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1 INTRODUCTION 
COMPUTATIONAL fluid dynamics (CFD) is an 

important tool for fluid analysis by means of computer 
and numerical simulation to solve fluid dynamics 
control equations and analyse the motion law of a 
model. At present, numerical simulation systems are 
developing towards being large scale, high-precision 
and real-time, which has enhanced the requirements of 
computational complexity, computational scale and 
accuracy. These problems need to be solved by 
parallel numerical simulation. In order to make 
parallel computing better use of computer resources 
and achieve resources dynamic management, this 
paper integrate computing cluster resources through 
service computing to improve the utilization of 

computing resources. The advantage of using service 
computing lies in the small changes in the original 
program, the designer only needs to encapsulate its 
original computing service program into web service, 
and then deploy web service on the cluster node. In 
this way, a service node assigns computing resources 
to the computing node according to the client's request 
for resources and the availability of the current 
resource. Designers can focus on the parallel design of 
numerical simulation and shorten the development 
cycle. 

The common methods of solving through 
numerical simulation are divided into two categories: 
explicit and implicit methods. 

The explicit method generally used at present is 
multi-step Runge–Kutta(Jameson, 1981) method. The 
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advantage of the explicit method is that the 
requirement computation and storage is little with 
each time-step iteration, and parallel computation is 
convenient to implement(Liu, 2013). The 
disadvantage of the explicit method is that the time 
step is constrained by the stability condition, which 
results in excessive calculation steps and low iterative 
efficiency. At present, the LU-SGS(Jameson, 1987) 
method is the most popular implicit calculation 
method. The advantage of implicit method is the 
adequate stability, preferable value of calculating step 
size and enhanced iterative efficiency that it provides. 
Because the LU-SGS method is highly dependent on 
the data in the iterative process, the method is not 
convenient for parallelization. By improving the LU-
SGS method, Wright(Candler, 1994) and others 
proposed the Data-Parallel Lower–Upper Relaxation 
(DP-LUR) implicit method. The DP-LUR method 
shifts the non-diagonal item to the right end of the 
equation in order to replace the symmetric Gauss–
Seidel iteration with the Jacobi iteration, which avoids 
the upper and lower triangular matrices that are used 
in the iterative process by the LU-SGS 
method(Candler, 1994). This iterative method 
removes all dependencies of data, reduces the number 
of communications and conveniently achieves parallel 
computing. However, the DP-LUR method is similar 
to the Jacobi iteration, which requires a higher number 
of iterations to achieve a similar convergence as the 
LU-SGS method; this increases the computational 
requirement of the DP-LUR method. 

In the field of large-scale CFD numerical 
simulation system design, technology available 
globally has been very mature; a typical representative 
is Fluent. In recent years, our country has also made 
new progress in this aspect. Wang Song(Wang, 2017) 
et al. designed large-scale computational fluid 
dynamics visualization analysis system (FVAS) for 
large-scale three-dimensional steady and unsteady 
flow analysis of a system. In the field of magnetic 
fluid dynamics(Zhao, 2009), Pan Yong and Wu 
Yizhao(Pan, 2007) of Nanjing University of 
Aeronautics and Astronautics had conducted a 
numerical simulation experiment on the field 
interference effect of supersonic flow field and 
magnetic field. Using MPI technology to realize 
parallel computing, the second-order precision 
interpolation is carried out using the Monotonic 
Upwind Scheme for Conservation Laws 
(MUSCL)(Van, 1979) method, and the Time-
Marching method adopted the five-step Runge–Kutta 
method.  

In the field of impeller machinery, domestic 
research has also been conducted. Xu Jianzhong(Li, 
2008) of the Chinese Academy of Sciences had 
adopted the DP-LUR method to realize Navier–Stokes 
parallel solution based on unsteady computation. A 
consistent amount of research has been devoted on 
high performance computing field in China. Deng 

Shouchun(Zheng, 2011) of the Chinese Academy of 
Sciences developed the parallel algorithm based on 
MPI communication technology; here, the space 
discretization adopted the third order upwind Harten–
Lax-Van Leer–Einfeldt–Wada (HLLEW)(Obayashi, 
1994) or Advection Upstream Splitting Method 
(AUSM)(Liou, 1993) format based on Roe(Roe, 
1986), the turbulence model adopted the   two-
equation model and the time advance adopted the 
convenient parallel DP-LUR method. In recent years, 
China has made new progress in the field of high-
performance computing of large aircraft; Chen 
Gang(Chen, 2011) of the Chinese Academy of 
Sciences had developed a large-scale aircraft 
aerodynamic numerical simulation software—China 
computational fluid dynamics (CCFD) —based on 
ten–thousand–core parallel computing. The space 
discrete scheme is constructed by finite volume 
method. The second-order Roe-upwind flux difference 
scheme and the central difference scheme were used 
for discrete processing of the inviscid flux and viscous 
flux. The time advance adopted the implicit method, 
which exhibits adequate reliability in the complex 
flow field and high-resolution numerical simulation; 
moreover, it can solve the engineering problems in the 
field of large aircraft design. 

In the area of helicopter design, the flow field of 
helicopter rotor is highly complicated compared with 
the fixed wing flow field; moreover, the complexity of 
the rotor flow field is embodied in three aspects: 
Firstly, the flow velocity of the rotor is changed along 
the span direction. Secondly, the rotor flow is a typical 
unsteady flow, which results from the rotation of the 
rotor; the flow velocity and angle of attack of the rotor 
are changed with the azimuth. Thirdly, the rotor 
rotation process produces a tip vortex and tail vortex, 
which are located around the rotor, causing complex 
vortex/propeller interference and vortex/fuselage 
interference; the aerodynamic performance of the 
aircraft is thus adversely affected(Xiao, 2007). 
Therefore, accurate and efficient numerical simulation 
of rotor flow field is a challenging task. In this regard, 
domestic scholars have conducted a large amount of 
important research. Ji Changrui(Ji, 2014) developed 
the strong coupling Reynolds-averaged Navier–Stokes 
(RANS) method based on multi block overlapped 
grids, which was used in the numerical simulation of 
helicopter rotor flow field in hover; this method 
adopted LU-SGS to solve the time advance and don’t 
support parallel computing. Li Peng(Li, 2014) had 
developed a CFD computation method for the analysis 
of the tilt rotor/wing interference flow field in hover 
state by using the Runge–Kutta method and the 
parallel acceleration technique of the Single 
Program/Multiple Data (SPMD) model. This method 
is applicable to the structural mesh. Jiang 
Yuening(Jiang, 2017) et al. proposed an efficient and 
accurate numerical simulation of Unmanned Aerial 
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Vehicle CFD multi-core parallel computing method, a 
method using Fluent software for simulation. 

