
Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press
Vol. 25, no. 1, 35–48

CONTACT Juan Li ally_2004@126.com

© 2019 TSI® Press

An improved k-nearest neighbor algorithm using tree structure and
pruning technology

Juan Li
School of Distance Education, Shaanxi Normal University, 710062 Xi’an, China

KEY WORDS: KNN; TPKNN; unbalanced class patterns; tree structure; tree pruning; penalty parameter

1 INTRODUCTION
CLASSIFICATION algorithms are often divided

into supervised and non-supervised algorithm.
Supervised classification of patterns into predefined
categories is a very common task. Some popular
algorithms that have successfully been applied to text
classification, including probabilistic classification
such as Naive Bayes (Mccallum & Nigam, 1998),
decision tree classifiers, rule-based classifiers, and
maximum margin classifiers like SVM (Platt, 2013).
All these algorithms above need to build classifier
models in advance. However, K-Nearest Neighbor
(KNN) that was proposed by Aha, Kibler and Albert
(1991), a type of instance-based learning, does not
build a classifier in advance. KNN is the simplest of all
machine learning algorithms: when a new pattern
arrives, KNN finds the k nearest neighbors to the new
pattern from the training space based on some suitable
similarity or distance metric. The highest or plurality
class label among the nearest neighbors is the class
label for the new pattern.

However, KNN also has some inherent
disadvantages (Han, Karypis, & Kumar, 2001). KNN
does not settle with the multi-class classification
especially unbalanced classification. When deal with
each new unlabeled pattern, the entire training space
must be scanned and the overlarge computing
consumption is been obtained. In addition, KNN is
susceptible to the impact of the boundary data or
outlier. What’s more, the determination of K value has
not yet been solved satisfactorily.

There are several advanced KNN methods proposed
in the recent literature to settle class unbalance
problems. CGW (Liu & Chawla, 2011) uses the
probability of attribute values given class labels to
weight prototypes in KNN. Zeng, Yang and Zhao
(2009) have utilized the distance weighted local
learning in each class to obtain the pseudo nearest
neighbor of the new unlabeled pattern and assigns the
unlabeled pattern with these obtained pseudo nearest
neighbors, reduces the pattern distribution sensitivity.
In order to avoid the parameter influence of KNN and
realize the non-parameter input running, Zeng, Yang,
& Zhao (2009) have proposed the LMS algorithm by

ABSTRACT
K-Nearest Neighbor algorithm (KNN) is a simple and mature classification
method. However there are susceptible factors influencing the classification
performance, such as k value determination, the overlarge search space,
unbalanced and multi-class patterns, etc. To deal with the above problems, a
new classification algorithm that absorbs tree structure, tree pruning and
adaptive k value method was proposed. The proposed algorithm can
overcome the shortcoming of KNN, improve the performance of multi-class
and unbalanced classification, reduce the scale of dataset maintaining the
comparable classification accuracy. The simulations are conducted and the
proposed algorithm is compared with several existing algorithms. The results
indicate that the proposed algorithm can obtain higher classification efficiency
and smaller search reference set on UCI datasets. Furthermore, the proposed
algorithm can overcome the shortcoming of KNN and improve the
performance of multi-class and unbalanced classification. This illustrates that
the proposed algorithm is an expedient method in design nearest neighbour
classifiers.

2 JUAN LI

utilizing the local mean vector and class statistics. In a
study conducted by Milli & Bulut (2017), two novel
setting approaches of K value were presented to
increase the prediction accuracy of recommender
systems based on KNN.

Moreover, in order to reduce the computational
burden and the sensitivity of KNN, there are many
effective search methods and many reduction
technologies have been proposed.

On the one hand, several effective search methods
can be obtained in some literatures. As a good search
and construction algorithm, the k-d tree (Friedman,
Bentley, & Finkel, 1977; Sample, Matthew, Mark, &
Purcell, 2001) is a search structure based on nearest
neighbor technique. K-d tree can increase the search
efficiency, especially in NN searching application. The
Voronoi networks was proposed by Krishna,
Thathachar, & Ramakrishnan(2000), can reduce the
memory requirements and the computation cost, then
and has the comparable the generalization error with
the Bayes classifier. In addition, ensemble idea has
been widely adopted in classification problem. Franti,
Virmajoki, & Hautamaki (2006) proposed a fast
agglomerative clustering method using an
approximate nearest neighbor graph for reducing the
number of distance calculations and the method can
maintain the classification accuracy close to that of the
full search. Zhang & Srihari (2004) proposed a
cluster-based tree algorithm to accelerate KNN
classification without any presuppositions about the
metric form and properties of a dissimilarity measure.
Zou, Wang, Wei, Li, & Yang (2014) presented a
generative probabilistic prediction ensemble
framework including the missing date predict process
and an enhanced similarity method.

On the other hand, reducing the scale of training set
and removing those little contribution patterns are
good at improving KNN’s runnability. As we known,
KNN is sensitive to the distribution of training
patterns. patterns that locate at different region have
different classification contribution. patterns nearby
class boundaries have higher contribution for pattern
classification. On the contrary, most of patterns that
contain the vast number of inner patterns and all of
outlier patterns have little contribution for pattern
classification. So if the little loss of classification
accuracy can be guarantee, the training set can be
removed these little classification contribution
patterns. And then the smaller scale of higher
contribution patterns can lessen the computation and
storage consumption due to the smaller search space.
To effectively larger scale of training set, the partition
technologies must be adopted. So how to obtain the
boundary area and design the partitioning strategies
have been studied in some literatures (Barandela,
Ferri, & Sánchez, 2005; Khazaee & Ebrahimzadeh,
2013; Lumini & Nanni, 2006; Mollineda, Ferri, &
Vidal, 2002; Olvera-López, Carrasco-Ochoa, &
Martínez-Trinidad, 2010). Khazaee & Ebrahimzadeh

