
Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press
Vol. 25, no. 3, 527–546
https://doi.org/10.31209/2019.100000109

CONTACT Jian Wan wanjian@hdu.edu.cn

© 2019 TSI® Press

Numerical optimization algorithm for unsteady flows of rotor based on
web service

Jilin Zhang1,4,5, Xuechao Liu1,5, Jian Wan2,1,5, Yongjian Ren1,5, Binglin Xu1,5,
Jianfan He1,5, Yuchen Fan1,5, Li Zhou1,5 , Zhenguo Wei6, Juncong Zhang6 and
Jue Wang3

1School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China
2Zhejiang University of Science and Technology, Hangzhou 310023, China
3Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
4State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190,
China
5Key Laboratory of Complex Systems Modeling and Simulation, Ministry of Education, Hangzhou 310018, China
6Zhejiang Dawning Information Technology Co., Ltd, Hangzhou 310051, China

The two authors Jilin Zhang and Xuechao Liu contribute equally to this paper, and they are co-first authors.

KEY WORDS: Service-oriented; LU-SGS; MPI; METIS; Load Balancing

1 INTRODUCTION
COMPUTATIONAL fluid dynamics (CFD) is an

important tool for fluid analysis by means of computer
and numerical simulation to solve fluid dynamics
control equations and analyse the motion law of a
model. At present, numerical simulation systems are
developing towards being large scale, high-precision
and real-time, which has enhanced the requirements of
computational complexity, computational scale and
accuracy. These problems need to be solved by
parallel numerical simulation. In order to make
parallel computing better use of computer resources
and achieve resources dynamic management, this
paper integrate computing cluster resources through
service computing to improve the utilization of

computing resources. The advantage of using service
computing lies in the small changes in the original
program, the designer only needs to encapsulate its
original computing service program into web service,
and then deploy web service on the cluster node. In
this way, a service node assigns computing resources
to the computing node according to the client's request
for resources and the availability of the current
resource. Designers can focus on the parallel design of
numerical simulation and shorten the development
cycle.

The common methods of solving through
numerical simulation are divided into two categories:
explicit and implicit methods.

The explicit method generally used at present is
multi-step Runge–Kutta(Jameson, 1981) method. The

ABSTRACT
A numerical optimization algorithm for unsteady flows of rotor based on web
service is proposed. Space discretization uses the finite volume method, time
discretization uses the implicit dual-time steps method, and turbulence model
uses the Spalart–Allmaras (S–A) model. In order to efficiently use the
computing resources of the cluster, a service-oriented service computing
architecture is used in a parallel computing service program. In order to realize
the load balance of hybrid grid partition, the grid is partitioned by Metis Library.
Meanwhile, data communication based on Message Passing Interface (MPI)
technology guarantees the consistency of convergence between parallel
algorithm and serial algorithm and establishes virtual boundaries for each
partition to ensure data exchange among partitions. By simulating the forward
flight state of the Robin fuselage/rotor model, the experimental results coincide
with the serial program, and the parallel efficiency is high.

528 ZHANG, ET AL

advantage of the explicit method is that the
requirement computation and storage is little with
each time-step iteration, and parallel computation is
convenient to implement(Liu, 2013). The
disadvantage of the explicit method is that the time
step is constrained by the stability condition, which
results in excessive calculation steps and low iterative
efficiency. At present, the LU-SGS(Jameson, 1987)
method is the most popular implicit calculation
method. The advantage of implicit method is the
adequate stability, preferable value of calculating step
size and enhanced iterative efficiency that it provides.
Because the LU-SGS method is highly dependent on
the data in the iterative process, the method is not
convenient for parallelization. By improving the LU-
SGS method, Wright(Candler, 1994) and others
proposed the Data-Parallel Lower–Upper Relaxation
(DP-LUR) implicit method. The DP-LUR method
shifts the non-diagonal item to the right end of the
equation in order to replace the symmetric Gauss–
Seidel iteration with the Jacobi iteration, which avoids
the upper and lower triangular matrices that are used
in the iterative process by the LU-SGS
method(Candler, 1994). This iterative method
removes all dependencies of data, reduces the number
of communications and conveniently achieves parallel
computing. However, the DP-LUR method is similar
to the Jacobi iteration, which requires a higher number
of iterations to achieve a similar convergence as the
LU-SGS method; this increases the computational
requirement of the DP-LUR method.

In the field of large-scale CFD numerical
simulation system design, technology available
globally has been very mature; a typical representative
is Fluent. In recent years, our country has also made
new progress in this aspect. Wang Song(Wang, 2017)
et al. designed large-scale computational fluid
dynamics visualization analysis system (FVAS) for
large-scale three-dimensional steady and unsteady
flow analysis of a system. In the field of magnetic
fluid dynamics(Zhao, 2009), Pan Yong and Wu
Yizhao(Pan, 2007) of Nanjing University of
Aeronautics and Astronautics had conducted a
numerical simulation experiment on the field
interference effect of supersonic flow field and
magnetic field. Using MPI technology to realize
parallel computing, the second-order precision
interpolation is carried out using the Monotonic
Upwind Scheme for Conservation Laws
(MUSCL)(Van, 1979) method, and the Time-
Marching method adopted the five-step Runge–Kutta
method.

In the field of impeller machinery, domestic
research has also been conducted. Xu Jianzhong(Li,
2008) of the Chinese Academy of Sciences had
adopted the DP-LUR method to realize Navier–Stokes
parallel solution based on unsteady computation. A
consistent amount of research has been devoted on
high performance computing field in China. Deng

Shouchun(Zheng, 2011) of the Chinese Academy of
Sciences developed the parallel algorithm based on
MPI communication technology; here, the space
discretization adopted the third order upwind Harten–
Lax-Van Leer–Einfeldt–Wada (HLLEW)(Obayashi,
1994) or Advection Upstream Splitting Method
(AUSM)(Liou, 1993) format based on Roe(Roe,
1986), the turbulence model adopted the two-
equation model and the time advance adopted the
convenient parallel DP-LUR method. In recent years,
China has made new progress in the field of high-
performance computing of large aircraft; Chen
Gang(Chen, 2011) of the Chinese Academy of
Sciences had developed a large-scale aircraft
aerodynamic numerical simulation software—China
computational fluid dynamics (CCFD) —based on
ten–thousand–core parallel computing. The space
discrete scheme is constructed by finite volume
method. The second-order Roe-upwind flux difference
scheme and the central difference scheme were used
for discrete processing of the inviscid flux and viscous
flux. The time advance adopted the implicit method,
which exhibits adequate reliability in the complex
flow field and high-resolution numerical simulation;
moreover, it can solve the engineering problems in the
field of large aircraft design.

In the area of helicopter design, the flow field of
helicopter rotor is highly complicated compared with
the fixed wing flow field; moreover, the complexity of
the rotor flow field is embodied in three aspects:
Firstly, the flow velocity of the rotor is changed along
the span direction. Secondly, the rotor flow is a typical
unsteady flow, which results from the rotation of the
rotor; the flow velocity and angle of attack of the rotor
are changed with the azimuth. Thirdly, the rotor
rotation process produces a tip vortex and tail vortex,
which are located around the rotor, causing complex
vortex/propeller interference and vortex/fuselage
interference; the aerodynamic performance of the
aircraft is thus adversely affected(Xiao, 2007).
Therefore, accurate and efficient numerical simulation
of rotor flow field is a challenging task. In this regard,
domestic scholars have conducted a large amount of
important research. Ji Changrui(Ji, 2014) developed
the strong coupling Reynolds-averaged Navier–Stokes
(RANS) method based on multi block overlapped
grids, which was used in the numerical simulation of
helicopter rotor flow field in hover; this method
adopted LU-SGS to solve the time advance and don’t
support parallel computing. Li Peng(Li, 2014) had
developed a CFD computation method for the analysis
of the tilt rotor/wing interference flow field in hover
state by using the Runge–Kutta method and the
parallel acceleration technique of the Single
Program/Multiple Data (SPMD) model. This method
is applicable to the structural mesh. Jiang
Yuening(Jiang, 2017) et al. proposed an efficient and
accurate numerical simulation of Unmanned Aerial

INTELLIGENT AUTOMATION AND SOFT COMPUTING 529

Vehicle CFD multi-core parallel computing method, a
method using Fluent software for simulation.

