:  Set the individual counter i = 1, j = 1; 
10:   for i = 1 to SN do 
11:  for j = 1 to D do 
12:    Generate opposite solutions OXij by Eq. (2); 
13:  end 
14:   end 
15:  Selecting SN best individuals from the set {Xij∪OXij} as initial population. 

 
By this strategy, a feasible solution to be optimized 

is calculated and its opposite solution is evaluated, and 
then the better solution is chosen as the candidate 
solution. The method can improve the probability of 
finding the global optimal solution. What’s more, the 
literature (Rahnamayan, et al, 2008) has 
mathematically proved that the GOBL strategy is a 
good method to estimate the original candidate 
solution.  

3.2 Novel Search Mechanism 
The imbalance of search ability leads to decline the 

algorithm’s performance, so the trade-off of 
exploitation and exploration is in urgent need. In 
formula 1, it is clear that rand is a coefficient 
randomly obtained in between [-1,1], and the 
parameters j and k are random numbers in [1, D], the 
random factors causes lack exploitation. In a word, the 

basic ABC does well in exploration, but badly in 
exploitation. To balance the exploitation and 
exploration, two new search equations are designed 
based on the DE algorithm(Price, 2005). In the 
process of algorithm implementation, the distinction 
between the employed bee and the onlooker bee is not 
made, unified as a bee. Meanwhile, the probability P 
is used to control the above two equations and the 
parameter is determined by the benchmark 
functions(Gao and Liu, 2012). New search strategies 
are given as follows: 

  j j j j j
i best i best r1  v x x x

    
 (5) 

  j j j j j
i i i i r2  v x x x  (6) 
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where the index 1r and 2r are random integer which 

belongs to {1, 2, ... , SN}, and varies with i. The 
implication of i and j is as in the above case of Eq.(1). 

The coefficient
j

i is chosen from the range of [-1,1]. 

The variable 
j

rx is the jth dimension of rth particle. The 

variable 
j

bestx
refers to the jth dimension of best 

particle, guided the next iteration individual’s 
evolution direction, which can improve exploitation. 

3.3 Main Steps of EeABC 
Based on the above explanation of improvement 

strategy, the pseudo-code of the EeABC algorithm is 
given as Table 2: 

 

Table 2.  The pseudo‐code of the EeABC algorithm 

01:  Data: set control parameters and concepts 
02:  SN: Number of Foods 
03:  D: Dimensionality of problem 
04:  limit: Maximum numbers of trial for abandoning a nectar 
05:  MCN: Maximum numbers of cycle 
06:  MFE: Maximum number of fitness evaluations, where MFE = D *MCN 
07:  Begin 
08:   // Initialization 
09:   FES = 0; 
10:   Generate initial population by Algorithm 1; 
11:   trial(i) = 0; 
12:   FES = FES +SN ; 
13:          i = 1; 
14:   Repeat 
15:    While i < SN do 
16:     Generate a new solution X’(i) by Eq. (5); 
17:     Evaluate new solution fit(X’(i)); 
18:     FES ++; 
19:     if fit(X’(i)) < fit(X(i)) then 
20:      X(i) = X’(i); 
21:                                                       trial(i) = 0; 
22:      if FES == MFE 
23:       Record the best solution achieved so far and exit main repeat; 
24:      end 
25:     else then 
26:      if rand < p then 
27:       Generate a new solution X’(i) by Eq. (6); 
28:       Evaluate new solution fit(X’(i)); 
29:       FES ++; 
30:       if fit(X’(i)) < fit(X(i)) then 
31:        X(i) = X’(i); 
32:                                                                                      trial(i) = 0; 
33:                     else 
34:                                                        trial(i) ++; 
35:       end 
36:      end 
37:     end 
38:     if FES == MFE 
39:      Record the best solution achieved so far and exit main repeat; 
40:     end 
41:    end 
42:   // Scouter bee phase 
43:         if max(trial (i) ) > limit then 
44:             Replace X(i) with a new randomly produced solution by 
45:             X(i)=Xmin + rand ( Xmax - Xmin ); 
46:         end 
47:   until FES = MFE; 
48:  end 
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Table 3.  Benchmark Function 

Number Name
 

C
 

Search Range
 

F1 Sphere  U [-100, 100]D 
F2 Elliptic U [-100, 100]D 
F3 SumSquares U [-10, 10]D 
F4 SumPower M [-10, 10]D 
F5 Schwefel2.22 U [-10, 10]D 
F6 Schwefel2.21 U [-100, 100]D 
F7 Quartic U [-0.5, 0.5]D 
F8 QuarticWN U [-1.28, 1.28]D 
F9 Ackley M [-32, 32]D 
F10 Penalized1 M [-50, 50]D 
F11 Penalized2 M [-50, 50]D 
F12 Alpine M [-10, 10]D 
F13 Levy M [-10, 10]D 
F14 Shifted sphere U [-100, 100]D 

 
4 EXPERIMENTAL RESULTS 

4.1 Benchmark functions 
IN this paper, 14 benchmark functions with 

dimensions D=30 are selected to validate the 
performance of proposed algorithm (EeABC), as listed 
in Table 1. These functions are divided into two 
categories: unimodality (U), multimodality (M), where 
the function characteristic are given in column C of 
Table 3(Kiran, 2015). 