However, our country rarely uses implicit 
algorithm in the field of helicopter to conduct large-
scale parallel numerical simulation. Therefore, this 
paper presents a numerical optimization algorithm for 
unsteady flows of rotor based on web service, which is 
used to solve the problem of low efficiency in 
numerical simulation of unsteady rotor flow field with 
three-dimensional hybrid grids. This paper uses Metis 
to realize the load balance of partition and realizes 
data communication among different partitions by 
MPI. This algorithm can be extended to large-scale 
parallel numerical simulation. Through verification of 
the Robin fuselage/rotor model and comparison with 
the calculation results of the original LU-SGS method, 
the parallel computation method proposed in this 
paper substantially improves computational efficiency 
and ensures that the parallel computation results 
coincide with the serial results.  

This paper is divided into five chapters: the first 
chapter introduces CFD high-performance computing, 
which has achieved remarkable results and commonly 
used solutions in numerous areas; however, in the 
helicopter field, domestic development is relatively 
primitive. Furthermore, the chapter introduces the 
main work of this study. In the second chapter, this 
study analyses the serial process of numerical 
simulation of helicopter rotor flow field and the 
derivation process of the control equations involving 
numerical calculation; further, it sums up the serial 
program, which can be conducted in parallel. The 
third chapter introduces the optimization strategy of 
the numerical simulation of rotor flow field, including 
load balancing strategy, communication optimization 
and LU-SGS + Jacobi parallel algorithm. The fourth 
chapter verifies the computational efficiency of 
parallel programs and the correctness of the program 
through the Robin fuselage/rotor model. The fifth 
chapter summarizes the optimization method proposed 
in this paper. 

2 PROCESS ANALYSIS FOR NUMERICAL 
SIMULATION OF ROTOR FLOW FIELD 

2.1 Serial Process Analysis 
IN practical engineering problems, the numerical 

simulation of unsteady flow field with shifting 
boundary is more and more concerned, such as 
bombing by fighter planes, the swing of helicopter 
rotor, etc. It is of high engineering significance to 
develop a numerical simulation method that is highly 
precise, efficient and stabile, in order to solve this type 
of practical problems. 

This paper is based on a serial three-dimensional 
dynamic overlapping grid Navier–Stokes equation 
solver; its numerical simulation of the overall flow is 
depicted in Figure 1: 

(1) The establishment of grid system and flow field 
system, including the establishment of nested grid 
relationship and the initialization of flow field. 

(2) Enter dual-time steps iteration. 
(3) Flux computation. It includes the calculation of 

viscous flux and inviscid flux. 
(4) If the problem is unsteady, the calculation of 

the unsteady time item is carried out; otherwise, go to 
step (5). 

(5) LU-SGS iteration. 
(6) If it is a viscous flow field, the S–A turbulence 

model is calculated; otherwise, go to step (7). 
(7) Calculation of residual value and interpolation 

among nested grids. 
(8) Go to step (9) if the residual value satisfies the 

requirement or the number of pseudo-time step 
iteration is attained. Otherwise, the next pseudo-time 
step iteration is performed. 

(9) If the output condition is attained, the result of 
the calculation is the output. Otherwise, go to step 
(10). 

(10) Dynamic grid motion, geometric data update.  
(11) Rebuild nested grid relationships. Re-establish 

the interpolation relationship among nested grids, 
update the minimum wall distance, etc. 

(12) Physical time step interpolation among nesting 
grids. Interpolation among the nested grids is 
performed according to the interpolation relationship 
established in step (11). 

(13) If the number of iterations of the physical time 
step is attained, the program is terminated; otherwise, 
the next physical time step iteration is entered. 

The pseudo-time step iteration process is the key 
step of the numerical simulation process, which is also 
the solution process of the Navier–Stokes equation. 
This process has the largest share of the total number 
of iterations in and the time consumed by the serial 
program. Therefore, this study can improve the 
computational efficiency of the numerical simulation 
by optimizing the pseudo-time step iteration. This is 
mainly concerned with the parallelization of the LU-
SGS implicit iterative algorithm, which is one of the 
challenges in CFD research. In this paper, a numerical 
optimization algorithm for unsteady flows of rotor 
based on web service is proposed; i.e., LU-SGS 
iteration is performed on the inner cells of each 
computational process, and Jacobi iteration is 
performed on the boundary cells to improve the 
computational efficiency of the numerical simulation. 

2.2 Fluid Control equations 
In this study, the control equation of the numerical 

simulation is the Reynolds-averaged Navier–Stokes 
equations(Zhu, 1998) based on three-dimensional 
unsteady compressible fluid: 

ම
߲ܹ
௏ݐ߲

ܸ݀ ൅඾ሺܨሺܹሻ െ ௩ሻܨ
ௌ

݀ܵ#ሺ1ሻ  
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Figure 1. Serial flowchart 

where t denotes time, V represents the control volume, 
S is the closed surface enclosing the control volume, 
W is the conserved quantity, F(W) is the inviscid flux 
and ܨ௩ is the viscous flux. 