However, our country rarely uses implicit
algorithm in the field of helicopter to conduct large-
scale parallel numerical simulation. Therefore, this
paper presents a numerical optimization algorithm for
unsteady flows of rotor based on web service, which is
used to solve the problem of low efficiency in
numerical simulation of unsteady rotor flow field with
three-dimensional hybrid grids. This paper uses Metis
to realize the load balance of partition and realizes
data communication among different partitions by
MPI. This algorithm can be extended to large-scale
parallel numerical simulation. Through verification of
the Robin fuselage/rotor model and comparison with
the calculation results of the original LU-SGS method,
the parallel computation method proposed in this
paper substantially improves computational efficiency
and ensures that the parallel computation results
coincide with the serial results.

This paper is divided into five chapters: the first
chapter introduces CFD high-performance computing,
which has achieved remarkable results and commonly
used solutions in numerous areas; however, in the
helicopter field, domestic development is relatively
primitive. Furthermore, the chapter introduces the
main work of this study. In the second chapter, this
study analyses the serial process of numerical
simulation of helicopter rotor flow field and the
derivation process of the control equations involving
numerical calculation; further, it sums up the serial
program, which can be conducted in parallel. The
third chapter introduces the optimization strategy of
the numerical simulation of rotor flow field, including
load balancing strategy, communication optimization
and LU-SGS + Jacobi parallel algorithm. The fourth
chapter verifies the computational efficiency of
parallel programs and the correctness of the program
through the Robin fuselage/rotor model. The fifth
chapter summarizes the optimization method proposed
in this paper.

2 PROCESS ANALYSIS FOR NUMERICAL
SIMULATION OF ROTOR FLOW FIELD

2.1 Serial Process Analysis
IN practical engineering problems, the numerical

simulation of unsteady flow field with shifting
boundary is more and more concerned, such as
bombing by fighter planes, the swing of helicopter
rotor, etc. It is of high engineering significance to
develop a numerical simulation method that is highly
precise, efficient and stabile, in order to solve this type
of practical problems.

This paper is based on a serial three-dimensional
dynamic overlapping grid Navier–Stokes equation
solver; its numerical simulation of the overall flow is
depicted in Figure 1:

(1) The establishment of grid system and flow field
system, including the establishment of nested grid
relationship and the initialization of flow field.

(2) Enter dual-time steps iteration.
(3) Flux computation. It includes the calculation of

viscous flux and inviscid flux.
(4) If the problem is unsteady, the calculation of

the unsteady time item is carried out; otherwise, go to
step (5).

(5) LU-SGS iteration.
(6) If it is a viscous flow field, the S–A turbulence

model is calculated; otherwise, go to step (7).
(7) Calculation of residual value and interpolation

among nested grids.
(8) Go to step (9) if the residual value satisfies the

requirement or the number of pseudo-time step
iteration is attained. Otherwise, the next pseudo-time
step iteration is performed.

(9) If the output condition is attained, the result of
the calculation is the output. Otherwise, go to step
(10).

(10) Dynamic grid motion, geometric data update.
(11) Rebuild nested grid relationships. Re-establish

the interpolation relationship among nested grids,
update the minimum wall distance, etc.

(12) Physical time step interpolation among nesting
grids. Interpolation among the nested grids is
performed according to the interpolation relationship
established in step (11).

(13) If the number of iterations of the physical time
step is attained, the program is terminated; otherwise,
the next physical time step iteration is entered.

The pseudo-time step iteration process is the key
step of the numerical simulation process, which is also
the solution process of the Navier–Stokes equation.
This process has the largest share of the total number
of iterations in and the time consumed by the serial
program. Therefore, this study can improve the
computational efficiency of the numerical simulation
by optimizing the pseudo-time step iteration. This is
mainly concerned with the parallelization of the LU-
SGS implicit iterative algorithm, which is one of the
challenges in CFD research. In this paper, a numerical
optimization algorithm for unsteady flows of rotor
based on web service is proposed; i.e., LU-SGS
iteration is performed on the inner cells of each
computational process, and Jacobi iteration is
performed on the boundary cells to improve the
computational efficiency of the numerical simulation.

2.2 Fluid Control equations
In this study, the control equation of the numerical

simulation is the Reynolds-averaged Navier–Stokes
equations(Zhu, 1998) based on three-dimensional
unsteady compressible fluid:

ම
߲ܹ
௏ݐ߲

ܸ݀ ൅඾ሺܨሺܹሻ െ ௩ሻܨ
ௌ

݀ܵ#ሺ1ሻ

530 ZHANG, ET AL

Start

Nth step in physical time steps

Establishment of grid and flow
field system

Mth step in pseudo-time steps

Flux computation

LU-SGS iteration

Viscosity or
not?

Calculation of residual value
and interpolation between

meshes

S–A
turbulence

model

satisfy the requirements
 or M > Max_m?

Dynamic mesh motion and
geometric data updating

N > Max_n
NO

N = N + 1

NO

YES

NO YES

M = M + 1

End

YES

Is it unsteady?
Unsteady time

term YES

NO

Is it output?

output to files

YES

NO

Reconstructing nested mesh
relationships

Interpolation between nested
grids in physical time step

Figure 1. Serial flowchart

where t denotes time, V represents the control volume,
S is the closed surface enclosing the control volume,
W is the conserved quantity, F(W) is the inviscid flux
and ܨ௩ is the viscous flux.

Based on the Reynolds transport equation:
߲
ݐ߲
මܹܸ݀

௏
ൌම

߲ܹ
௏ݐ߲

ܸ݀ ൅඾ሺݔ ⋅ ሬ݊Ԧሻ
ௌ

ܹ݀ܵ#ሺ2ሻ

where ݔ and ሬ݊Ԧ represent the motion velocity and the
normal vector, respectively, of the control surface and
௚௡ݒ ൌ ݔ ⋅ ሬ݊Ԧ is defined. Equation (1) can be denoted in
the following form:
߲
ݐ߲
මܹܸ݀

௏
൅඾൫ܨሺܹሻ െ ௚௡ܹ൯݀ܵݒ

ௌ
ൌ ඾ܨ௩݀ܵ

ௌ
#ሺ3ሻ

When ݒ௚௡ ൌ ሬܸԦ ⋅ ሬ݊Ԧ (ሬܸԦ is the velocity vector of the
fluid), equation (3) is the Lagrange equation. When
௚௡ݒ ൌ 0, equation (3) is the Euler equation.