(2013) adopted SVM in the feature partitioning
strategies to achieve the classification performance of
the special problem. Cluster-based learning (CBL)
algorithms are proposed in above literatures, in which
patterns are not only patterns per se, but also the
weighted averages of patterns. In particular, following
the same scheme, Mollineda, Ferri, & Vidal (2002)
presented the Generalized-Modified Chang algorithm,
which merges the same-class nearest clusters and
selects the centers from the new merged clusters as
prototypes. In a study conducted by Lumini & Nanni
(2006), after splitting the training set into c clusters,
the selected prototype patterns are the centers of the c
clusters of CBL. Based on the clustering idea, a new
improved clustering algorithm that names as Prototype
Selection by Clustering (PSC) (Olvera-López,
Carrasco-Ochoa, & Martínez-Trinidad, 2010) selects
border patterns and some interior patterns. In recently,
the k-means clustering algorithm, the fuzzy c-means
algorithm, and some hierarchical clustering algorithms
are widely used in some pattern reduction application.
Divide-and-conquer approach has attracted many
attentions in saving the runtime consumption.
Raicharoen, Lursinsap, & Lin (2005) proposed an
algorithm which can realize the prototypes' correct
selection insensitive to the scan sequence of patterns
by building some separating hyper-planes located
among the POC-NN essential patterns. Haro-García &
García-Pedrajas (2009) divided the original training
set into some smaller subsets where the pattern
selection algorithm is applied. Fayed & Atiya (2009)
proposed a pattern reduction algorithm, namely, the
template reduction for KNN(TRKNN). Rico-Juan &
Iñesta (2012) proposed new rank methods to select the
best prototypes from a training set based on the
relevance factor that is from 0 to 1 and is used to
select the best candidates for each class.

As we known, there are three main independent
methods to decide the value of K, but any of them
exist some drawbacks (Gong & Liu, 2011). So the
fixed K value ignores the influence of the category and
the pattern number of training set and dynamic
obtaining the value of K (Li, Qin, & Yu, 2004; Wang,
Neskovic, & Cooper, 2006) is presented.

Although a lot of algorithms that have been
introduced above are adopted to improve the
classification performance and can cope with some
classification problem well, but these algorithms only
focus on one specific of the KNN’s disadvantage and
do not consider all of KNN’s disadvantages as a
whole.

In this paper, a new classification algorithm that
absorbs tree structure, tree pruning and adaptive k
value method was proposed, taking account of the
above challenges. The authors integrate the idea of
tree technology into KNN and construct a new Tree-
Pruning-KNN model (TPKNN) that differs with B+-
tree (Jagadish, Ooi, Tan, Yu, & Zhang, 2005), P-tree
(Li, Shi, Charastrakul, & Zhou, 2009) and R-

INTELLIGENT AUTOMATION AND SOFT COMPUTING 3

tree(Zheng, Lee, & Lee, 2003) which is a simple
classification algorithm that uses tree structure and
search region partitioning to decrease the search space,
improves search efficiency, keeps the dominance and
obtains a superiority of KNN over the unbalanced
pattern number category of KNN. In order to reduce
the bad influence of boundary and noise patterns, the
average distance among classes is obtained by
computing the distances among tree nodes. Based on
the average distance, the class trees are split and the
nodes with little classification contribution are discard,
and the boundary patterns are remained. TPKNN, an
incremental learning algorithm, avoids selecting the
uncertain K value through calculating the maximum
classification efficiency. TPKNN does well in
paralleling because it builds the tree classifier in
advance for each class.

To be specific, the main contributions in this paper
are as follows:

1) The dynamic acquired method of K can adapt
the specific problem and cope with the disadvantages
of the traditional parameter settings of KNN;

2) The fast tree building strategy is introduced.
Using the strategy, the building operation can quickly
build a tree structure for each class meanwhile
maintaining the distribution of training patterns
without the pattern scan sequence influence;

3) Several tree treatment operations can reduce the
search space and obtain the effective reference
patterns meanwhile maintaining the distribution of
original training patterns;

4) The proposed algorithm can cope with the
unbalanced classification problem well by adopting
the adjusted parameters;

5) The proposed algorithm can reduce the influence
of noise and can be used as a preprocessor of some
hybrid algorithms.

This paper is organized as follows. Section 2 and 3
describe and analyze the proposed algorithm
respectively in detail. Experimental parameters and
experimental results are presented in Section 4.
Finally, Section 5 concludes with future work.

2 TPKNN ALGORITHM
THE main contribution of TPKNN is as follows:

first, replace a small core set for all training search
region; second, keep the distribution and the numbers
of the training patterns; third, solve the indivisible
patterns by taking account of the relations between
unbalance and other specific states.

In this section, the proposed algorithm will be
presented intuitively in order to understand how to
build an efficient tree structure to reduce the search
space and quickly find many nearest distance patterns
that can be used to compute the score of each class
and select the class label with the highest score. The
proposed algorithm consists of the following steps that
just contains some key functional blocks:

1. Building tree structure: build tree structure by
single scan of the training set. TPKNN uses space
partitioning to part the whole training space into
several small core sets of data in high data density
region. The search space is divided into many core
sets. A core set can be seen as a tree node, so the
search space can be represented as a tree structure. A
tree node contains the pattern number, max distance
(equal to radius), within distance (abbreviated as WD),
between distance (abbreviated as BD), a representative
pattern (abbreviated as Rep), a stability and a pattern-
index at least. The mean pattern of a core set is the
Rep of a tree node.

2. Adjusting and incremental updating tree
structure: adjust a tree node when every training
pattern is absorbed to a tree node and update tree
structure when a new core set occurs and a new node
is inserted into the tree. The main adjustment and
updating benchmark is the Euclidean distance. In
addition, the adjusting process considers the stability
as a significant and useful judgment condition. The
adjusting and updating strategy will be introduced in
the follow section.

3. Pruning tree: as is well known, the more
different location among different class label patterns,
the more different distance and the more different
contribution with them. Then these patterns far from
the class boundaries are useless than those near them.
Therefore, how to find the border and interior core sets
is the concerned objective. To solve this problem,
these class distances between the different class
patterns are calculated by computing the distances
among the different class labels trees and the distances
within the same label patterns. The two ways are
adopted to reduce the size of training patterns. First,
for each class tree, the core sets whose distances to the
tree root are smaller than the within average distance
are removed. Second, for each different class tree pair,
the core sets whose distances to the tree root are larger
than the average distance between two classes are
removed. Then, by merging the remaining core sets,
the new patterns are obtained.

4. Classifying: compute each pre-class scores of k
closest patterns of training patterns and determine the
class label whose training pattern has the highest class
score. In this step, the penalty parameters are used to
improve the low classification accuracy caused by
unbalanced patterns and boundary patterns and the k
dynamic value is set in order to reduce k’s influence.

Now the main steps can be shown in detail.

2.1 Generation tree structure
The tree structure of TPKNN is an approximately

balanced tree center on the geometric center of the
training patterns. There are three kinds of tree nodes:
the root, non-leaf nodes and leaf nodes. In this paper,
three kinds of nodes have the same function and
property characteristics. Nodes are representative

4 JUAN LI

patterns for any high density regions that is called as
core set whether noise or boundary patterns.