Based on the Reynolds transport equation: 
߲
ݐ߲
මܹܸ݀

௏
ൌම

߲ܹ
௏ݐ߲

ܸ݀ ൅඾ሺݔ ⋅ ሬ݊Ԧሻ
ௌ

ܹ݀ܵ#ሺ2ሻ  

where ݔ and ሬ݊Ԧ represent the motion velocity and the 
normal vector, respectively, of the control surface and 
௚௡ݒ ൌ ݔ ⋅ ሬ݊Ԧ is defined. Equation (1) can be denoted in 
the following form: 
߲
ݐ߲
මܹܸ݀

௏
൅඾൫ܨሺܹሻ െ ௚௡ܹ൯݀ܵݒ

ௌ
ൌ ඾ܨ௩݀ܵ

ௌ
#ሺ3ሻ 

When ݒ௚௡ ൌ ሬܸԦ ⋅ ሬ݊Ԧ ( ሬܸԦ is the velocity vector of the 
fluid), equation (3) is the Lagrange equation. When 
௚௡ݒ ൌ 0, equation (3) is the Euler equation. 

2.3 Space discretization and Time 
discretization 

In order to improve the time-calculation precision 
of an unsteady flow problem and to ensure high 
computational efficiency, this study adopts dual-time 
step propulsion method(Jameson, 1991). In equation 
(3), the pre-processed pseudo-time derivative is 
introduced, i.e., 

߁
߲
߲߬
මܸܳ݀

௏
൅
߲
ݐ߲
මܹܸ݀

௏
൅

඾൫ܨሺܳሻ െ ௚௡ܹ൯݀ܵݒ
ௌ

ൌ ඾ܨ௩݀ܵ
ௌ

#ሺ4ሻ
 

where ߬  and t denote the pseudo-time step and 
physical time step, respectively, ߁  is the pre-
processing matrix proposed by Weiss and 
Smith(Weiss, 1995) and ܳ ൌ ሺ݌, ,ݑ ,ݒ ,ݓ ܶሻ்  is the 
original variable. 
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In the arbitrary control volume ௜ܸ , the finite 
volume method is discretized for equation (4). 

௜߁
߲ሺܸܳሻ௜
߲߬

൅
߲ሺܹܸሻ௜
ݐ߲

൅ ෍ ෨ሺܳሻ௜௝ܨ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

ൌ ෍ ௩௜௝ܨ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

#ሺ5ሻ

 

wherein ܨ෨ሺܳሻ ൌ ሺܳሻܨ െ ௚௡ܹݒ , j is the neighbour 
control volume of ௜ܸ , ij represents the interface 
between ௜ܸ  and ௝ܸ  and nfaces is the amount of 
boundary faces of ௜ܸ . If the left and right flow field 
value of ௜ܵ௝  is considered as the central value of the 
control volume, the result is of the first order precision. 
In order to obtain high accuracy, the linear 
reconstruction technique of Gauss integral 
method(Mavriplis, 2003) is adopted. In order to 
prevent the emergence of the new extremum, the 
limiter proposed by Venkatakri-
shnan(Venkatakrishnan, 1993) is adopted. 

In time discretization, pseudo-time step uses first-
order back difference and physical time uses implicit 
k-order posterior difference. Pseudo-time step and 
physical time step are represented by m + 1 and n + 1, 
respectively. Then, equation (5) becomes: 

௜߁
ܳ௜
௠ାଵ

௜ܸ
௡ାଵ െ ܳ௜

௠
௜ܸ
௡ାଵ

߬߂
൅
߮௡ାଵሺܹܸሻ௡ାଵ

ݐ߂

൅
1
ݐ߂

෍߮௡ି�ሺܹܸሻ௡ି� ൅ ܧܴ ௜ܵሺܳ௠ାଵሻ ൌ 0

௞ିଵ

�ୀ଴

#ሺ6ሻ
 

m and n are the pseudo-time steps and physical time 
steps, respectively. RESi is the residual value defined 
as: 

ܧܴ ௜ܵሺܳሻ ൌ ෍ ൫ܨ෨ሺܳሻ െ ௩൯௜௝ܨ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

#ሺ7ሻ  

The sequence of {߮௡} represents the coefficient of 
a backward difference format, which is used to control 
the time precision of discrete equations. 

In each physical time step, the flow field is solved 
by pseudo-time ߬߂  propulsion. When ݉ → ∞, ܹ௠ାଵ 
approaches ܹ௡ାଵ; it is considered to be the solution 
of the n + 1th time step. Define ܳ߂ ൌ ܳ௠ାଵ െ ܳ௠ and 
ܹ௡ାଵ ൌ ܹ௠ ൅ܳ߂ܯ, where M represents the Jacobi 
matrix. Equation (6) can be expressed in the following 
form: 

ቆ ௜ܸ
௡ାଵ

߬߂
௜߁ ൅

߮௡ାଵ ௜ܸ
௡ାଵ

ݐ߂
௜ܳ߂௜ቇܯ

൅ܴܧ ௜ܵ
∗ሺܳ௠ାଵሻ ൌ 0#ሺ7ሻ

 

The unsteady residual ܴܧ ௜ܵ
∗ሺܳሻ is: 

ܧܴ ௜ܵ
∗ሺܳሻ ൌ

߮௡ାଵܹ௠ܸ௡ାଵ

ݐ߂

൅
1
ݐ߂

෍߮௡ି�ሺܹܸሻ௡ି�

௞ିଵ

�ୀ଴

൅ ܧܴ ௜ܵሺܳሻ#ሺ8ሻ
 

In equation (7) in this paper, the serial program 
adopts the implicit LU-SGS iterative format with no 

matrix, which exhibits higher convergence speed and 
higher efficiency and is more apparent in the 
calculation of viscous flow field. 