2.3 Space discretization and Time
discretization

In order to improve the time-calculation precision
of an unsteady flow problem and to ensure high
computational efficiency, this study adopts dual-time
step propulsion method(Jameson, 1991). In equation
(3), the pre-processed pseudo-time derivative is
introduced, i.e.,

߁
߲
߲߬
මܸܳ݀

௏
൅
߲
ݐ߲
මܹܸ݀

௏
൅

඾൫ܨሺܳሻ െ ௚௡ܹ൯݀ܵݒ
ௌ

ൌ ඾ܨ௩݀ܵ
ௌ

#ሺ4ሻ

where ߬ and t denote the pseudo-time step and
physical time step, respectively, ߁ is the pre-
processing matrix proposed by Weiss and
Smith(Weiss, 1995) and ܳ ൌ ሺ݌, ,ݑ ,ݒ ,ݓ ܶሻ் is the
original variable.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 531

In the arbitrary control volume ௜ܸ , the finite
volume method is discretized for equation (4).

௜߁
߲ሺܸܳሻ௜
߲߬

൅
߲ሺܹܸሻ௜
ݐ߲

൅ ෍ ෨ሺܳሻ௜௝ܨ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

ൌ ෍ ௩௜௝ܨ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

#ሺ5ሻ

wherein ܨ෨ሺܳሻ ൌ ሺܳሻܨ െ ௚௡ܹݒ , j is the neighbour
control volume of ௜ܸ , ij represents the interface
between ௜ܸ and ௝ܸ and nfaces is the amount of
boundary faces of ௜ܸ . If the left and right flow field
value of ௜ܵ௝ is considered as the central value of the
control volume, the result is of the first order precision.
In order to obtain high accuracy, the linear
reconstruction technique of Gauss integral
method(Mavriplis, 2003) is adopted. In order to
prevent the emergence of the new extremum, the
limiter proposed by Venkatakri-
shnan(Venkatakrishnan, 1993) is adopted.

In time discretization, pseudo-time step uses first-
order back difference and physical time uses implicit
k-order posterior difference. Pseudo-time step and
physical time step are represented by m + 1 and n + 1,
respectively. Then, equation (5) becomes:

௜߁
ܳ௜
௠ାଵ

௜ܸ
௡ାଵ െ ܳ௜

௠
௜ܸ
௡ାଵ

߬߂
൅
߮௡ାଵሺܹܸሻ௡ାଵ

ݐ߂

൅
1
ݐ߂

෍߮௡ି�ሺܹܸሻ௡ି� ൅ ܧܴ ௜ܵሺܳ௠ାଵሻ ൌ 0

௞ିଵ

�ୀ଴

#ሺ6ሻ

m and n are the pseudo-time steps and physical time
steps, respectively. RESi is the residual value defined
as:

ܧܴ ௜ܵሺܳሻ ൌ ෍ ൫ܨ෨ሺܳሻ െ ௩൯௜௝ܨ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

#ሺ7ሻ

The sequence of {߮௡} represents the coefficient of
a backward difference format, which is used to control
the time precision of discrete equations.

In each physical time step, the flow field is solved
by pseudo-time ߬߂ propulsion. When ݉ → ∞, ܹ௠ାଵ
approaches ܹ௡ାଵ; it is considered to be the solution
of the n + 1th time step. Define ܳ߂ ൌ ܳ௠ାଵ െ ܳ௠ and
ܹ௡ାଵ ൌ ܹ௠ ൅ܳ߂ܯ, where M represents the Jacobi
matrix. Equation (6) can be expressed in the following
form:

ቆ ௜ܸ
௡ାଵ

߬߂
௜߁ ൅

߮௡ାଵ ௜ܸ
௡ାଵ

ݐ߂
௜ܳ߂௜ቇܯ

൅ܴܧ ௜ܵ
∗ሺܳ௠ାଵሻ ൌ 0#ሺ7ሻ

The unsteady residual ܴܧ ௜ܵ
∗ሺܳሻ is:

ܧܴ ௜ܵ
∗ሺܳሻ ൌ

߮௡ାଵܹ௠ܸ௡ାଵ

ݐ߂

൅
1
ݐ߂

෍߮௡ି�ሺܹܸሻ௡ି�

௞ିଵ

�ୀ଴

൅ ܧܴ ௜ܵሺܳሻ#ሺ8ሻ

In equation (7) in this paper, the serial program
adopts the implicit LU-SGS iterative format with no

matrix, which exhibits higher convergence speed and
higher efficiency and is more apparent in the
calculation of viscous flow field.

2.4 Implicit LU‐SGS method
Jameson and Yoon(Jameson, 1987) proposed an

implicit LU-SGS method in 1987; however, this
method is applicable only to the structure grid. In
1998, Luo(Luo, 1998) and Nakahashi(Sharov, 1998)
extended this method to unstructured grids. The
fundamental concept of the LU-SGS method is to
decompose the Jacobi matrix into the upper triangular
matrix U, lower triangular matrix L and diagonal
matrix D and to eschew the complex matrix operation
by linear approximation of the Jacobi matrix of the
flux, thus reducing the implicit method's demand for
memory hardware(Han, 2013).

For structural grids, discretization of equation (3)
results in:

߲ܹ
ݐ߲

ܸ ൅ ሺܹሻܵܧܴ ൌ 0#ሺ9ሻ

where ܴܵܧሺܹሻ ൌ ∑ ൫ܨ෨ሺܹሻ െ ௩൯௜௝ܨ ௜ܵ௝
௡௙௔௖௘௦
௝ୀଵ . The

first-order backward difference is applied to equation
(9):

ܹ߂
ݐ߂

ܸ ൌ െܴܵܧሺܹ௡ାଵሻ#ሺ10ሻ

where ܹ߂ ൌ ܹ௡ାଵ െܹ௡ ሺܹ௡ାଵሻܵܧܴ , is the
residual value of the n + 1th time step. The Taylor
expansion of the right end term of the equation (10)
can be obtained as the following equation:
ܹ߂
ݐ߂

ܸ ൌ െቆܴܵܧሺܹ௡ሻ ൅
ሺܹ௡ሻܵܧܴ߲

߲ܹ
ቇ#ሺ11ሻܹ߂

Equation (11) can be expressed as:
ܹ߂ܣ ൌ െܴܵܧሺܹሻ#ሺ12ሻ

where

ܣ ൌ
ܸ
ݐ߂
ܫ ൅

ሺܹ௡ሻܵܧܴ߲

߲ܹ
#ሺ13ሻ

Define A = D + L + U; D, L and U are the diagonal
matrix, lower triangular matrix and upper triangular
matrix, respectively, of matrix A. The approximate
decomposition of A is:

ሺܦ ൅ ܮ ൅ ܷሻ ൌ ܫሺܦ ൅ ܮଵିܦ ൅ ଵܷሻିܦ
ൎ ܫሺܦ ൅ ܫሻሺܮଵିܦ ൅ ଵܷሻିܦ
ൌ ሺܦ ൅ ܦଵሺିܦሻܮ ൅ ܷሻ#ሺ14ሻ

Equation (12) can be converted into:
ሺܦ ൅ ܦଵሺିܦሻܮ ൅ ܷሻܹ߂ ൌ െܴܵܧሺܹሻ#ሺ15ሻ

This equation is solved by the two processes of
forward sweeping and backward sweeping. Set
∗ܹ߂ ൌ ܦଵሺିܦ ൅ ܷሻܹ߂.

Forward sweep:
∗ܹ߂ ൌ ሺܹሻܵܧଵሺെܴିܦ െ ሻ#ሺ16ሻ∗ܹ߂ܮ

Backward sweep:
ܹ߂ ൌ ∗ܹ߂ െ ሺ17ሻ#ܹ߂ଵܷିܦ

Then, update the conservation variables of the flow
field: ܹ௡ାଵ ൌ ܹ௡ ൅ .ܹ߂

For two-dimensional cases, Figure 2 illustrates the
two processes—forward sweeping and backward

532 ZHANG, ET AL

Forward scan Backward scan

Figure 2. LU‐SGS ‐ diagrams of the two sweeps

sweeping, corresponding to equations (16) and (17),
respectively.