4.2 Experimental Comparison with Basic ABC 
To validate the performance of proposed algorithm 

(EeABC), we compare the experimental results of 
EeABC with that of ABC. When experiments are to 
be made, the population size SN=40, limit=100, the 
maximum number of fitness evaluations 
MFE=5000D. Through the simulation experiment, it 
is found that the better experimental results are 
obtained when p=0.7. Accordingly, p is taken as 0.7. 
The two algorithms run 30 times on each function 
independently, recording the mean and standard 
deviations of the results. 

Table 4 presents the comparison results between 
the ABC and the EeABC with D=30. It can be seen: 
For the unimodal function, the two algorithms can 
obtain the theoretical optimal value of F1 and F14, 
and for other unimodal functions, the EeABC is 
superior to the ABC in the accuracy and stability. For 
the multimodal function, the EeABC is as efficient as 
ABC algorithm about F9, and the former outperforms 
the latter in both the accuracy and stability for other 
complex multimodal function. 

Besides the solution quality and stability, the 
convergence curves are another essential measure 
of the performance. The convergence curves for some 
benchmark functions are shown in Figure 1. It can be 
seen that the convergence curve of EeABC is faster 
and can converge to a higher precision solution. 

4.3 Experimental Comparison with ABC 
Variants 

The experimental results of EeABC are compared 
with gbest-guided ABC(GABC)(Zhu and Kwong, 
2010), ABC/Best/1 (Gao, et al., 2012), ABC/Best/2 
(Gao, et al., 2012), and modified ABC (MABC)(Gao 
and Liu, 2012). These ABC variants are chosen for 
comparison because all the above mentioned 
algorithms are improved about the search equation. In 
the GABC algorithm, global best solution is adopted 
to update individuals of employed bee and onlooker 
bee phase. The ABC/Best/1 and ABC/Best/2 
algorithms utilize various update strategy to enhance 
the optimization effect. Through analysis to the above 
algorithms, two of these strategies are picked to 
generate candidate solutions, combining with 
generalized opposition-based learning strategy 
(GOBL) to initial population. The comparison results 
illustrate that the proposed algorithm is better than the 
compared algorithms with regard to solution quality. 

To make a clear and fair comparison, the setting 
parameters are in keeping with those of their 
corresponding papers, and the termination condition is 
to meet the maximum number of fitness evaluations 
(MFE), setting to 5000D. For EeABC algorithm, the 
population size SN=40, limit=100. In the comparison 
tables, the mean and the standard deviation of the 
algorithms are given, and the contrast effect is 
recorded as “+/=/-” which means that the performance 
is better than, equal to, and worse than the 
corresponding ABCs, respectively. For the other four 
contrast algorithms, the experimental data are taken 
directly from the literature (Kiran, et. al., 2015). 

Table 5 presents the comparison results between 
the ABC variants and the EeABC with D=30. For F1-
F5, F7, the proposed algorithm is superior to all other 
comparison algorithms in accuracy and stability. 
Especially, the EeABC can achieve the theoretical 
optimal value on F1. For F6, the proposed algorithm is 
ahead of ABC/Best/1, ABC/Best/2 and MABC, and 
has the same effect with GABC. For F8, F9 and F14, 
the EeABC is as efficient as the comparison 
algorithm. Especially, the proposed algorithm can 
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Table 4.  Experimental Results(EeABC & ABC) 

 F1 F2 F3 F4 F5 F6 F7 

ABC 
Mean 5.10E-16 4.79E-16  5.06E-16  2.85E-17  1.28E-15   7.27E-01  2.01E-16   

SD 8.40E-17  9.88-E17  9.20E-17  9.69E-18  1.44E-16 3.25E-01  4.74E-17 
Sig. + + + + + + + 

EeABC Mean 0 7.86E-102 1.84E-106 6.49E-223 1.43e-54 4.46E-02 2.40E-212 
SD 0 1.88E-101 4.07E-106 0 2.11e-54 1.74E-02 0 

 