2.4 Implicit LU‐SGS method 
Jameson and Yoon(Jameson, 1987) proposed an 

implicit LU-SGS method in 1987; however, this 
method is applicable only to the structure grid. In 
1998, Luo(Luo, 1998) and Nakahashi(Sharov, 1998) 
extended this method to unstructured grids. The 
fundamental concept of the LU-SGS method is to 
decompose the Jacobi matrix into the upper triangular 
matrix U, lower triangular matrix L and diagonal 
matrix D and to eschew the complex matrix operation 
by linear approximation of the Jacobi matrix of the 
flux, thus reducing the implicit method's demand for 
memory hardware(Han, 2013). 

For structural grids, discretization of equation (3) 
results in: 

߲ܹ
ݐ߲

ܸ ൅ ሺܹሻܵܧܴ ൌ 0#ሺ9ሻ  

where ܴܵܧሺܹሻ ൌ ∑ ൫ܨ෨ሺܹሻ െ ௩൯௜௝ܨ ௜ܵ௝
௡௙௔௖௘௦
௝ୀଵ . The 

first-order backward difference is applied to equation 
(9): 

ܹ߂
ݐ߂

ܸ ൌ െܴܵܧሺܹ௡ାଵሻ#ሺ10ሻ  

where ܹ߂ ൌ ܹ௡ାଵ െܹ௡ ሺܹ௡ାଵሻܵܧܴ ,  is the 
residual value of the n + 1th time step. The Taylor 
expansion of the right end term of the equation (10) 
can be obtained as the following equation: 
ܹ߂
ݐ߂

ܸ ൌ െቆܴܵܧሺܹ௡ሻ ൅
ሺܹ௡ሻܵܧܴ߲

߲ܹ
ቇ#ሺ11ሻܹ߂  

Equation (11) can be expressed as: 
ܹ߂ܣ ൌ െܴܵܧሺܹሻ#ሺ12ሻ  

where 

ܣ ൌ
ܸ
ݐ߂
ܫ ൅

ሺܹ௡ሻܵܧܴ߲

߲ܹ
#ሺ13ሻ  

Define A = D + L + U; D, L and U are the diagonal 
matrix, lower triangular matrix and upper triangular 
matrix, respectively, of matrix A. The approximate 
decomposition of A is: 

ሺܦ ൅ ܮ ൅ ܷሻ ൌ ܫሺܦ ൅ ܮଵିܦ ൅ ଵܷሻିܦ
ൎ ܫሺܦ ൅ ܫሻሺܮଵିܦ ൅ ଵܷሻିܦ
ൌ ሺܦ ൅ ܦଵሺିܦሻܮ ൅ ܷሻ#ሺ14ሻ

 

Equation (12) can be converted into: 
ሺܦ ൅ ܦଵሺିܦሻܮ ൅ ܷሻܹ߂ ൌ െܴܵܧሺܹሻ#ሺ15ሻ  

This equation is solved by the two processes of 
forward sweeping and backward sweeping. Set 
∗ܹ߂ ൌ ܦଵሺିܦ ൅ ܷሻܹ߂. 

Forward sweep: 
∗ܹ߂ ൌ ሺܹሻܵܧଵሺെܴିܦ െ ሻ#ሺ16ሻ∗ܹ߂ܮ  

Backward sweep: 
ܹ߂ ൌ ∗ܹ߂ െ ሺ17ሻ#ܹ߂ଵܷିܦ  

Then, update the conservation variables of the flow 
field: ܹ௡ାଵ ൌ ܹ௡ ൅  .ܹ߂

For two-dimensional cases, Figure 2 illustrates the 
two processes—forward sweeping and backward 
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Forward scan Backward scan
 

Figure 2. LU‐SGS ‐ diagrams of the two sweeps

sweeping, corresponding to equations (16) and (17), 
respectively. 

It is observed from equations (16) and (17) that we 
need to only reverse the matrix D in the iterative 
process, which makes the LU-SGS method require 
highly marginal computational capacity relative to 
other implicit methods. 

For unstructured grids, the residual value items of 
the m + 1 pseudo-time steps in equation (6) are 
linearized(Xiao, 2007), and equation (7) can be 
expressed as: 

ቊ ௜ܸ
௡ାଵ ቆ

௜߁
߬߂

൅
߮௡ାଵܯ௜

ݐ߂
൅
ܧܴ߲ ௜ܵሺܳሻ

߲ܳ௜
ቇቋ ௜ܳ߂

൅
ܧܴ߲ ௜ܵሺܳሻ

߲ܳ௝
௝ܳ߂ ൌ െܴܧ ௜ܵ

∗ሺܳ௠ሻ#ሺ18ሻ
 

To simplify the calculation of implicit iterations, 
the flux calculation of the left side of the equation (18) 
takes the first order of precision, i.e. 

ܧܴ ௜ܵሺܳሻ ൌ
1
2
ቀܨ෨௜ ൅ ෨௝ܨ െ ሚ௜௝൫ܳ௝ߣ௜௝߁ െ ܳ௜൯ቁ	#ሺ19ሻ  

where ߣሚ௜௝  is the spectral radius of the boundary 
surface matrix ି߁ଵܣሚ்  of the control volume and 
ሚ்ܣ ൌ ߲ܳ/෨ܨ߲ . For closed control volume Vi, 
∑ ሚ்௜ܣ ௜ܵ௝
௡௙௔௖௘௦
௝ୀଵ ൌ 0; similarly, ܣሚ்ܳ߂ ൌ ෨ܨ߂ . Equation 

(18) can be reduced to: 