It is observed from equations (16) and (17) that we
need to only reverse the matrix D in the iterative
process, which makes the LU-SGS method require
highly marginal computational capacity relative to
other implicit methods.

For unstructured grids, the residual value items of
the m + 1 pseudo-time steps in equation (6) are
linearized(Xiao, 2007), and equation (7) can be
expressed as:

ቊ ௜ܸ
௡ାଵ ቆ

௜߁
߬߂

൅
߮௡ାଵܯ௜

ݐ߂
൅
ܧܴ߲ ௜ܵሺܳሻ

߲ܳ௜
ቇቋ ௜ܳ߂

൅
ܧܴ߲ ௜ܵሺܳሻ

߲ܳ௝
௝ܳ߂ ൌ െܴܧ ௜ܵ

∗ሺܳ௠ሻ#ሺ18ሻ

To simplify the calculation of implicit iterations,
the flux calculation of the left side of the equation (18)
takes the first order of precision, i.e.

ܧܴ ௜ܵሺܳሻ ൌ
1
2
ቀܨ෨௜ ൅ ෨௝ܨ െ ሚ௜௝൫ܳ௝ߣ௜௝߁ െ ܳ௜൯ቁ	#ሺ19ሻ

where ߣሚ௜௝ is the spectral radius of the boundary
surface matrix ି߁ଵܣሚ் of the control volume and
ሚ்ܣ ൌ ߲ܳ/෨ܨ߲ . For closed control volume Vi,
∑ ሚ்௜ܣ ௜ܵ௝
௡௙௔௖௘௦
௝ୀଵ ൌ 0; similarly, ܣሚ்ܳ߂ ൌ ෨ܨ߂ . Equation

(18) can be reduced to:

൮ቌ ௜ܸ
௡ାଵ

߬߂
൅
1
2
෍ ሚ௜௝ߣ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

ቍ ܫ ൅
߮௡ାଵ ௜ܸ

௡ାଵ

ݐ߂
௜߁௜ܯ

ିଵ൲߁௜ܳ߂௜

ൌ െܴܧ ௜ܵ
∗ሺܳ௠ሻ െ

1
2
෍ ൫ܨ߂෨௝ െ ௝൯ܳ߂ሚ௜௝ߣ௝߁ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

#ሺ20ሻ

In order to realize no-matrix computation, this

study defines:
ܦ ൌ ܫܽ ൅ ܾ݀݅ܽ݃ሺܯ௜߁௜

ିଵሻ#ሺ21ሻ
where

ܽ ൌ ௜ܸ
௡ାଵ

߬߂
1
2
෍ ሚ௜௝ߣ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

, ܾ ൌ
߮௡ାଵ ௜ܸ

௡ାଵ

ݐ߂

After the reordering of unstructured grids(Sharov,
1998), equation (20) is solved by LU-SGS iteration

Forward sweep:

∗ܳ߂௜߁ ൌ െିܦଵܴܧ ௜ܵ
∗ሺܳ௠ሻ	

െ
1
2
ଵିܦ ෍ ൫ܨ߂෨௝

∗ െ ௝ܳ߂ሚ௜௝ߣ௝߁
∗൯ ௜ܵ௝

௝∈௅ሺ௜ሻ

#ሺ22ሻ

Backward sweep:
௜ܳ߂௜߁ ൌ 	∗ܳ߂௜߁

െିܦଵ ቌ
1
2
෍ ൫ܨ߂෨௝ െ ௝൯ܳ߂ሚ௜௝ߣ௝߁ ௜ܵ௝

௝∈௎ሺ௜ሻ

ቍ #ሺ23ሻ

As observed from equations (22) and (23), the LU-
SGS method uses ܷand ܮ of ௜ܸ. For the structure grid,
it is necessary to use the hyperplane to determine the
upper and lower diagonals in the calculation to
balance the upper and lower triangular matrices(Xu,
2015). However, for unstructured grids, because the
order of grid nodes and cells does not satisfy the
requirement of balance between the upper triangular
matrix and lower triangular matrix, it is necessary to
realize the hyperplane of similar structure grids by the
reordering of meshes(Sharov, 1998), in order to
reduce the time cost of calling the neighbour control in
the process of calculation and to improve
computational efficiency.

2.5 Law of Conservation of Geometry
The law of conservation of geometry is the

fundamental condition to be satisfied in the process of
dynamic grid flow calculation(Lesoinne, 1996). In
order to prevent the non-physical solution caused by
the movement of grids, the law of geometrical
conservation must be satisfied in the calculation.

߲
ݐ߲
මܸ݀

௏
െ඾ݒ௚௡݀ܵ

ௌ
ൌ 0#ሺ24ሻ

The equation reveals the relationship between the
volume change of the grid cell and the speed of the
grid surface. That is, the volume change of each grid
cell is equal to the sum of the volume swept by each
grid surface during the motion. Discretization of
equation (24) can be expressed as:

௜ܸ
௡ାଵ െ ௜ܸ

௡

ݐ߂
ൌ ෍ ௚௡ݒ ௜ܵ௝

௡௙௔௖௘௦

௝ୀଵ

#ሺ25ሻ

INTELLIGENT AUTOMATION AND SOFT COMPUTING 533

The volume ݒ௚௡ܵ of the mesh surface sweep can be
calculated according to the coordinates of the two-
time grid points. According to the volume ܸ௡ାଵ of the
grid cell calculated n + 1 times by equation (25), the
geometrical conservation law can be automatically
satisfied rather than the cell volume calculated from
the real grid coordinates by ܸ௡ାଵ.

3 OPTIMIZATION STRATEGY FOR
NUMERICAL SIMULATION OF ROTOR
FLOW FIELD

3.1 Parallel Design Scheme
THE parallel mode of this study adopts the master–

slave mode, which is divided into the management
node and the compute nodes. The management node
calculates the serial part; the compute nodes carry on
the parallel part computation. According to the serial
flow of Figure 1, this study provides the parallel
whole flowchart. As shown in Figure 3, the dashed
line in the graph shows the serial and parallel parts of
the process. The grey part indicates the need for
communication; the communication method of this
study utilizes MPI. Iterative algorithm using LU-SGS
+ Jacobi parallel algorithm.

3.2 Load Balancing Strategy

3.2.1 Load‐balanced partitioning method
In the field of CFD parallel computing, data

parallelism is one of the most common parallel
methods. The fundamental concept is to divide the
whole grid into N regions; then, the N regions are
allocated to N calculation processes; each process
carries out the initialization of the flow field
information and the dual-time steps iteration. The
exchange of data across virtual boundaries is carried
out in the pseudo-time step iterative process. During
the grid partition, it is necessary to realize the load
balance of each compute node in order to improve the
parallel efficiency. The method of this study is to
guarantee that the number of grid cells of each
compute node is fundamentally similar, because the
dynamic grid is rigid motion(Yang, 2014), just once
grid partition after the first assembly of the grid.

In this study, the partition of the grid is realized by
calling Metis Library, which can guarantee the load
balance of compute node. Metis is a partitioned
algorithm library based on graph; the graph elements
can be grid cell or grid point, and the topological
relation of the graph element is required in partition;
this is suitable for unstructured grid as well as
structure mesh. In this study, in the case of the Metis
library function, the graph element is the grid element,
and a multi-level K-way partition method(Karypis,
1999) is used for partitioning the mixed grids. As
shown in Figure 4, the method includes coarsening

phase, initial partitioning phase and uncoarsening
phase. Here, the coarsening phase is the condensation
process of the graph, reduces the complexity of the
graph and constructs the multi-level level of the graph.
The initial partitioning phase is the first division of the
graph after the coarsening; the uncoarsening phase is
the splitting process of the graph, which restores the
diagram to its original form and optimizes it in the
recovery process layer by layer.