The goal of TPKNN is to categorize patterns based
on the maximum similarity by which the training
patterns are parted into different core set and the size
of search space is reduced. Thus the nodes of the tree
are the mean patterns in every core set and those
patterns in the same core set should be closed to each
other by the Euclidean distance. When a new training
pattern arrives, TPKNN decides which core set it
belongs to or whether it is a new tree node by
comparing the distances between the new pattern and
the tree nodes.

The trees of TPKNN are obtained by one pass scan
over labeled training patterns. Different scan
sequences or different patterns distribution turn out to
be different tree structures on the same testing
patterns. Building a compact and rational tree structure
is our goal. The accuracy of TPKNN depends on the
initialized distance radius which determines the
number of core nodes sets. The tree nodes are these
core sets that belongs to different regions with the
closest Euclidean distance. So the different region
range will decide the tree structure and search
efficiency.

In order to weaken the above influences, the
appropriate distance radius through calculating the
distance relations with some random patterns are
worth estimating. In this paper, there are two basic
premises. One is that a pattern belongs to only one
class. The other is that one tree is built for each class.
Now the following is how to build an effective tree for
all patterns with the same label.

Given a set of labeled training patterns TR and C
classes, let TR be the number of training patterns, C

be the number of classes, jb be the numbers of

patterns in class jc , jT be the tree structure of

class jc , jT be the node number of jT , jr be the

root of jT , jkc be a core set k of a class jc , jc be

the number of a core set k of a class jc , and jkn be the

node of core set k of a class jc . Let sq be the queue
for storage core sets that include a new test pattern ts .
The number of working patterns is obtained in jc by

∑
=

=
k

i
jkj cb

1

and the number of working training

patterns by ∑
=

=
C

j
jbTR

1

.

Let jkn denote the mean pattern of jkc :

 1
1
∑
=

=
jkc

i
ji

jk
jk x

c
n (1)

The Euclidean distance function),(••D is used to
compute the distance between two patterns within
search process and decide the detail search core set.
The nearest neighbor function),(cxNN indicates the
nearest neighbor from the class c for a pattern x .

Since the cosine similarity is utilized to evaluate
the similarity of patterns in the paper, the notation

),(••S indicates the similarity function of two
patterns.)(jS is the average similarity between and
the nodes of jT . The function avgS denotes the average
similarity of the whole training patterns.

),cos(),(yxyxS = (2)

 ,
),(

)(1, ki
T

nnS
jS

j

T

ik
jkji

j

≠=
∑
=

 (3)

∑

∑

=

=

−
= C

j
j

C

j

j

avg

T

jS
TR
b

S

1

1
)()1(

 (4)

Taking different classes with different number of
texts into account, this paper uses the number of
various types of training sets and the average
similarity to amend the selection of K value. In this
way, the negative interference of unbalanced classes

can be reduced. Using)1(
TR
bj− to fix the j type’s

similarity values, the inaccurate classification results
with too large or too small class patterns are
eliminated. Formula (4) can be seen as the average
similarity of the training patterns because the nodes
layout of tree is approximated to the pattern
distribution.

Taking avgS as a standard, the similarities between

ts and jkn are divided into two parts. One part is

greater than avgS , the other is not. The large one is
reserved, its number is calculated and assigned to K.
Therefore, the dynamic value of K is obtained.

Algorithm1: Building tree structure
1. Randomly scan several labeled patterns and

estimate the distribution of jc . Get the mean

pattern jr of those random patterns and the standard

INTELLIGENT AUTOMATION AND SOFT COMPUTING 5

deviation 0jε of all distances between any of the two

patterns. Let 0jε be the initial stability parameter for

all core sets of jc .

2. Compute the distances between jr and the

random patterns. Get maxD and minD . Let jγ be the

initial radius for all care sets of jc .







<

≥
=

minmax
min

minmaxmin

j D*2DD
D*2DD

2

γ

3. Set 0=k , jjk rn = , and jjk γγ = .
4. If the training set is notΦ , read a new labeled

pattern s .
5. For each jkn , calculate),(jknsD . Then there are

two stations:
1) jmcs∈ , if k∃ and 0)),((<− jkjknsD γ and

)),((jkjkk
nsDminargm g−= . Go to Step 6.

2) For each jkn , S is a new core set where

0)),((>− jkjknsD γ . Then sc kj =+)1(and)1(+kjc is

inserted into the tree as the child of jmn where

),(jkk
nsDminargm = . Go to Step 7.

6. Adjust jkn when a new pattern is absorbed.
Then go to Step 8.

7. Let 1+= kk . Update jT by the updating
decision rule.

8. If the training set is Φ , then stop the algorithm.
Otherwise, go to Step 4.

The tree takes into account any noise and isolated
patterns. It does not discard any patterns and can
maintain the original state.

2.2 Adjusting core set
When s is absorbed into jkc , the new mean pattern

'
jkn , the new density center '

jkγ , and the new stability

parameter '
jkε of jkc are obtained. Considering the

above changes, the core set will be replaced by the
new jkc and jkε if and only if it gets smaller '

jkε in
'
jkn .
The adjusting process is elaborated as follows:
1. Obtain the new '

jkn of jkc .

2. Calculate the new '
jkε , and get the new

jkjkjk cyynmaxD ∈=),,(''γ . Calculate the new pattern

density of jkc with '
jkγ .

3. New jkn will be adjusted if the new density is

larger than before and jkjk εε <' .

Set '
jkjk εε = , '

jkjk nn = , and '
jkjk γγ = .

In this procedure, the stability parameter and the
pattern density are obtained and used as two
discriminate principles that are used to determine
whether to adjust the tree node and some related
information.

2.3 Inserting a new core set into a tree
When jjmjm Tccs ∈∀∉ , , s is inserted into jT as a

new core set)1(+jTjc . Before the inserting process,

)1(+jTjc must be initialized. Set the stability parameter

as
j

T

m jm

Tj T

j

j

∑ =
+ = 1

)1(

ε
ε , the radius

jjmTj Tmmin
j

,...,1,)1(==+ γγ , the new mean pattern

sn
jTj =+)1(, etc..

The inserting process is elaborated as follows:
1. Initialize the above two parameters for the new

core set)1(+jTjc .

2. Find)),((jkjkk
nsDminargm g−= , jTk ,...,1= .

3. Set jmc as the parent of)1(+jTjc .

4. Set 1+= jj TT .

5. Update jT by the incremental updating decision
rule.

In this procedure, first, these parameters are
initialized for a new core set formed from s by the
above mentioned dynamic adaptive strategy, which
can reduce the influence caused by the initial class tree
established based on the selection of random patterns
and avoid the pre-selected parameter that helps to
obtain the static tree structure. The predefined
parameter and the static structure do not reflect the
pattern distribution and can affect the classification
results easily.