൮ቌ ௜ܸ
௡ାଵ

߬߂
൅
1
2
෍ ሚ௜௝ߣ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

ቍ ܫ ൅
߮௡ାଵ ௜ܸ

௡ାଵ

ݐ߂
௜߁௜ܯ

ିଵ൲߁௜ܳ߂௜ 

ൌ െܴܧ ௜ܵ
∗ሺܳ௠ሻ െ

1
2
෍ ൫ܨ߂෨௝ െ ௝൯ܳ߂ሚ௜௝ߣ௝߁ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

#ሺ20ሻ  

 
In order to realize no-matrix computation, this 

study defines: 
ܦ ൌ ܫܽ ൅ ܾ݀݅ܽ݃ሺܯ௜߁௜

ିଵሻ#ሺ21ሻ  
where 

ܽ ൌ ௜ܸ
௡ାଵ

߬߂
1
2
෍ ሚ௜௝ߣ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

, ܾ ൌ
߮௡ାଵ ௜ܸ

௡ାଵ

ݐ߂
 

After the reordering of unstructured grids(Sharov, 
1998), equation (20) is solved by LU-SGS iteration 

Forward sweep: 

∗ܳ߂௜߁ ൌ െିܦଵܴܧ ௜ܵ
∗ሺܳ௠ሻ	

െ
1
2
ଵିܦ ෍ ൫ܨ߂෨௝

∗ െ ௝ܳ߂ሚ௜௝ߣ௝߁
∗൯ ௜ܵ௝

௝∈௅ሺ௜ሻ

#ሺ22ሻ  

Backward sweep: 
௜ܳ߂௜߁ ൌ 	∗ܳ߂௜߁

െିܦଵ ቌ
1
2
෍ ൫ܨ߂෨௝ െ ௝൯ܳ߂ሚ௜௝ߣ௝߁ ௜ܵ௝

௝∈௎ሺ௜ሻ

ቍ #ሺ23ሻ  

As observed from equations (22) and (23), the LU-
SGS method uses ܷand ܮ of ௜ܸ. For the structure grid, 
it is necessary to use the hyperplane to determine the 
upper and lower diagonals in the calculation to 
balance the upper and lower triangular matrices(Xu, 
2015). However, for unstructured grids, because the 
order of grid nodes and cells does not satisfy the 
requirement of balance between the upper triangular 
matrix and lower triangular matrix, it is necessary to 
realize the hyperplane of similar structure grids by the 
reordering of meshes(Sharov, 1998), in order to 
reduce the time cost of calling the neighbour control in 
the process of calculation and to improve 
computational efficiency. 

2.5 Law of Conservation of Geometry 
The law of conservation of geometry is the 

fundamental condition to be satisfied in the process of 
dynamic grid flow calculation(Lesoinne, 1996). In 
order to prevent the non-physical solution caused by 
the movement of grids, the law of geometrical 
conservation must be satisfied in the calculation. 

߲
ݐ߲
මܸ݀

௏
െ඾ݒ௚௡݀ܵ

ௌ
ൌ 0#ሺ24ሻ  

The equation reveals the relationship between the 
volume change of the grid cell and the speed of the 
grid surface. That is, the volume change of each grid 
cell is equal to the sum of the volume swept by each 
grid surface during the motion. Discretization of 
equation (24) can be expressed as: 

௜ܸ
௡ାଵ െ ௜ܸ

௡

ݐ߂
ൌ ෍ ௚௡ݒ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

#ሺ25ሻ  
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The volume ݒ௚௡ܵ of the mesh surface sweep can be 
calculated according to the coordinates of the two-
time grid points. According to the volume ܸ௡ାଵ of the 
grid cell calculated n + 1 times by equation (25), the 
geometrical conservation law can be automatically 
satisfied rather than the cell volume calculated from 
the real grid coordinates by ܸ௡ାଵ. 

3 OPTIMIZATION STRATEGY FOR 
NUMERICAL SIMULATION OF ROTOR 
FLOW FIELD 

3.1 Parallel Design Scheme 
THE parallel mode of this study adopts the master–

slave mode, which is divided into the management 
node and the compute nodes. The management node 
calculates the serial part; the compute nodes carry on 
the parallel part computation. According to the serial 
flow of Figure 1, this study provides the parallel 
whole flowchart. As shown in Figure 3, the dashed 
line in the graph shows the serial and parallel parts of 
the process. The grey part indicates the need for 
communication; the communication method of this 
study utilizes MPI. Iterative algorithm using LU-SGS 
+ Jacobi parallel algorithm. 

3.2 Load Balancing Strategy 

3.2.1 Load‐balanced partitioning method 
In the field of CFD parallel computing, data 

parallelism is one of the most common parallel 
methods. The fundamental concept is to divide the 
whole grid into N regions; then, the N regions are 
allocated to N calculation processes; each process 
carries out the initialization of the flow field 
information and the dual-time steps iteration. The 
exchange of data across virtual boundaries is carried 
out in the pseudo-time step iterative process. During 
the grid partition, it is necessary to realize the load 
balance of each compute node in order to improve the 
parallel efficiency. The method of this study is to 
guarantee that the number of grid cells of each 
compute node is fundamentally similar, because the 
dynamic grid is rigid motion(Yang, 2014), just once 
grid partition after the first assembly of the grid. 

In this study, the partition of the grid is realized by 
calling Metis Library, which can guarantee the load 
balance of compute node. Metis is a partitioned 
algorithm library based on graph; the graph elements 
can be grid cell or grid point, and the topological 
relation of the graph element is required in partition; 
this is suitable for unstructured grid as well as 
structure mesh. In this study, in the case of the Metis 
library function, the graph element is the grid element, 
and a multi-level K-way partition method(Karypis, 
1999) is used for partitioning the mixed grids. As 
shown in Figure 4, the method includes coarsening 

phase, initial partitioning phase and uncoarsening 
phase. Here, the coarsening phase is the condensation 
process of the graph, reduces the complexity of the 
graph and constructs the multi-level level of the graph. 
The initial partitioning phase is the first division of the 
graph after the coarsening; the uncoarsening phase is 
the splitting process of the graph, which restores the 
diagram to its original form and optimizes it in the 
recovery process layer by layer. 

In this study, we call the Metis library function by 
C++ and integrate the partition function into the 
solution program of the Navier–Stokes equation. As 
shown in Table 1, the flow field grid of Robin model 
has 2 146 697 grid cells, which are divided into 
different regions using the multi-level K-way 
partitioning method; the number of grid cells in 
different regions is fundamentally similar, which 
realizes the load balance of each process calculation 
and communication. 