 F8 F9 F10 F11 F12 F13 F14 

ABC 
Mean 4.86E-02  3.79E-14  5.08E-16  4.88E-16  8.82E-10   4.21E-16   4.91E-16   
SD 1.49E-02  3.99E-15  5.15E-17  7.45E-17  2.19E-09 8.31E-17 7.25E-17 
Sig. + = + + + + + 

EeABC Mean 1.62E-02 3.29E-14 1.57E-32 1.35E-32 9.83E-16 1.18E-31 0 
SD 3.50E-03 1.15E-14 5.74E-48 5.47E-48 1.17E-15 6.56E-47 0 
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Figure 1.  Partial Convergence Curve 
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Table 5.  Experimental Results for EeABC & ABC 

Func GABC ABCBest1 ABCBest2 MABC EeABC 
Mean SD Sig. Mean SD Sig. Mean SD Sig. Mean SD Sig. Mean SD 

F1 4.62E-16     7.12E-17 + 3.11E-47  3.44E-47 + 5.96E-35  3.61E-35 + 9.43E-32  6.67E-32  + 0 0 
F2 3.62E-16  7.88E-17  + 5.35E-44  4.91E-44  + 1.70E-28  2.35E-28  + 3.66E-28  5.96E-28 + 7.86E-102 1.88E-101 
F3 4.55E-16  7.00E-17  + 6.50E-48  6.04E-48  + 5.55E-36  3.36E-36  + 2.10E-32  1.56E-32  + 1.84E-106 4.07E-106 
F4 1.64E-17  8.07E-18 + 1.77E-86 7.02E-86  + 3.00E-46 1.07E-45  + 2.70E69  5.38E-69 + 6.49E-223 0 
F5 1.35E-15 1.36E-16  + 2.10E-25 9.08E-26 + 1.36E-18  4.27E-19  + 2.40E-17 9.02E-18 + 1.43E-54 2.11E-54 
F6 2.18E-01 4.01E-02 = 2.18E+00 3.27E-01 + 3.55E+00 4.79E-01  + 1.02E+01  1.49E+00  + 4.46E-02 1.74E-02 
F7 1.21E-16  3.99E-17 + 2.63E-97 3.75E-97  + 3.10E-76 2.89E-76  + 1.45E-67  2.28E-67 + 2.40E-212 0 
F8 2.03E-02 5.74E-03  = 2.06E-02  4.75E-03 = 2.53E-02 4.67E-03 = 3.71E-02  8.53E-03  = 1.62E-02 3.50E-03 
F9 3.20E-14  3.36E-15  = 3.01E-14  2.91E-15  = 3.07E-14 3.43E-15  = 4.13E-14  2.17E-15  = 3.29E-14 1.15E-14 
F10 4.12E-16  8.36E-17  + 1.57E-32 5.57E-48 = 1.57E-32  5.57E-48  = 1.90E-32 3.70E-33  = 1.57E-32 5.74E-48 
F11 4.01E-16  8.19E-17 + 1.35E-32  5.57E-48  = 1.35E-32  5.57E-48  = 2.23E-31  1.46E-31 = 1.35E-32 5.47E-48 
F12 3.41E-09  1.13E-08  + 3.00E-16 8.99E-16  + 3.23E-14  9.14E-14  + 1.58E-16  2.48E-16  = 9.83E-16 1.17E-15 
F13 3.28E-16 5.03E-17 + 1.35E-31  6.68E-47  = 1.35E-31  6.68E-47  = 1.48E-31  2.30E-32  = 1.18E-31 6.56E-47 
F14 4.38E-16  8.43E-17 = 0 0 = 0 0 = 0 0 = 0 0 
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achieve the theoretical optimal value on F14. For other 
functions, the performance of EeABC is suboptimal or 
equivalent to other algorithms. 

On the basis of the above experimental results, 
the EeABC can be a very promising algorithm. And 
the experiments on D=60 are not listed as a result of 
space issues. 

5 CONCLUSION 
TO sort out the issue of artificial bee colony 

algorithms, such as slow convergence speed and weak 
exploitation capacity, an enhanced exploitation 
artificial bee colony algorithm is proposed, called 
EeABC. The GOBL strategy is applied to obtain 
uniform initial population, and modified solution 
search equations are introduced to achieve a relative 
balance between exploitation and exploration. In 
addition, the performance of proposed approach was 
examined on 14 benchmark functions, and results are 
compared with basic ABC and other ABCs. As 
documented in the experimental results, the proposed 
algorithm has good optimization performance. As a 
consequence, EeABC may be a promising and viable 
tool to deal with numerical optimization problems. It 
is advisable to further adopt EeABC to deal with real-
world problems. The studies on how to extend EeABC 
to handle classification of textile defects and to solve 
multi-objective optimization problems are our ongoing 
projects. 
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