2.4 Incremental updating tree structure
Retaining the original pattern distribution is the

goal of the paper. The shorter search path and higher
search speed can be obtained when the tree layout is
similar to the pattern distribution. In this paper, the
patterns distribution is reflected by the layout of
nodes.

The patterns center drifts when a new core set is
inserted into the tree. The tree structure is updated
dynamically in order to gradually obtain the
geometrical center. When the center of a tree is drift,

6 JUAN LI

the updating process must be invoked. In this paper,
the updating process is shown as follows.

1. Get the mean pattern ms of jT ’s nodes jkn .
2. Find)),((jkjkmk

nsDminargm g−= .

3. Set jmn as new jr of jT .

4. Insert other nodes into jT by the minimum

distance principle. A node n will be inserted into jT
as a child of one node whose distance is the minimum

distance between n and the current nodes of jT .
In the process, it is ensured that the tree nodes

layout is close to the pattern distribution through
updating the tree center step by step. Finally, the tree
center that is close to the geometrical center of
training patterns is obtained. The built tree structure
can retain the distribution of original training patterns
well. Due to the minimum distance cost tree, the
search path is shorter when the class label of the new
test pattern is found.

2.5 Pruning tree structure
In the above introduction, our goal is getting the

subset of the training set through these within and
between distances. How to obtain these distances and
use them?

First, for each class, the within distance can be
calculated by computing all distances among these
non-root nodes jjk Tkn ,...,1, = with jr for jT .

 1 (,)
()

1

jT
jk jj

j
j

D c r
D c e

T
β =−=

−

∑
 (5)

Taking)(jcD as a standard, the nodes which are

computed between 0, ≠kn jk and jr are divided into

two parts. One part is greater than)(jcD , the other is
not. The smaller part is near by the pattern center and
is useless than the other one. Thus the greater part is
reserved and the smaller one is removed. But when the
special ring distribution of the training set occurs, the
pruning step slow down or stop at pruning speed
according to the relation of the maximum and
minimum distances. To solve this problem, the
adjusting parameter)0(>ββ is used to speed up or
slow down pruning ratio. When 01 >> β , a high
within pruning ratio is got and the pruning operation is
accelerated. When 1≥β , a low within pruning ratio is
got and the pruning operation is slow down.

Second, the distances between each different label
class-pairs are obtained by Formula (6).

1
1 (, (,))

, , , 1,...,
i i
j

b T
b ik ik jk

ij
i

D n nn n c
D e i j i j C

T

−
== ≠ =

∑

 (6)

These core sets whose distance is larger than
ijD from iT are removed and the others are retained. It

ensures to remove these core sets that belong to the
same class. It would remove a lot of core sets that are
useless for two current classes and useful for other
categories. However, they can be retained by other

remove operations. The parameter j

i

b
b

e
−1

has the same
rule as β . For major class ic and minor class jc ,

1>
j

i

b
b

and 1

1
<

−
j

i

b
b

e , the between pruning operation is

speeded up. When minor class ic and major class jc ,

1<
j

i

b
b

and 1

1
>

−
j

i

b
b

e , the between pruning operation is

slow down and more patterns that belong to the minor
class are kept. Therefore, in the next step, the results
for every class are merged and the new tree structure
is got.

Finally, the retained core sets are merged for each
class tree. Then the patterns size is reduced and the
boundary character is maintained and strengthened.
The new tree structure is used as a TPKNN classifier.
In this paper, the pruning process is shown as follows.

1. Get the within distances of every
CjTj ,...,1, = .

2. For each class, Find these nearest neighbors
from other different classes.

3. Obtain the between distance matrix CCD × by

Formula (6).
4. Remove these core sets with larger distance by

the above strategy.
5. Merge the core sets for each class.
6. Obtain new working jb , jT .
In the process, the running result can reduce the

size of working reference patterns to decrease the
search time complexity and strength the boundary
factor and keep the approximate accuracy as used for
the original patterns. Of course, the pruning step can
reduce each class size whether major or minor classes.
To reduce the excessive pruning about the minor class,
these classes ratios are fully taken into account. When

the minor class tree was pruned, TPKNN uses j

i

b
b

e
−1

 to
expand or reduce the pruning magnitude. But TPKNN
only obtains the size reduction using a simple intuitive
method and approximate class boundaries.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 7

2.6 Using TPKNN classifier
Test patterns are classified by computing a

similarity score for each class and selecting the class
with the highest score. Pre-class similarity scores are
computed by a similarity function with the
information of the K nearest neighbors of the test
patterns in a class.

Algorithm2: Using the TPKNN model
Input: test pattern ts , jT of jC

1. Calculate and store),(jjk rnD for each jkn in an
increasing order.

2. Compute avgS .

3. For Cj ,...,2,1= do

4. For jTk ,...,2,1=
do

5. Find the right core set jkc with
),(tsnDmin jkk .

6. Calculate),(jkntsS .
7. Get the number of those core sets whose

avgjk SntsS >),(.
8. End for

9. Insert jkc into sq .
10. End for
11. Set K=the total number of those core sets

whose avgjk SntsS >),(, Cj ,...,2,1= , jTk ,...,2,1=
.

12. Find the set nnk of the K nearest patterns
in sq .

13 .For Cj ,...,2,1= do

14. ∑ ∈
=

nnkxj xtsSs),(

15. End for

16. Get jk of the patterns belonging to jc in nnk .

17. Return mc , where
j

j

j

j
S

b
k

minargm a)(=

.
In step 1-2, these distances will be used to

determine the appropriate core set of a test pattern.
avgS will be used to set the dynamic value K. In step

17, by using α)(
j

j

b
k

(10 ≤≤α) to fix js similarity

values, TPKNN can eliminate the classification results
which are not accurate because the number of class
patterns is too large or too small. The contribution to
the class score limited to a very small positive value,
rather to a lager negative score.

3 ALGORITHM ANALYSES
In this section, the computational complexity of

TPKNN and the time complexities of TPKNN and k-d
strategy are discussed.

3.1 Time-memory complexity analysis
Classical KNN requires no training at all. KNN

takes)1(θ training time consumption if K value is
predefined. The test complexity of KNN is very large
because the whole training patterns are searched a
time when each unlabeled pattern is classified. In
practice, some preprocessing steps, such as the step of
predefined K value, preprocessing documents, and
partition strategy, etc., have to be performed. It makes
more sense to preprocess training documents once as
part of the training phase rather than repeatedly
classifying a new test pattern.