In this study, we call the Metis library function by
C++ and integrate the partition function into the
solution program of the Navier–Stokes equation. As
shown in Table 1, the flow field grid of Robin model
has 2 146 697 grid cells, which are divided into
different regions using the multi-level K-way
partitioning method; the number of grid cells in
different regions is fundamentally similar, which
realizes the load balance of each process calculation
and communication.

3.2.2 Partition boundary processing method
For parallel CFD solver, in a time step iterative

process, the internal flow field data of different
partitions are computed independently, and the
information exchange among the different partitions is
realized by extending the virtual boundary. The mesh
of a virtual boundary part does not participate in the
calculation and is used only to receive data from the
boundary cells of other zones. In the calculation of the
flow field, gradient, limiter, original variable and flux
of the virtual boundary are required. As shown in
Figure 5, the concept is to identify neighbour cells that
share grid points with the current cell, by traversing
the grid cells within the partition. Then, program
determine whether the neighbour cells and the current
cell are in the same zone. If they are not in the same
zone, the current cell is a boundary cell and the
neighbour cells are the virtual boundary cells of the
zone to which the current cell belongs. In this manner,
after each region has traversed all the grid cells, the
partition boundary and virtual boundary are
established.

In order to store the virtual boundary information,
this study designs a new data structure vector_map
template class, which can be used to store the internal
data of the region, partition and virtual boundaries and
mapping relation of local ID and global ID. The data
structure of the vector_map template class is as
follows:

template <class T> class vector_map {
TDMap map_;
std::vector<T> items_;
std::array<std::vector<std::vector<T>>, layer>

item_recv_buf_;
std::array<std::vector<std::vector<T>>, layer>

item_send_buf_;
}

534 ZHANG, ET AL

Nth step in physical time steps

Mesh partition and data
sending

Mth step in pseudo-time steps

Flux computation

Hybrid algorithm iteration

Viscosity or not?

Residual calculation

S–A
turbulence

model

satisfy the requirements
or M > Max_m?

Dynamic mesh motion
and geometric data

updating

N > Max_n
NO

N = N + 1

NO

YES

NO YES

M = M + 1

End

YES

Is it unsteady?Unsteady
time term YES

NO

NO

Reconstructing nested
mesh relationships

Physical time step
interpolation

Start

Establishment of grid system

Virtual boundary data communication
between partitions

Pseudo time step interpolation

Data distribution after
moving mesh update

P
arallel

section

Serial
section

Establishment of virtual boundary and
flow field system

Is it
output

?
YES

Processes are
output to files

Files merge

Serial
section

Figure 3. Parallel whole flow chart

INTELLIGENT AUTOMATION AND SOFT COMPUTING 535

coarsenin
g phase

un
coarsening p

hase

initial partitioning phase

Figure 4. Schematic diagram of multi‐level K‐way partition method

Table 1. Results of different partitions in a grid

Grid partition diagram

Number of partitions 1 4 8

Average number of cells 2 146 697 536 674 268 337
Maximum number of cells 2 146 697 536 695 268 357

Minimum number of cells 2 146 697 536 662 268 323

Partition 1

Partition 2

Virtual
boundary Virtual

boundary

Partition 1

Partition 2

Partition
boundary

Partition
boundary

Partition 2 's partition
boundary sends data to the
virtual boundary of partition 1

Partition 1 's partition
boundary sends data to the
virtual boundary of partition 2

Figure 5. Parallel partition boundary processing diagram for unstructured grids

536 ZHANG, ET AL

where “TDMap” is a multiple-index container,
“map_” is used to store the mapping relationship
between global ID and local ID and multiple index
containers can be searched by global or local ID as
indexes; “items_” is used to store internal data for
partitions; “layer” represents the number of layers of
virtual boundary; “item_send_buf_” is used to store
partition boundaries’ data; and “item_recv_buf_” is
used to store virtual boundaries’ data.

3.3 LU‐SGS + Jacobi parallel algorithm
Wright and others studied the parallelization of

implicit algorithm and put forward the DP-LUR
method(Candler, 1994)(Wright, 1996). The DP-LUR
method shifts the non-diagonal item to the right end of
the equation to replace the symmetric Gauss–Seidel
iteration with the Jacobi iteration; this removes the
data dependency of the LU-SGS in the iterative
process. The process of the DP-LUR method is as
follows:

(1) Firstly:
௜ܳ߂

ሺ଴ሻ ൌ ଵܴ௜#ሺ1ሻିܦ
(2) Then, a series of relaxation iterations are

carried out; ݉ ൌ 1~݉௠௔௫.

௜ܳ߂
ሺ௠ሻ ൌ ଵ൫ܴିܦ െ ሺܷ ൅ ௜ܳ߂ሻܮ

ሺ௠ିଵሻ൯#ሺ2ሻ
(3) Last:

௜ܳ߂ ൌ ௜ܳ߂
ሺ௠೘ೌೣሻ#ሺ3ሻ

In the DP-LUR method, ݉௠௔௫ represents the
number of sweeps for this algorithm in each partition,
݉௠௔௫ generally assumes a value from three–
six(Wright, 1996)(Wissink, 1996). The DP-LUR
algorithm is preferable for parallel processing because
the Jacobi iteration uses data from the previous step,
the partition boundary of each partition also stores the
data from the previous step and the parallel results can
be consistent with the serial guarantee. Data
communication occurs only at the partition boundary,
the number of communication is related to the number
of sweeps.

While DP-LUR is more convenient for
parallelization than LU-SGS, it requires more
computation. Because the convergence rate of the
Jacobi iteration is lower than that of the Gauss–Seidel
iteration, Jacobi requires a higher number of iterations
to achieve convergence. Each time step that uses the
DP-LUR iteration requires three–six sweeps to
guarantee the convergence of the computation result.
However, LU-SGS requires only two sweeps per time
step, i.e., forward and backward sweep.

The DP-LUR algorithm is proposed for more
effective parallelization; however, its essence is Jacobi
iterative. The diagonal method of DP-LUR converges
very gradually, this low rate of convergence is caused
in part by the diagonal approximation(Wright, 1996).
Therefore, this paper presents a LU-SGS + Jacobi
parallel algorithm, that is, the LU-SGS iteration is
performed within each partition, and the Jacobi
iteration similar to the DP-LUR is used at each

partition boundary to improve the parallel
computational efficiency of numerical simulation. The
process of the LU-SGS + Jacobi parallel algorithm is
as follows:

(1) Firstly, initialization flux and conservation
variable:

ܧܴ ௜ܵ
∗൫ܳሺ଴ሻ൯ ൌ 0#ሺ4ሻ

௜ܳ߂
ሺ଴ሻ ൌ ଵܴ௜#ሺ5ሻିܦ

(2) Then, perform the pseudo-time step iteration:
for ݉ = 1 to ݉௦௧௘௣௦ do

Exchanging virtual boundary data: ܳ߂௠ ൌ .௠ିଵܳ߂
The formula (19) is used for flux calculation:

ܧܴ ௜ܵ൫ܳ௜
ሺ௠ሻ൯ ൌ

1
2
ቀܨ෨௜ ൅ ෨௝ܨ െ ሚ௜௝൫ܳ௝ߣ௜௝߁

ሺ௠ሻ െ ܳ௜
ሺ௠ሻ൯ቁ	

Partition boundary adoption (2) for Jacobi
iteration:

௜ܳ߂
ሺ௠ሻ ൌ ଵ൫ܴିܦ െ ሺܷ ൅ ௜ܳ߂ሻܮ

ሺ௠ିଵሻ൯
LU-SGS iterations are performed with equations

(22) and (22) within the partition:
Forward sweep:

∗ܳ߂௜߁ ൌ െିܦଵܴܧ ௜ܵ
∗ሺܳ௠ሻ

െ
1
2
ଵିܦ ෍ ൫ܨ߂෨௝

∗ െ ௝ܳ߂ሚ௜௝ߣ௝߁
∗൯ ௜ܵ௝

௝∈௅ሺ௜ሻ

		

Backward sweep:

௜ܳ߂௜߁ ൌ ∗ܳ߂௜߁ െ ଵିܦ ቌ
1
2
෍ ൫ܨ߂෨௝ െ ௝൯ܳ߂ሚ௜௝ߣ௝߁ ௜ܵ௝

௝∈௎ሺ௜ሻ

ቍ

Turbulence model and interpolation calculation.
Exchanging interpolate data in partitions.

end for
(3) Go into the next physical time step.
This study uses dual-time steps propulsion method;

݉௦௧௘௣௦ represents the number of iterations of the
pseudo-time step. When only one partition is used, the
parallel algorithm degrades into the original LU-SGS
algorithm. When there are multiple partitions, the
virtual boundary data of the adjacent partitions
communicates with each other at each pseudo-time
step; then, it takes the form of the Jacobi and LU-SGS
iterations. The parallel algorithm in this study does not
result in slow convergence as the parallel algorithm
uses the LU-SGS algorithm in the partition interior.
The computational flow of a pseudo-time step
iteration of the parallel algorithm is shown in the
following figure; the grey solid line portion of the
Figure 6(a) represents the partition boundary, the grey
dotted line represents the virtual boundary and the
arrows represent data communication among the
partitions; In order to simplify, only one layer of the
virtual boundary is expanded. The following
description uses ௜ܸ to represent the current control
volume. ௜ܸ௝ represents neighbour control of ௜ܸ , and
ܹis used to represent the conserved quantity of the
control volume. Figure 6(a) indicates data
communication among the partitions, and Figure 6(b)
represents the Jacobi iteration. In each iteration, ௜ܸ
uses ௜ܸ௝’s ௜ܹ௝

௡ିଵ to update ௜ܹ
௡. Figure 6(c) represents

INTELLIGENT AUTOMATION AND SOFT COMPUTING 537

(a) Diagram of communication among partitions

(b) Jacobi iteration

(c) Forward sweep

(d) Backward sweep

Figure 6. Parallel implicit algorithm execution flow diagram

the forward sweep of LU-SGS, and Figure 6(d)
represents the backward sweep of LU-SGS. During
the dual-times sweep, ௜ܸ uses ௜ܸ௝’s ௜ܹ௝

௡to update ௜ܹ
௡ .

The arrows in Figures 6(b), (c) and (d) represent data
dependencies. The virtual boundary is not involved in
the calculation and is used only to store the data of the
previous time step. The partition boundary zone only
conducts Jacobi iterations. The partition interior zone
(white cells in the diagram) conducts LU-SGS
iteration. The partition's internal control volume can
use the data of the partition boundary control volume
during the iteration.

In the process of solving the serial Navier–Stokes
equation, ௜ܸ requires ௜ܸ௝ ’s ௜ܹ௝

௡ to update ௜ܹ
௡ without

considering whether ௜ܸ௝ is located in the various
partitions. However, in a parallel program, if the ௜ܸ௝’s

௜ܹ௝
௡ that ௜ܸ requires is in another partition, it is

necessary to obtain ௜ܹ௝
௡ through communication. If ௜ܸ

obtains ௜ܹ௝
௡ in real time from a different partition

during the calculation, the overhead of the
communication will be large. In order to solve this
problem, two-layer virtual boundary is established in
each partition boundary to store ܹ௡ିଵ . After one
pseudo-time step iteration, the virtual boundary of the
various partitions is communicated to update ܹ௡ିଵ of
virtual boundary. When ௜ܸ updates ௜ܹ

௡ on the
partition boundary, it requires a partial ௜ܸ௝’s ௜ܹ௝

௡ିଵin
the virtual boundary because the Jacobi algorithm uses
ܹ௡ିଵ to update ܹ௡. The Jacobi iterative algorithm is
used at the partition boundary. The internal ௜ܸ of each
partition uses the efficient implicit LU-SGS iteration.
With the use of the LU-SGS + Jacobi parallel

538 ZHANG, ET AL

algorithm to simulate the Robin model, the
experimental results coincide with the serial program
results, and the parallel efficiency is high.

4 EXPERIMENT AND RESULT ANALYSIS
IN order to test the parallel computing results and

parallel efficiency of the hybrid algorithm, a set of
three-dimensional mixed grids is tested. The mesh
scale is 13 million mesh points. The test platform is
the Inspur high-performance server cluster with five
operational nodes. The CPU is 2.2 the GHz Intel Xeon
E5-2630v 20 core processor, and the memory for each
node is 256 Gb. The Robin fuselage/rotor model is
shown in Figure 7.

4.1 Example verification
The parameters of the Robin model are as follows:

Ma = 0.08, alpha = 0, beta = 0, cfl = 50, number of
blades = 4 and number of cycles per period = 180.
Each physical time step iteration contains 15 pseudo-
time step iterations. The airfoil is NACA0012, and the
turbulence model is the S–A model. In this paper, the
forward flight state of the model flow field is
simulated. When the calculation is stable, the pressure
coefficient distribution of the fuselage and rotor in this
study is compared with the serial results, as shown in
Figures 8, 9, 10 and 11. Figure 11 shows the parallel
pressure distribution and serial pressure distribution
comparison of rotor blade in the span-wise directions
at the four positions r/R = 20%, r/R = 40%, r/R = 60%
and r/R = 80% depicted in Figure 10. The calculated
results are consistent with the serial data.

Vorticity is used to describe the rotational motion
of fluid clusters; it is an important physical quantity to
describe the vortex motion of an object. Figures 12
and 13 show the comparison between the parallel tip
vortex trajectory and the serial calculation results.
Figure 14 shows the comparison of lift coefficient
results between serial programs and parallel programs,
where the dashed lines represent serial lift coefficient
curves, and the solid lines represent parallel lift

coefficient curves. The serial and parallel errors of lift
coefficient are approximately 1%. The example
demonstrates that the results of the hybrid algorithm
coincide with the serial results. Through the
comparison of the above data, the correctness of the
hybrid algorithm is explained.

4.2 Speedup and parallel efficiency analysis
In order to evaluate the efficiency of parallel

computing, the definition formulas of the speedup
ratio S and parallel efficiency E are introduced:

ܵ ൌ ଵܶ

௡ܶ
; ܧ ൌ

ݏ
݊
ൈ 100%

Here, ଵܶ represents the average running time of a
pseudo-time iteration of the serial program, n
represents the number of processes and Tn represents
the average running time of a pseudo-time iteration for
each process. Table 2 presents the results of the hybrid
algorithm on different processes with grid size of 13
million, including the average run time Tn, the
acceleration ratio S and the parallel efficiency E of a
pseudo time step.