3.2.2 Partition boundary processing method 
For parallel CFD solver, in a time step iterative 

process, the internal flow field data of different 
partitions are computed independently, and the 
information exchange among the different partitions is 
realized by extending the virtual boundary. The mesh 
of a virtual boundary part does not participate in the 
calculation and is used only to receive data from the 
boundary cells of other zones. In the calculation of the 
flow field, gradient, limiter, original variable and flux 
of the virtual boundary are required. As shown in 
Figure 5, the concept is to identify neighbour cells that 
share grid points with the current cell, by traversing 
the grid cells within the partition. Then, program 
determine whether the neighbour cells and the current 
cell are in the same zone. If they are not in the same 
zone, the current cell is a boundary cell and the 
neighbour cells are the virtual boundary cells of the 
zone to which the current cell belongs. In this manner, 
after each region has traversed all the grid cells, the 
partition boundary and virtual boundary are 
established. 

In order to store the virtual boundary information, 
this study designs a new data structure vector_map 
template class, which can be used to store the internal 
data of the region, partition and virtual boundaries and 
mapping relation of local ID and global ID. The data 
structure of the vector_map template class is as 
follows: 

template <class T> class vector_map { 
TDMap map_; 
std::vector<T> items_; 
std::array<std::vector<std::vector<T>>, layer> 

item_recv_buf_; 
std::array<std::vector<std::vector<T>>, layer> 

item_send_buf_; 
} 
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Figure 4. Schematic diagram of multi‐level K‐way partition method 

Table 1. Results of different partitions in a grid 

Grid partition diagram 

Number of partitions 1 4 8 

Average number of cells 2 146 697 536 674 268 337 
Maximum number of cells 2 146 697 536 695 268 357 

Minimum number of cells 2 146 697 536 662 268 323 
 

Partition 1

Partition 2

Virtual 
boundary Virtual 

boundary

Partition 1

Partition 2

Partition 
boundary

Partition 
boundary

Partition 2 's partition 
boundary sends data to the 
virtual boundary of partition 1

Partition 1 's partition 
boundary sends data to the 
virtual boundary of partition 2  

Figure 5. Parallel partition boundary processing diagram for unstructured grids 



536 ZHANG, ET AL 

 

where “TDMap” is a multiple-index container, 
“map_” is used to store the mapping relationship 
between global ID and local ID and multiple index 
containers can be searched by global or local ID as 
indexes; “items_” is used to store internal data for 
partitions; “layer” represents the number of layers of 
virtual boundary; “item_send_buf_” is used to store 
partition boundaries’ data; and “item_recv_buf_” is 
used to store virtual boundaries’ data. 

3.3 LU‐SGS + Jacobi parallel algorithm 
Wright and others studied the parallelization of 

implicit algorithm and put forward the DP-LUR 
method(Candler, 1994)(Wright, 1996). The DP-LUR 
method shifts the non-diagonal item to the right end of 
the equation to replace the symmetric Gauss–Seidel 
iteration with the Jacobi iteration; this removes the 
data dependency of the LU-SGS in the iterative 
process. The process of the DP-LUR method is as 
follows: 

(1) Firstly: 
௜ܳ߂

ሺ଴ሻ ൌ ଵܴ௜#ሺ1ሻିܦ  
(2) Then, a series of relaxation iterations are 

carried out; ݉ ൌ 1~݉௠௔௫. 

௜ܳ߂
ሺ௠ሻ ൌ ଵ൫ܴିܦ െ ሺܷ ൅ ௜ܳ߂ሻܮ

ሺ௠ିଵሻ൯#ሺ2ሻ  
(3) Last: 

௜ܳ߂ ൌ ௜ܳ߂
ሺ௠೘ೌೣሻ#ሺ3ሻ  

In the DP-LUR method, ݉௠௔௫  represents the 
number of sweeps for this algorithm in each partition, 
݉௠௔௫  generally assumes a value from three–
six(Wright, 1996)(Wissink, 1996). The DP-LUR 
algorithm is preferable for parallel processing because 
the Jacobi iteration uses data from the previous step, 
the partition boundary of each partition also stores the 
data from the previous step and the parallel results can 
be consistent with the serial guarantee. Data 
communication occurs only at the partition boundary, 
the number of communication is related to the number 
of sweeps. 

While DP-LUR is more convenient for 
parallelization than LU-SGS, it requires more 
computation. Because the convergence rate of the 
Jacobi iteration is lower than that of the Gauss–Seidel 
iteration, Jacobi requires a higher number of iterations 
to achieve convergence. Each time step that uses the 
DP-LUR iteration requires three–six sweeps to 
guarantee the convergence of the computation result. 
However, LU-SGS requires only two sweeps per time 
step, i.e., forward and backward sweep.  

The DP-LUR algorithm is proposed for more 
effective parallelization; however, its essence is Jacobi 
iterative. The diagonal method of DP-LUR converges 
very gradually, this low rate of convergence is caused 
in part by the diagonal approximation(Wright, 1996). 
Therefore, this paper presents a LU-SGS + Jacobi 
parallel algorithm, that is, the LU-SGS iteration is 
performed within each partition, and the Jacobi 
iteration similar to the DP-LUR is used at each 

partition boundary to improve the parallel 
computational efficiency of numerical simulation. The 
process of the LU-SGS + Jacobi parallel algorithm is 
as follows: 

(1) Firstly, initialization flux and conservation 
variable: 

ܧܴ ௜ܵ
∗൫ܳሺ଴ሻ൯ ൌ 0#ሺ4ሻ  

௜ܳ߂
ሺ଴ሻ ൌ ଵܴ௜#ሺ5ሻିܦ  

(2) Then, perform the pseudo-time step iteration: 
for ݉ = 1 to ݉௦௧௘௣௦  do 

Exchanging virtual boundary data: ܳ߂௠ ൌ  .௠ିଵܳ߂
The formula (19) is used for flux calculation: 