In this paper, the partition strategy and dynamic K
value are adopted to reduce the test complexity of
KNN. Due to the tree structure building in advance,
the K nearest patterns can be easy obtained by
searching the high-density region with higher
similarity, rather than searching the whole training
space. So one of the main consumptions is the class
tree structure building process. Building tree consists
of single scan, core adjusting, and tree updating. The
single scan takes)(Nθ complexity. During this pass,

values jb , jkε , jkn , jkc are stored and jT is computed

several times, requiring)(Nθ storage.
For each training pattern, the adjusting process will

be invoked only once. When a new training pattern is
absorbed, the process needs to compare with other
patterns except for itself in a core set. Therefore, a
class jc takes)(2

jdθ time and)(jdθ storage space, so
this process takes)(Nθ time and)(Nθ space.

The updating process only refers to resetting these
tree nodes relationship when a new core set is

obtained. Then, it takes))((2
1∑=

C

i jTθ . Therefore, the

process takes computing complexity)(Nθ .
The Pruning process obtains WD and BD. For WD,

it takes)(jTθ for one class. So it takes)(
1∑ =

C

j jTθ

for all classes. For BD, it takes)(
,1∑ ≠=

×
C

jii ij TTθ for

one class, so it takes

))(())((2
11 ,1 ∑∑ ∑ == ≠=

=×
C

j j
C

j

C

jii ij TTT θθθ for all

classes.
To sum up, the training process takes computing

complexity))((2
1∑ =

C

j jTθ .

The test time complexity of a new unlabeled
pattern is linear complexity with the average number
of core sets. Although test time complexity

8 JUAN LI

takes)(
1

1

∑
∑ =

=

+
C

i jC

i j

T
T

Nθ , jT is a new tree that

removes some central and noise core sets after pruning
process and N is the number of new working search
space.

Although TPKNN is complicated, which involves
multiple passes on building the tree and takes more
time than traditional training KNN, it gets the faster
search speed than KNN. Meanwhile, it is clear that
TPKNN is a approximate linear time algorithm
based on above analysis. As we known, many
incremental classification algorithms, such as CNN
and ILVQ (Xu, Shen, & Zhao, 2012), etc., all have
approximate linear complexity. However, those
nonincremental classification algorithms all need scan
the whole training dataset several times and have
larger nonlinear complexities than that of these
incremental algorithms include TPKNN, ILVQ and
CNN. In the following section, the experimental
results show that TPKNN effectively reduces the size
of training set while maintaining the same level of
classification accuracy as KNN.

3.2 Discussion in TPKNN and k-d strategy
As mentioned above, TPKNN can partition the

search space and quickly find the K-nearest neighbors.
Although TPKNN can reduce the search space,
TPKNN causes the additional preprocessing memory-
time complexity, especially to the large size training
sets, due to building these class trees for each class. A
k-d tree is a space-partitioning data structure for
organizing points in a k-dimensional space and fast
obtain the appropriate search region that is close to the
special pattern.

A k-d tree is adopted in KNN to get the K-nearest
neighbors quickly through space dimension partition.
The k-d tree strategy does not need to build class tree
in advance or reduce the pattern size. A k-d strategy
does not need extra space cost to build tree and does
not need extra time cost to adjust tree structure.
Although TPKNN has the same building step with the
k-d tree strategy, it has its particular pruning step and
searching step.

Two strategies can be discussed according to the
size of training patterns. For small or middle training
sets, TPKNN can achieve building and pruning step
fast and has the approximate the same execute speed.
For large training sets, TPKNN needs more execution
time to build tree structure because it needs to adjust
tree structure incrementally. But TPKNN is faster over
k-d tree strategy due to TPKNN can reduce the size of
reference training set by it pruning step. So it is
worthless and unfair to compare the whole execute
time between TPKNN and k-d strategy. In the future,
how to improve the performance of the proposed
algorithm, in especial the building step of the
proposed algorithm is our next work.

4 EXPERIMENTAL EVALUATION
In Section 3, TPKNN has a lower complexity than

KNN, its testing time complexity is superior to KNN
meanwhile. To verify the effectiveness of the
proposed TPKNN approach, experiments are
performed on several datasets from the UCI repository
of machine learning databases
(http://archive.ics.uci.edu/ml/). From the repository,
the following balanced benchmark data sets are
selected in Table 1 and the other unbalanced data sets
are shown in Table 5. 20% patterns are selected
randomly as independent and additional testing
patterns in advance and take 5-fold cross-validation
for other patterns in order to obtain the average
performances of KNN and TPKNN.

Table 1. Characteristics of selected balanced datasets

DataSet Number Classes Features
ris 150 3 4

Wine 178 3 6
Mobile 205 3 26

WaveForm 5000 3 21
Spam 4601 2 57
Letter 20000 26 16

Statlog 6435 7 33

Table 2. Characteristics of selected unbalanced datasets

DataSet Number Classes Features MinClass
Balance 625 3 4 7.84%

Cmc 1473 3 9 22.61%
WallFollow 5456 4 23 6.01%

Heart 270 2 13 44.44%
Hepatitis 155 2 19 20.65%

Ionosphere 351 2 34 35.9%
Pima 768 2 8 34.9%

For unbalanced data sets, when the minor class is

important class, the performance metrics that is from
the information retrieval community is adopted. They
are based on a confusion matrix (see Table 3) that TP
is the number of true positives and TN is the number
of true negatives and FP is the number of false
positives and FN is the number of false negatives and

measureF −β (Köknar-Tezel & Latecki, 2011). These
numbers are used to define the matrix that evaluates
the generalized performance whether balanced or
unbalanced, such as recall, precision, and

measureF −β . The formulas for these metrics are
given below in Table 3.

Table 3. Confusion matrix

 Predicted positive Predicted negative
Actual positive TP FN
Actual negative FP TN

INTELLIGENT AUTOMATION AND SOFT COMPUTING 9

 FNTP
TPRecall
+

=

 FPTP
TPPrecision
+

=

 FNTNFPTP
TNTPAccuracy

+++
+

=

 RecallPrecision
RecallPrecisionF
+×

×
+= 2

2)1(
β

ββ

There are much useful information that can be
obtained from these above formulas. The precision is
the ability to identify for positive patterns and it is a
non-negative real number that is less than 1. In
general, a classification algorithm with the higher
precision has the higher recognition ability. The recall
is the number of TPs divided by the number of
examples that are actually positive. There is always a
trade-off between precision and recall, but for datasets
where the cost of false negatives is high, a high recall
value is preferable. The measureF −β reflects the
important factor among Precision and Recall .