Figure 15 shows the average run time of a pseudo-
time step iteration of the hybrid algorithm in the
different processes. It is observed from the graph that
when the number of processes reaches over 32, the
running time begins to stabilize the number of
processes in less cases, the area of grid division is less,
each region of the calculation time is significantly
larger than the communication time between the
processes and the impact of the communication time
on the computing time is marginal. Moreover, the
average running time decreases rapidly as the number
of processes increases. When the number of processes
reaches a certain number, the average running time
tends to be stable because with the increase in the
number of processes, the area of grid division keeps
reducing, each process requires fewer and fewer
calculation data and the communication time keeps
increasing; then, the communication time exerts a
larger impact on the average running time.

Figure 7. Robin fuselage/rotor model

INTELLIGENT AUTOMATION AND SOFT COMPUTING 539

Figure 8. Serial fuselage pressure coefficient distribution cloud chart

Figure 9. Parallel fuselage pressure coefficient distribution cloud chart

540 ZHANG, ET AL

Figure 10. NACA0012 rotor pressure coefficient distribution cloud chart

(a) Pressure distribution at r/R = 20% (b) Pressure distribution at r/R = 40%

(c) Pressure distribution at r/R = 60%

(d) Pressure distribution at r/R = 80%

Figure 11. NACA0012 rotor pressure coefficient distribution

INTELLIGENT AUTOMATION AND SOFT COMPUTING 541

Figure 12. Tip vortex effect diagram of serial programs

Figure 13. Tip vortex effect diagram of parallel programs

Figure 14. Comparison of lift coefficient results between serial programs and parallel programs

Table 2. Parallel speedup and parallel efficiency of 1300W grid scale

n Tn (s) S E (%)
1 1051 1 100
2 600 1.75 87.5
4 313 3.36 84
8 168 6.26 78.3
16 105 10.01 62.6
32 66 15.91 49.7
64 54 19.46 30.4

542 ZHANG, ET AL

Figure 16 shows the parallel speedup of the hybrid
algorithm in the Robin model. The number of
processes is less than 16, and the speedup ratio grows
almost linearly. When the number of processes
reaches a certain number, the parallel speedup ratio
tends to be stable, because the average running time of
the hybrid algorithm tends to stabilize as the number
of processes increases; From the acceleration formula
defined above S will also be stable.

Figure 17 shows the parallel efficiency of the
hybrid algorithm in the Robin model. With the
increase of the number of processes, the parallel
efficiency declines continuously, which is due to the
non-linear increase of the parallel acceleration ratio;
the phenomenon results in the gradual decrease of the
parallel efficiency. Therefore, it is necessary to select
an appropriate number of processes to ensure the
higher speedup ratio and parallel efficiency. As
observed in Figs 15 and 16, the larger is the grid size,
the higher is the parallel speedup ratio and the parallel
efficiency.

5 CONCLUSION
A numerical optimization algorithm for unsteady

flows of rotor based on web service is proposed,
which is suitable for numerical simulation of steady
and unsteady rotor flow field in three-dimensional

hybrid grids. The efficient use of computer resources
is realized by service computing, which greatly
improves the speed of parallel computing. Using
Metis to partition the grid, the load balance of the
partition is realized. The problem of communication
efficiency among the partitions is solved by
establishing virtual boundary for partition boundary.
The method is numerically simulated by a Robin
model, and the experimental results coincide with
those of the serial program; moreover, the parallel
efficiency is high.

6 ACKNOWLEDGMENT
THIS work is partly supported by the National Key

Technology Research and Development Program
under Grant No. 2018YFB0204001; National Natural
Science Foundation of China under Grants No.
61672200, No. 61572163; Key Technology Research
and Development Program of the Zhejiang Province
under Grants No. 2019C01059, No. 2019C03135 and
No. 2019C03134; The Zhejiang Natural Science
Funds under Grants No. LY17F020029 and No.
LY16F020018; State Key Laboratory of Computer
Architecture Project No. CARCH201712; Hangzhou
Dianzi University Postgraduate Research Innovation
Fund Program under Grants No. CXJJ2018052.

Figure 15. Average runn‐time of the hybrid algorithm in an inner iteration

0

100

200

300

400

500

600

700

800

900

1000

1100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

A
ve
ra
ge
 r
u
n
‐t
im

e
o
f
a
p
se
u
d
o
‐t
im

e
st
ep

 it
er
at
io
n
 o
f
th
e

h
yb
ri
d
 a
lg
o
ri
th
m
 /s

Number of processes

INTELLIGENT AUTOMATION AND SOFT COMPUTING 543

Figure 16. Parallel speedup of the hybrid algorithm in the Robin model

Figure 17. Parallel efficiency of the hybrid algorithm in the Robin model

7 REFERENCES
Jameson, A., Schmidt, W., & Turkel, E. (1981, June).

Numerical solution of the Euler equations by finite
volume methods using Runge Kutta time stepping
schemes. In 14th fluid and plasma dynamics
conference (p. 1259).

Wei, L., Lilun, Z., & Yongxian, W. (2013).
Foundations of Computational Aerodynamics
Parallel Programing. National Defense Industry
Press, Beijing.

Jameson, A., & Yoon, S. (1987). Lower-upper implicit
schemes with multiple grids for the Euler
equations. AIAA journal, 25(7), 929-935.

Candler, G. V., Wright, M. J., & McDonald, J. D.
(1994). Data-parallel lower-upper relaxation
method for reacting flows. AIAA journal, 32(12),
2380-2386.

Wang Song, Wang Hai-yang, Wu Ya-dong, Wu Bin &
Wu Ying-chuan. (2017). Application of large-
scale CFD flowfield visualization analysis system.
Journal of Aerospace Power, 32(5):1138-1147.

Zhao Xiuyan. (2009). MHD analysis of metal
fluid (Doctoral dissertation, Jinan: Shandong
Agricultural University).

Pan Yong. (2007). Numerical Method for Hypersonic
Flowfield with Magnetic Interface (Doctoral
dissertation, Nanjing: Nanjing University of
Aeronautics and Astronautics).

0

2

4

6

8

10

12

14

16

18

20

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

P
ar
al
le
l s
p
ee
d
u
p
 o
f
th
e
h
yb
ri
d
 a
lg
o
ri
th
m

Number of processes

0

10

20

30

40

50

60

70

80

90

100

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

P
ar
al
le
l e
ff
ic
ie
n
cy
 o
f
th
e
h
yb
ri
d

al
go
ri
th
m

/%

Number of processes

544 ZHANG, ET AL

Van Leer, B. (1979). Towards the ultimate
conservative difference scheme. V. A second-
order sequel to Godunov's method. Journal of
computational Physics, 32(1), 101-136.

Li Xuesong, & Xu Jianzhong. (2008). A parallel
solution design for unsteady Navier-Stokes
equation. Journal of Engineering Thermophysics,
29(1):52-54.

Zheng, G., Deng, S., Han, T., & Yang, G. (2011). An
implicit parallel computing method based on the
Navier-Stokes equations with hybrid
grids. Yingyong Lixue Xuebao(Chinese Journal of
Applied Mechanics), 28(3), 211-218.

Obayashi, S., & Guruswamy, G. P. (1995).
Convergence acceleration of a Navier-Stokes
solver for efficient static aeroelastic
computations. AIAA journal, 33(6), 1134-1141.

Liou, M. S., & Steffen Jr, C. J. (1993). A new flux
splitting scheme. Journal of Computational
physics, 107(1), 23-39.

Roe, P. L. (1986). Characteristic-based schemes for
the Euler equations. Annual review of fluid
mechanics, 18(1), 337-365.