ܧܴ ௜ܵ൫ܳ௜
ሺ௠ሻ൯ ൌ

1
2
ቀܨ෨௜ ൅ ෨௝ܨ െ ሚ௜௝൫ܳ௝ߣ௜௝߁

ሺ௠ሻ െ ܳ௜
ሺ௠ሻ൯ቁ	 

Partition boundary adoption (2) for Jacobi 
iteration: 

௜ܳ߂
ሺ௠ሻ ൌ ଵ൫ܴିܦ െ ሺܷ ൅ ௜ܳ߂ሻܮ

ሺ௠ିଵሻ൯ 
LU-SGS iterations are performed with equations 

(22) and (22) within the partition: 
Forward sweep: 

∗ܳ߂௜߁ ൌ െିܦଵܴܧ ௜ܵ
∗ሺܳ௠ሻ 

െ
1
2
ଵିܦ ෍ ൫ܨ߂෨௝

∗ െ ௝ܳ߂ሚ௜௝ߣ௝߁
∗൯ ௜ܵ௝

௝∈௅ሺ௜ሻ

		 

Backward sweep: 

௜ܳ߂௜߁ ൌ ∗ܳ߂௜߁ െ ଵିܦ ቌ
1
2
෍ ൫ܨ߂෨௝ െ ௝൯ܳ߂ሚ௜௝ߣ௝߁ ௜ܵ௝

௝∈௎ሺ௜ሻ

ቍ 

Turbulence model and interpolation calculation. 
Exchanging interpolate data in partitions. 

end for 
(3) Go into the next physical time step. 
This study uses dual-time steps propulsion method; 

݉௦௧௘௣௦ represents the number of iterations of the 
pseudo-time step. When only one partition is used, the 
parallel algorithm degrades into the original LU-SGS 
algorithm. When there are multiple partitions, the 
virtual boundary data of the adjacent partitions 
communicates with each other at each pseudo-time 
step; then, it takes the form of the Jacobi and LU-SGS 
iterations. The parallel algorithm in this study does not 
result in slow convergence as the parallel algorithm 
uses the LU-SGS algorithm in the partition interior. 
The computational flow of a pseudo-time step 
iteration of the parallel algorithm is shown in the 
following figure; the grey solid line portion of the 
Figure 6(a) represents the partition boundary, the grey 
dotted line represents the virtual boundary and the 
arrows represent data communication among the 
partitions; In order to simplify, only one layer of the 
virtual boundary is expanded. The following 
description uses ௜ܸ  to represent the current control 
volume. ௜ܸ௝  represents neighbour control of ௜ܸ , and 
ܹis used to represent the conserved quantity of the 
control volume. Figure 6(a) indicates data 
communication among the partitions, and Figure 6(b) 
represents the Jacobi iteration. In each iteration, ௜ܸ 
uses ௜ܸ௝’s ௜ܹ௝

௡ିଵ to update ௜ܹ
௡. Figure 6(c) represents  
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(a) Diagram of communication among partitions 

 

 

 
(b) Jacobi iteration 

 
(c) Forward sweep

 
(d) Backward sweep 

Figure 6. Parallel implicit algorithm execution flow diagram

the forward sweep of LU-SGS, and Figure 6(d) 
represents the backward sweep of LU-SGS. During 
the dual-times sweep, ௜ܸ  uses ௜ܸ௝’s ௜ܹ௝

௡to update ௜ܹ
௡ . 

The arrows in Figures 6(b), (c) and (d) represent data 
dependencies. The virtual boundary is not involved in 
the calculation and is used only to store the data of the 
previous time step. The partition boundary zone only 
conducts Jacobi iterations. The partition interior zone 
(white cells in the diagram) conducts LU-SGS 
iteration. The partition's internal control volume can 
use the data of the partition boundary control volume 
during the iteration. 

In the process of solving the serial Navier–Stokes 
equation, ௜ܸ  requires ௜ܸ௝ ’s ௜ܹ௝

௡  to update ௜ܹ
௡  without 

considering whether ௜ܸ௝  is located in the various 
partitions. However, in a parallel program, if the ௜ܸ௝’s 

௜ܹ௝
௡  that ௜ܸ  requires is in another partition, it is 

necessary to obtain ௜ܹ௝
௡ through communication. If ௜ܸ 

obtains ௜ܹ௝
௡  in real time from a different partition 

during the calculation, the overhead of the 
communication will be large. In order to solve this 
problem, two-layer virtual boundary is established in 
each partition boundary to store ܹ௡ିଵ . After one 
pseudo-time step iteration, the virtual boundary of the 
various partitions is communicated to update ܹ௡ିଵ of 
virtual boundary. When ௜ܸ  updates ௜ܹ

௡  on the 
partition boundary, it requires a partial ௜ܸ௝’s ௜ܹ௝

௡ିଵin 
the virtual boundary because the Jacobi algorithm uses 
ܹ௡ିଵ to update ܹ௡. The Jacobi iterative algorithm is 
used at the partition boundary. The internal ௜ܸ of each 
partition uses the efficient implicit LU-SGS iteration. 
With the use of the LU-SGS + Jacobi parallel 
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algorithm to simulate the Robin model, the 
experimental results coincide with the serial program 
results, and the parallel efficiency is high. 

4 EXPERIMENT AND RESULT ANALYSIS 
IN order to test the parallel computing results and 

parallel efficiency of the hybrid algorithm, a set of 
three-dimensional mixed grids is tested. The mesh 
scale is 13 million mesh points. The test platform is 
the Inspur high-performance server cluster with five 
operational nodes. The CPU is 2.2 the GHz Intel Xeon 
E5-2630v 20 core processor, and the memory for each 
node is 256 Gb. The Robin fuselage/rotor model is 
shown in Figure 7. 