In our experiments, these performances of TPKNN
with KNN are compared. In order to present the
experimental results, Precision , Recall ,
Accuracy and measureF −β to are utilized to evaluate

the performance measures. In this paper, Recall has
similar cost to Precision and set 1=β . In this paper,
the value of K is predefined to the classical KNN. In
Tables 4, 5 and 6, KNN’s experimental results are the
average values when K=3, 5 and 7. TPKNN has a
dynamic K value. Tables 5 and 6 show the comparison
of Precision , Recall , Accuracy and 1F between
TPKNN and KNN.

In addition, in order to show the reduction ability
of TPKNN, some prototype selection algorithms, such
as CNN, ENN, PSC and ILVQ, are selected to compare
against with it. To ENN, the parameter K is set by 3, 5,
and 7. To PSC, the parameter c is set by m6 and

m8 (m is the number of class labels in the training
dataset). To ILVQ, the parameters λ and AgeOld are

set by  n (n is the number of patterns in the
training dataset).

4.1 Experiment in the pattern reduce
Through the above pruning criteria, the pattern size

is reduced, which could be useful for reducing the
runtimes of the classification process, little
significantly reducing classification accuracy when
using origin patterns. In order to verify the efficiency
about the reduce criteria, the reducing validity and the
real working for classify in the reduced set are shown
through several special experiments. The results are
shown in Table 4.

Table 4. The reduced results for TPKNN

DataSet original scale node’s number reduced scale
ris 150 35 92

Wine 178 43 118
Mobile 205 56 140

WaveForm 5000 825 3725
Spam 4601 714 3509
Letter 20000 2764 15527

Statlog 6435 1023 4368
Balance 625 87 457

Cmc 1473 257 931
WallFollow 5456 845 4019

Heart 270 59 187
Hepatitis 155 41 96

Ionosphere 351 65 211
Pima 768 151 435

In Table 4, it can be obtained that the average

number of the tree nodes in building the class tree
before the pruning step and the average reduced
results after the pruning step. The performances of the
proposed building and pruning strategies are obtained.
TPKNN increases the additional space requirements
for building these class trees. For small DataSets, like
Iris, Wine, Mobile, .etc., the tree needs more tree
nodes than the middle and large datasets that include
WaveFrom, Spam, Letter, WallFollow, .etc. TPKNN
yields about 50% reducing ratio for the above original
training sets.

From Figure 1, the following conclusions can be
obtained. To CNN, its inherent disadvantage is the
sensitivity of the random pattern sequence. So the
disadvantage influent its results that are sensitive and
unstable. To PSC, although the different cluster
number can get the different reduction ratio, its results
are relative stable and better than CNN in 10 over 12.
To ILVQ, although it has the better fast incremental
processing performance and the superior average
compression ratio than the other compared algorithms,
its reduction results are relative unstable and worse
than PSC and TPKNN. To the small scale of datasets,
TPKNN needs more tree nodes to maintain the
distribution of dataset, so it has the unremarkable
reduction ratio than CNN and PSC. To the middle and
large scale of datasets, the pruning technology can
delete the majority patterns and reduce the scale of
dataset remarkably. It can obtain the better reduction
radios than PSC in Letter, WaveForm and Spam. So
TPKNN can be deemed to have the comparable
reduction ability than CNN and PSC and is an
effective compression algorithm.

4.2 Experiment in balanced sets
TPKNN is a classification algorithm for balanced

and unbalanced pattern set. Although many strategies
that are effective in unbalanced pattern set are adopted
by TPKNN, they lead to little influence on balanced
pattern set. In our paper, Formula (4) and Formula (6)
is less influence for balanced class classification due

10 JUAN LI

to the approximate same size for every class patterns
whether original or pruning scale. Due to the fact that

each class has the approximate same size,
S
bj and

j

i

b
b

e
−1

can obtain the approximate same influence on
class similarity measure and the pruning threshold to
each class set.

From Table 5, TPKNN can get better classification
results than KNN except Iris and Spam. Therefore, it is
an obvious conclusion that TPKNN has better
classification efficiency and can be well applied in
these selected balanced datasets. Furthermore, we
compare the classification accuracy results between
TPKNN and three compared algorithms in these
selected balanced datasets. TPKNN performs the best
on five of the seven datasets, and on the remaining
two datasets, has no significant advantage over other
compared algorithms.

4.3 Experiment in unbalanced sets
TPKNN can improve the accuracy in unbalance

class classification with small number of features.
Therefore, the experiment results indicate that TPKNN
can effectively avoid the impact of the size of the
training pattern set and the testing pattern set and has

high classification efficiency in these above datasets
(see Table 2).

In this paper, two amendatory penalty parameter
are adopted in order to improve the classification
recognition ability to the unbalanced situation. First,

j

i

b
b

e
−1

can prevent more large-scale reduce (worse-
case) that cause the less ratio in the working patterns

for minor class. Second,
S
bj is adopted to strength the

minor class’s influence on avgS and α)(
j

j

b
k

is used to get

each class’s similarity that takes into account not only
the k nearest neighbors, but also the global and local
pattern distribution whether major or minor class.

In Table 6, the results indicate that TPKNN can
effectively avoid the impact of the size of unbalanced
class training set and is effective to use the working
global and local class pattern size. It has high
classification efficiency in applying to the above
datasets. Based on Figure 3, the analysis conclusion is
similar to that of Figure 2.

On the whole, based on Table 4-6 and Figure 1-3,
It is obvious that TPKNN is a good algorithm and
compared PSC with ILVQ and on classification
accuracy and pattern reduction.

Figure 1. Reduction ratios obtained by compared methods.