Chen, G., Wang, L., Lu, Z., & Liang, X. (2011).
Development of ten-thousand-core parallel
software CCFD for aircraft aerodynamics
simulation. Huazhong Keji Daxue Xuebao(Ziran
Kexue Ban)/ Journal of Huazhong University of
Science and Technology(Nature Science
Edition), 39.

Zhongyun, X. (2005). Investigation of Computational
Modeling Techniques for Rotor Flow
Fields (Doctoral dissertation, Ph. D. Dissertation,
Fluid Mechanics, Mianyang, China Aerodynamics
Research and Development Center, 2007 (in
Chinese)).

Ji Changrui, Yang Xiaoquan, Yang Aiming, Si
Jiangtao, & Liu Peiqing. (2014). Strong coupled
RANS algorithm for simulating hovering rotor
flow. Journal of Aerospace Power, 29(8), 1894-
1903.

Li, P., & Zhao, Q. J. (2014). CFD calculations on the
interaction flowfield and aerodynamic force of
tiltrotor/wing in hover. Acta Aeronautica et
Astronautica Sinica, 35(2), 361-371.

Jiang Yuening, Jia Hongguang, & Li Ming. (2018).
CFD numerical simulation of unmanned aerial
vehicle based on multi-core parallel
computation. Computer Engineering and
Applications, 54(7), 221-225.

Zhu Ziqiang, Wu Ziniu, & Li Jin. (1998). Applied
computational fluid dynamics.

Jameson, A. (1991, June). Time dependent
calculations using multigrid, with applications to
unsteady flows past airfoils and wings. In 10th
Computational Fluid Dynamics Conference (p.
1596).

Weiss J M, Smith W A. Preconditioning applied to
variable and constant density flows[J]. AIAA
journal, 1995, 33(11): 2050-2057.

Mavriplis, D. (2003, June). Revisiting the least-
squares procedure for gradient reconstruction on
unstructured meshes. In 16th AIAA
Computational Fluid Dynamics Conference (p.
3986).

Venkatakrishnan, V. (1993, January). On the accuracy
of limiters and convergence to steady state
solutions. In 31st Aerospace Sciences Meeting (p.
880).

Luo, H., Baum, J. D., & Löhner, R. (1998). A fast,
matrix-free implicit method for compressible
flows on unstructured grids. Journal of
Computational Physics, 146(2), 664-690.

Sharov, D., & Nakahashi, K. (1998). Low speed
preconditioning and LU-SGS scheme for 3-D
viscous flow computations on unstructured grids.
In 36th AIAA Aerospace Sciences Meeting and
Exhibit (p. 614).

Han Zhirong. (2013). Grid Adaption and Parallel
Computing in the Application of Airloads
Computations. (Doctoral dissertation, Nanjing
University of Aeronautics and Astronautics).

Xiao, T., Ang, H., & Yu, S. (2007). A preconditioned
dual time-stepping procedure coupled with matrix-
free LU-SGS scheme for unsteady low speed
viscous flows with moving objects. International
Journal of Computational Fluid Dynamics, 21(3-
4), 165-173.

Xu, T., & Chen, L. (2016). Gpu Implementation of a
Viscous Flow Solver on Unstructured Grids.
In International Journal of Modern Physics:
Conference Series (Vol. 42, p. 1660167). World
Scientific Publishing Company.

Lesoinne, M., & Farhat, C. (1996). Geometric
conservation laws for flow problems with moving
boundaries and deformable meshes, and their
impact on aeroelastic computations. Computer
methods in applied mechanics and
engineering, 134(1-2), 71-90.

Yang Xiaochuan, Wang Yuntao, Zhang Yulun, &
Meng Dehong. (2014). Numerical simulation of
wind turbine based on rigid moving mesh
method. National Conference on Fluid Mechanics.

Karypis, G., & Kumar, V. (1999). Parallel multilevel
series k-way partitioning scheme for irregular
graphs. Siam Review, 41(2), 278-300.

Wright, M. , Candler, G. , & Prampolini, M. . (2013).
A data-parallel lu relaxation method for the
navier-stokes equations. Aiaa Journal, 34(7),
1371-1377.

Wissink, A. M. , Lyrintzis, A. S. , & Strawn, R. C. .
(1996). Parallelization of a three-dimensional flow
solver for euler rotorcraft aerodynamics
predictions. AIAA Journal, 34(11), 2276-2283.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 545

8 DISCLOSURE STATEMENT
NO potential conflict of interest was reported by

the authors.

9 NOTES ON CONTRIBUTORS
Jilin Zhang received the PhD
degree in Computer Application
Technology from University of
Science Technology Beijing,
Beijing, China, in 2009. He
serves as an associate professor
in School of Computer Science
and Technology, Hangzhou
Dianzi University. His research
interests include High
Performance Computing and

Cloud Computing.
Email: jilin.zhang@hdu.edu.cn

Xuechao Liu is now M.S. in
School of Computer Science and
Technology in Hangzhou Dianzi
University, China. His research
interests include Parallel
Computing, Computational
Fluid Dynamics and High
Performance Computing.
Email: xuechao_liu@yeah.net

Jian Wan received the Ph.D.
degree in Computer Application
Technology from Zhejiang
University, Zhejiang, China, in
1989. He is currently a Professor
in software engineering in
Zhejiang University of Science
and Technology, China. His
research interests include Grid

Computing, Service Computing and Cloud
Computing.
Email: wanjian@hdu.edu.cn

Yongjian Ren received the
PhD degree in Engineering
from Zhejiang University,
Hangzhou, China, in 1989. He
is currently an distinguished
professor at Hangzhou Dianzi
University. His research
interests include mass storage
and cloud computing.

Email: yongjian.ren@hdu.edu.cn

Binglin Xu is now M.S. in
School of Computer Science and
Technology in Hangzhou Dianzi
University, China. His research
interests include Parallel
Computing, Computational
Fluid Dynamics and High
Performance Computing.

Jianfan He is now M.S. in
School of Computer Science and
Technology in Hangzhou Dianzi
University, China. His research
interests include Parallel
Computing, Computational
Fluid Dynamics and High
Performance Computing.

YuChen Fan is now M.S. in
School of Computer Science and
Technology in HangZhou Dianzi
University, China. His research
interests include Parallel
Computing, Machine Learning,
Computational Fluid Dynamics
and High Performance
Computing.

Li Zhou received her Master
Degree from Hangzhou Dianzi
University, Hangzhou, China, in
2003. She is currently an
associate professor in School of
Computer Science and
Technology, Hangzhou Dianzi
University. Her current research
interests include virtual storage
system, cloud storage, cloud

computing and high performance computing.

 Zhenguo Wei graduated from
Business Administration Major
of Zhejiang University of
Technology. In 2000, he worked
in Dawning Information
Technology Co., Ltd. In 2018, he
worked in Zhejiang Dawning
Information Technology Co.,
Ltd. As the general manager. He

was fully responsible for the business of the enterprise
and responsible for the research and development and
management of software products related to high-
performance computing, big data and artificial
intelligence.

546 ZHANG, ET AL

Juncong Zhang graduated from
Computer Science and
Technology Major of Xiangfan
University. In 2018, he worked in
Zhejiang Dawning Information
Technology Co., Ltd. As a
manager of the technology
center. Responsible for the

research and development of software products and
technical support related to High-performance
computing, big data and artificial intelligence.

Jue Wang is currently working
as a associate professor in the
supercomputing center of
Chinese Academy of Science.
The motivation behind his work
is to improve soft systems by
increasing the productivity of
programmers and by increasing
software performance on

modern architectures including many cores clusters
and GPU.