4.1 Example verification 
The parameters of the Robin model are as follows: 

Ma = 0.08, alpha = 0, beta = 0, cfl = 50, number of 
blades = 4 and number of cycles per period = 180. 
Each physical time step iteration contains 15 pseudo-
time step iterations. The airfoil is NACA0012, and the 
turbulence model is the S–A model. In this paper, the 
forward flight state of the model flow field is 
simulated. When the calculation is stable, the pressure 
coefficient distribution of the fuselage and rotor in this 
study is compared with the serial results, as shown in 
Figures 8, 9, 10 and 11. Figure 11 shows the parallel 
pressure distribution and serial pressure distribution 
comparison of rotor blade in the span-wise directions 
at the four positions r/R = 20%, r/R = 40%, r/R = 60% 
and r/R = 80% depicted in Figure 10. The calculated 
results are consistent with the serial data. 

Vorticity is used to describe the rotational motion 
of fluid clusters; it is an important physical quantity to 
describe the vortex motion of an object. Figures 12 
and 13 show the comparison between the parallel tip 
vortex trajectory and the serial calculation results. 
Figure 14 shows the comparison of lift coefficient 
results between serial programs and parallel programs, 
where the dashed lines represent serial lift coefficient 
curves, and the solid lines represent parallel lift 

coefficient curves. The serial and parallel errors of lift 
coefficient are approximately 1%. The example 
demonstrates that the results of the hybrid algorithm 
coincide with the serial results. Through the 
comparison of the above data, the correctness of the 
hybrid algorithm is explained. 

4.2 Speedup and parallel efficiency analysis 
In order to evaluate the efficiency of parallel 

computing, the definition formulas of the speedup 
ratio S and parallel efficiency E are introduced: 

ܵ ൌ ଵܶ

௡ܶ
; ܧ ൌ

ݏ
݊
ൈ 100% 

Here, ଵܶ represents the average running time of a 
pseudo-time iteration of the serial program, n 
represents the number of processes and Tn represents 
the average running time of a pseudo-time iteration for 
each process. Table 2 presents the results of the hybrid 
algorithm on different processes with grid size of 13 
million, including the average run time Tn, the 
acceleration ratio S and the parallel efficiency E of a 
pseudo time step. 

Figure 15 shows the average run time of a pseudo-
time step iteration of the hybrid algorithm in the 
different processes. It is observed from the graph that 
when the number of processes reaches over 32, the 
running time begins to stabilize the number of 
processes in less cases, the area of grid division is less, 
each region of the calculation time is significantly 
larger than the communication time between the 
processes and the impact of the communication time 
on the computing time is marginal. Moreover, the 
average running time decreases rapidly as the number 
of processes increases. When the number of processes 
reaches a certain number, the average running time 
tends to be stable because with the increase in the 
number of processes, the area of grid division keeps 
reducing, each process requires fewer and fewer 
calculation data and the communication time keeps 
increasing; then, the communication time exerts a 
larger impact on the average running time. 

 

Figure 7. Robin fuselage/rotor model 
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Figure 8. Serial fuselage pressure coefficient distribution cloud chart 

 

 

Figure 9. Parallel fuselage pressure coefficient distribution cloud chart 
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Figure 10. NACA0012 rotor pressure coefficient distribution cloud chart 

 

(a) Pressure distribution at r/R = 20% (b) Pressure distribution at r/R = 40% 

 
(c) Pressure distribution at r/R = 60% 

 
(d) Pressure distribution at r/R = 80% 

Figure 11. NACA0012 rotor pressure coefficient distribution 
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Figure 12. Tip vortex effect diagram of serial programs 

 
Figure 13. Tip vortex effect diagram of parallel programs 

  
Figure 14. Comparison of lift coefficient results between serial programs and parallel programs 

Table 2. Parallel speedup and parallel efficiency of 1300W grid scale 

n Tn (s) S E (%) 
1 1051 1 100 
2 600 1.75 87.5 
4 313 3.36 84 
8 168 6.26 78.3 
16 105 10.01 62.6 
32 66 15.91 49.7 
64 54 19.46 30.4 
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Figure 16 shows the parallel speedup of the hybrid 
algorithm in the Robin model. The number of 
processes is less than 16, and the speedup ratio grows 
almost linearly. When the number of processes 
reaches a certain number, the parallel speedup ratio 
tends to be stable, because the average running time of 
the hybrid algorithm tends to stabilize as the number 
of processes increases; From the acceleration formula 
defined above S will also be stable. 

Figure 17 shows the parallel efficiency of the 
hybrid algorithm in the Robin model. With the 
increase of the number of processes, the parallel 
efficiency declines continuously, which is due to the 
non-linear increase of the parallel acceleration ratio; 
the phenomenon results in the gradual decrease of the 
parallel efficiency. Therefore, it is necessary to select 
an appropriate number of processes to ensure the 
higher speedup ratio and parallel efficiency. As 
observed in Figs 15 and 16, the larger is the grid size, 
the higher is the parallel speedup ratio and the parallel 
efficiency. 

5 CONCLUSION 
A numerical optimization algorithm for unsteady 

flows of rotor based on web service is proposed, 
which is suitable for numerical simulation of steady 
and unsteady rotor flow field in three-dimensional 

hybrid grids. The efficient use of computer resources 
is realized by service computing, which greatly 
improves the speed of parallel computing. Using 
Metis to partition the grid, the load balance of the 
partition is realized. The problem of communication 
efficiency among the partitions is solved by 
establishing virtual boundary for partition boundary. 
The method is numerically simulated by a Robin 
model, and the experimental results coincide with 
those of the serial program; moreover, the parallel 
efficiency is high. 
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Figure 15. Average runn‐time of the hybrid algorithm in an inner iteration 
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Figure 16. Parallel speedup of the hybrid algorithm in the Robin model 

  
Figure 17. Parallel efficiency of the hybrid algorithm in the Robin model 
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