Table 5. The tree node’s numbers and the reduced results for TPKNN

DataSet Precision Recall Accuracy F1-measure
KNN TPKNN KNN TPKNN KNN TPKNN KNN TPKNN

Iris 0.942 0.939 0.961 0.942 0.955 0.937 0.867 0.925
Wine 0.969 0.901 0.967 0.915 0.947 0.863 0.878 0.886

Mobile 0.893 0.836 0.858 0.843 0.891 0.831 0.832 0.827
WaveForm 0.873 0.881 0.903 0.896 0.912 0.901 0.887 0.862

Spam 0.925 0.838 0.945 0.821 0.959 0.812 0.873 0.819
Letter 0.901 0.833 0.921 0.822 0.905 0.809 0.845 0.817

Statlog 0.887 0.867 0.903 0.823 0.915 0.846 0.902 0.838

INTELLIGENT AUTOMATION AND SOFT COMPUTING 11

Figure 2. Classification accuracies obtained by CNN, PSC, ILVQ and TPKNN on balanced sets

Table 6. The results obtained by TPKNN and KNN on unbalanced sets

DataSet Precision Recall Accuracy F1-measure
KNN TPKNN KNN TPKNN KNN TPKNN KNN TPKNN

Balance 0.852 0.843 0.871 0.847 0.863 0.841 0.859 0.838
Cmc 0.694 0.735 0.807 0.812 0.846 0.793 0.751 0.796
WallFollow 0.877 0.855 0.882 0.867 0.879 0.857 0.897 0.869
Heart 0.816 0.802 0.835 0.818 0.827 0.809 0.823 0.814
Hepatitis 0.748 0.746 0.831 0.816 0.774 0.778 0.827 0.815
Ionosphere 0.851 0.867 0.864 0.873 0.857 0.885 0.859 0.867
Pima 0.757 0.732 0.793 0.754 0.818 0.725 0.792 0.749

Figure 3. Classification accuracies obtained by CNN, PSC, ILVQ and TPKNN on unbalanced sets

4.4 Experiment in TPKNN and SVM
In the section, the one-to-one SVM algorithm is

adopted and the multi-class SVM program is achieved
based on two SVM library functions from MATLAB.
TPKNN and SVM are repeated five times to achieve
the average results based on 5-fold cross-validation
and K=5. Although SVM can perform the best on ten
of the fourteen datasets, it need to adjust a SVM
MaxIter parameter from 15000 to more than 100000
and cause a heavy time cost. Based on Table 5-7, the
results indicate that TPKNN has the comparable
classification precision with KNN and SVM.

Figure 4. Runtimes spent by three methods using the middle
and small datasets

12 JUAN LI

Due to SVM spends much runtime that is more than
two hours in large-scale dataset. So Figure 4 only
contain the results in small-scale and middle-scale.
Based on Figure 4, it is obviously noticed that TPKNN
are the fastest methods than KNN and SVM. And
therefore, TPKNN can shorten the whole runtime that
includes preprocess step(SVM's training step or
TPKNN's partitioning and pruning step), classification
step, etc, while keeping the small precision loss.

4.5 Experiment in Semeion Handwritten Digit
Dataset

Although the above experiments have shown the
effectiveness of TPKNN, the Semeion Handwritten
Digit dataset, which has been widely adopted in many
research literatures, is chosen as the limited purpose
dataset to verify the practical problem solving ability
of the proposed algorithm. The dataset consists of
1593 semeion handwritten digits from around 80
persons with 256 features.

In order to simplify the process, the paper adopts
the same experiment environment for all of the
experiments. Table 8 gives the results for the
handwritten digits dataset. Although the reduction
ratio obtained by TPKNN is larger than that obtained
by CNN and ENN, the results in Table 8 still indicate
TPKNN can better deal with the special application,
have an edge in terms of the less running time, the
high classification accuracy and the more stable
reduction ratio.

In order to verify the effectiveness of the proposed
algorithm, the influence of high dimension, lager
feature number and the feature relationship are
ignored in this paper. So the datasets consisting of
patterns with high dimension or large feature number
are not listed here and two algorithms’ performance
cannot be evaluated in the field. As well all know, to
classify patterns with high dimension or larger
features, dimensionality reduction and effective
feature extraction must be adopted. TPKNN will be
verified on these datasets with high dimension or other
special statuses in the next step.

Table 7. The precision of TPKNN and SVM in 14 UCI datasets

DataSet Iris Wine Mobile WaveFo

Spam Letter Statlog Balance Cmc WallFollo

Heart Hepatiti

Ionospher

Pima
SVM 0.948 0.937 0.864 0.907 0.821 0.924 0.897 0.916 0.969 0.893 0.867 0.811 0.869 0.743

TPKNN 0.937 0.913 0.846 0.901 0.832 0.836 0.869 0.851 0.815 0.866 0.832 0.826 0.887 0.753

Table 8. Operational efficiency results obtained by compared algorithms on Semeion Handwritten Digit dataset

Algorithm KNN CNN ENN PSC ILVQ TPKNN
Accuracy 0.909 0.591 0.736 0.672 0.933 0.941

Reduction ratio 100 16.21 12.47 33.94 31.58 22.47
Runtime 756.39 214.34 595.28 456.92 372.35 274.74

5 CONCLUSION
THIS paper is focused on providing the enhancer

on fast search speed, a superiority of unbalanced
datasets, an incremental growth that is a simple
incremental learning algorithm than traditional KNN.
For each class, TPKNN constructs a tree and can
reduce a certain percentage of patterns roughly. Some
measures are taken to eliminate the impact of the
value of K through comparing the change in
classification accuracy and increase the search speed
by find the high similarly search set. The time
complexity is linear in the number of the training
patterns, and the same space complexity as KNN.
Experiments performed on unbalanced datasets that
TPKNN’s performance is at least comparable to, and
often better than that of these compared algorithms.

Although TPKNN needs more time consumption to
build tree structure and realize the pruning operation,
it can obtain a small-scale effective reference set
based on the original training set. The reference set
can reduce the storage and running consumption in the
classification process. In addition, TPKNN is very

easy to implement and can be taken as the
preprocessing of some classification algorithms. So
TPKNN is an efficient multi-class classifier and be
recommend as one of choices to evaluate on any
classification problem.

6 ACKNOWLEDGMENT
THIS work was supported by the Fundamental

Research Funds for the Central Universities (No.
GK201703086).

7 REFERENCES
Aha, D. W., Kibler, D., and Albert, M. K. (1991).

Instance-based learning algorithms, Machine
Learning, 6(1), 37-66.

Barandela, Ricardo, Ferri, F. J., and Sánchez, J.
S..(2005). Decision boundary preserving prototype
selection for nearest neighbor classification,
International Journal of Pattern Recognition and
Artificial Intelligence, 19(6): 787-806.

Fayed, H. A. & Atiya, A. F. (2009). A novel template
reduction approach for the k-nearest neighbor

INTELLIGENT AUTOMATION AND SOFT COMPUTING 13

method, IEEE Transactions on Neural Networks,
20(5), 890-896.

Franti, P., Virmajoki, O., and Hautamaki, V..(2006).
Fast agglomerative clustering using a k-nearest
neighbor graph. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28(11): 1875-
1881.

Friedman, J. H., Bentley, J. H., and Finkel, R. A.
(1977). An algorithm for finding best matches in
logarithmic expected time, ACM Transactions on
Mathematical Software, 3(3): 209-226.

Gong, A. & Liu, Y. (2011). Improved KNN
classification algorithm by dynamic obtaining K,
ECWAC 2011, Part I, CCIS 143: 320-324.

Han, E. H., Karypis, G., and Kumar, V. (2001). Text
Categorization Using Weight Adjusted k-Nearest
Neighbor Classification, Pacific-Asia Conference
on Knowledge Discovery and Data Mining in
Springer, Berlin, Heidelberg, 2035, 53-65.

Haro-García, A. D. & García-Pedrajas, N. (2009). A
divide-and-conquer recursive approach for scaling
up instance selection algorithms, Data Mining &
Knowledge Discovery, 18(3), 392-418.

Jagadish, H. V., Ooi, B. C., Tan, K. L., Yu, C., and
Zhang, R. (2005). Idistance:an adaptive b+-tree
based indexing method for nearest neighbor
search, ACM Transactions on Database Systems,
30(2), 364-397.

Khazaee, Ali & Ebrahimzadeh, Ataollah. (2013).
Heart arrhythmia detection using support vector
machines, Intelligent Automation and Soft
Computing, 19(1), 1-9.

Köknar-Tezel, S. & Latecki, L. J. (2011). Improving
svm classification on imbalanced time series data
sets with ghost points, Knowledge & Information
Systems, 28(1), 1-23.

Krishna, K., Thathachar, M. A. L. and Ramakrishnan,
K. R.. (2000). Voronoi networks and their
probability of misclassification, IEEE
Transactions on Neural Networks, 11(6): 1361-
1372.

Li, B., Qin, L., and Yu, S. (2004). An adaptive k-
nearest neighbor text categorization strategy, ACM
Transactions on Asian Language Information
Processing, 3(4), 215-226.

Li, X., Shi, D., Charastrakul, V., and Zhou, J. (2009).
Advanced p-tree based k-nearest neighbors for
customer preference reasoning analysis, Journal of
Intelligent Manufacturing, 20(5), 569-579.

Liu, Wei & Chawla, Sanjay. (2011). Class Condence
Weighted kNN Algorithms for Imbalanced Data
Sets. PAKDD'11 Proceedings of the 15th PAKDD,
V(II): 345-356.

Lumini, A. & Nanni, L. (2006). A clustering method
for automatic biometric template selection, Pattern
Recognition, 39(3), 495-497.

Mccallum, A., & Nigam, K. (1998). A comparison of
event models for naive bayes text classification, IN

AAAI-98 WORKSHOP ON LEARNING FOR
TEXT CATEGORIZATION, 62(2), 41-48.

Milli, M. & Bulut, H. (2017). The effect of
neighborhood selection on collaborative filtering
and a novel hybrid algorithm, Intelligent
Automation and Soft Computing, 23(2): 261-269.

Mollineda, R. A., Ferri, F. J., and Vidal, E. (2002). An
efficient prototype merging strategy for the
condensed 1-nn rule through class-conditional
hierarchical clustering, Pattern Recognition,
35(12), 2771-2782.

Olvera-López, J. A., Carrasco-Ochoa, J. A., and
Martínez-Trinidad, J. F. (2010). A new fast
prototype selection method based on clustering,
Pattern Analysis and Applications, 13:131–141.

Platt, John C. (2013). Using analytic QP and
sparseness to speed training of support vector
machines, Advances in neural information
processing systems, 557-563.

Raicharoen, T., Lursinsap, C., and Lin, F. (2005). A
divide-and-conquer approach to the pairwise
opposite class-nearest neighbor (POC-NN)
algorithm for regression problem, Pattern
Recognition Letters, 26(10), 1554-1567.

Rico-Juan, J. R., & Iñesta, J. M. (2012). New rank
methods for reducing the size of the training set
using the nearest neighbor rule, Pattern
Recognition Letters, 33(10), 1434-1434.

Sample, Neal, Matthew, Haines, Mark, Arnold, and
Purcell, Timothy. (2001). Optimizing Search
Strategies in k-d Trees, 5th WSES/IEEE World
Multiconference on (CSCC 2001).

Wang, J., Neskovic, P., and Cooper, L. N. (2006).
Neighborhood size selection in the k-nearest-
neighbor rule using statistical confidence, Pattern
Recognition, 39(3), 417-423.

Xu, Y., Shen, F., and Zhao, J. (2012). An incremental
learning vector quantization algorithm for pattern
classification, Neural Computing & Applications,
21(6), 1205-1215.

Zeng, Yong, Yang, Yupu, and Zhao, Liang. (2009).
Nonparametric classification based on local mean
and class statistics, Expert Systems with
Applications, 36(4): 8443-8448.

Zeng, Yong, Yang, Yupu, and Zhao, Liang. (2009).
Pseudo nearest neighbor rule for pattern
classification, Expert Systems with Applications,
36(2): 3587-3595.

Zhang, B. & Srihari, S. N..(2004). Fast k-nearest
neighbor classification using cluster-based trees,
IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(4): 525-528.

Zheng, B., Lee, W. C., and Lee, D. L. (2003). Search
K Nearest Neighbors on Air, Mobile Data
Management, Springer Berlin Heidelberg,
2003:181-195.

Zou, T., Wang, Y., Wei, X., Li, Z., and Yang, G.
(2014). An effective collaborative filtering via
enhanced similarity and probability interval

14 JUAN LI

prediction, Intelligent Automation and Soft
Computing, 20(4), 555-566.

8 NOTES OF CONTRIBUTORS

Juan Li received a Ph.D. degree from
School of Computer Science and
Technology, Xidian University, Xi’an,
China, in 2015. She is a lecturer at
School of Distance Education, Shaanxi
Normal University, Xi’an, China. Her
research interest covers data mining and
pattern recognition.

	1 INTRODUCTION
	2 TPKNN ALGORITHM
	2.1 Generation tree structure
	2.2 Adjusting core set
	2.3 Inserting a new core set into a tree
	2.4 Incremental updating tree structure
	2.5 Pruning tree structure
	2.6 Using TPKNN classifier

	3 ALGORITHM ANALYSES
	3.1 Time-memory complexity analysis
	3.2 Discussion in TPKNN and k-d strategy

	4 EXPERIMENTAL EVALUATION
	4.1 Experiment in the pattern reduce
	4.2 Experiment in balanced sets
	4.3 Experiment in unbalanced sets
	4.4 Experiment in TPKNN and SVM
	4.5 Experiment in Semeion Handwritten Digit Dataset

	5 CONCLUSION
	6 ACKNOWLEDGMENT
	7 REFERENCES
	8 NOTES OF CONTRIBUTORS
	Word Bookmarks
	MTBlankEqn
	page2

