
Intelligent Automation And Soft Computing, 2019 
Copyright © 2019, TSI® Press 
Vol. 25, no. 1, 49–63 

CONTACT  Awais Qasim  awais@gcu.edu.pk 
© 2019 TSI® Press 

Formal Modelling of Real-Time Self-Adaptive Multi-Agent Systems 

Awais Qasima, Syed Asad Raza Kazmib 
a,bDepartment of Computer Science, Government College University Lahore, Pakistan 

KEY WORDS:  Autonomic computing, Formal methods, Multi-agent systems, Real-time 
systems, Self-adaptation, TCOZ. 

1 INTRODUCTION 
FORMAL modelling is the process of constructing 

mathematical model of a software and hardware 
system at some level of abstraction. Its basic purpose 
is to utilize the unambiguous notation of formal 
methods to precisely specify and analyze the system, 
leading to its enhanced understanding. In this work we 
concentrate on the formal modelling of multi-agent 
systems with critical temporal constraints and self-
adaptive functionality. These real-time multi-agent 
systems by their working nature have high degree of 
unpredictability in their execution context and require 
extensive analysis at the design time before their 
implementation to ensure their correct functioning. 
This dynamism of real-time multi-agent systems has 
led to a new category of software systems called real-
time self-adaptive multi-agent systems. These systems 
possess the necessary knowledge to adapt their 
behavior in real-time in response to the environmental 
context. A computer software system that works 
autonomously in an environment to achieve its 
objectives can be categorized as an agent according to 
Jennings, et. al. (1998). These agents are expected to 
face unpredictable situations with their confined 
knowledge. In real-time environments these agents 
need to work collaboratively to achieve the common 

objective with minimum communication between 
them for timely response. A Real-Time Agent (RTA) 
is an agent working with hard temporal constraints. 
The correct functioning of these RTAs does not solely 
depend on whether they complete the task, rather it 
depends on whether they complete the task within the 
deadline or not. Previously these RTAs have been 
classified as hard real-time agents and soft real-time 
agents in Julian and Botti (2004). In soft real-time 
agents there is a slight marginal period for the 
fulfillment of their temporal restrictions. A Real-Time 
Multi-Agent system (RTMAS) is basically a multi-
agent system where at least one of the agent is real-
time in nature. Presently real-time systems like mobile 
robots, online auction systems, intrusion detection 
systems, control processes, etc are effectively 
modelled by multi-agent systems paradigm. With the 
ability of self-adaptation a multi-agent system 
possesses the necessary knowledge to re-organize 
itself according to the changes in environment and 
user requirements leading to better fault tolerance in 
case of node failure. In (Tesar (2016); Nair, et. al. 
(2015); De Lemos, et. al. (2013)) it has been argued 
that the development of autonomous physical systems 
with real-time constraints is a challenging task. With 
self-adaptive real-time multi-agent systems, the 
problem is more challenging as these systems have 

ABSTRACT 
The paradigm of multi-agent systems is very expressive to model distributed 
real-time systems. These real-time multi-agent systems by their working nature 
have temporal constraints as they need to operate in pervasive, dynamic and 
unpredictable environments. To achieve better fault-tolerance, they need to 
have the ability of self-adaptivity making them adaptable to the failures. 
Presently there is a lack of vocabulary for the formal modelling of real-time 
multi-agent systems with self-adaptive ability. In this research we proposed a 
framework named SMARTS for the formal modelling of self-adaptive real-time 
multi-agent systems. Our framework integrates MAPE-K interfaces, reflection 
perspective and unification with distribution perspective into the SIMBA agent 
architecture. For a precise semantic description of the constructs of our 
framework, we have used Timed Communicating Object-Z language. 



2 AWAIS QASIM & SYED ASAD RAZA KAZMI 

tight temporal constraints. Self-Adaptation should 
ensure that the overall system’s functionality is not 
effected. Formal modelling of these real-time multi-
agent systems will increase the confidence in the 
correctness of such systems. 

In the past formal specification and verification of 
these multi-agent systems have been done extensively 
but not for self-adaptive real-time multi-agent 
systems. Multi-agent systems have been formally 
specified in Li and Miao (2015) using Object-Z with 
trace semantics. They focused on the safety and 
liveness properties of the system. In Wooldridge 
(2000) verifiable semantics based on computational 
models have been proposed for e-agents 
communication. In Guerin (2002) a framework for 
communication among e-agents was presented. In 
particular, they used different languages for the 
specification of communication among e-agents. 
Herrero, et. al. (2013) have proposed a real-time 
multi-agent architecture for Intrusion Detection 
System called RT-MOVICAB-IDS. Their architecture 
ensures that the agent’s response (reflex or 
deliberative) conforms to temporal constraints of the 
system in case of an intrusion. In Guo and 
Dimarogonas (2015) a cooperative motion and task 
planning scheme for multi-agent systems has been 
proposed. According to their scheme the agent’s tasks, 
categorized with hard or soft deadlines are specified 
as Linear Temporal Logic formulas. The tasks with 
hard temporal constraints are always executed within 
the deadline and the agent tries to improve the result 
for soft deadline. El Kholy, et. al. (2015) presented an 
extension of Computation Tree Logic called RTCTLcc 
for the specification of real-time properties of multi-
agent systems. They argued that RTCTLcc can be used 
to formally model the interaction among agents with 
temporal constraints. Weyns and Calinescu (2015) 
have proposed a Tele Assistance System (TAS) to 
compare the effectiveness of different solutions for 
self-adaptive systems. Its another purpose is to 
enhance understanding among researchers in the 
domain of self-adaptive systems. In Johnson, et. al. 
(2015) a framework for component-based multi-agent 
systems has been proposed for their formal 
verification. Major entity of their approach is Agent 
Verification Engine (AVE). AVE handles the Belief-
Desire-Intention (BDI) agents to verify the complete 
system after a component has been added/removed 
from the system. Kl.s, et. al. (2015) proposed an 
extended MAPE-K feedback loop to deal with 
uncertainty in self-adaptive systems with predefined 
set of rules. Their approach requires a structured 
knowledge base comprising a global goal model, 
environment model, abstract system and current 
adaptation rules. With their approach new rules are 
generated at run-time and the adaptation logic itself 
becomes dynamic. Gascue, et. al. (2012) have 
integrated Model-driven engineering and agent-

oriented software development for the development of 
multi-agent systems. Ntika, et. al. (2014) have 
formally modelled autonomous multi-agent systems 
for the targeted drug delivery. They simulated the 
nanorobots using agent technology to demonstrate the 
future possibilities of drug delivery system using 
multi-agent systems. Graja, et. al. (2014) presented a 
Event-B based formal modeling technique for multi-
agent systems with self-organizing ability. Their 
technique uses a step-wise refinement for individual 
agent’s behavior, which in turn enable the verification 
of properties for the complete system. In Webster, et. 
al. (2014) a model checking technique for formally 
verifying the scheduling activities of robotic assistants 
for humans has been proposed by translating the 
requirements to the model checker’s language i.e 
PROMELA. A multi-agent system’s approach with 
self-adaptive ability for collaborative mobile learning 
has been proposed in de la Iglesia, et. al. (2015). They 
discussed the issues of node failure and resource 
availability due to system dynamism and environment 
and how to tackle it with self-adaptation. Mao, et. al. 
(2014) presented a two-layer approach for the 
development of self-adaptive multi-agent system in 
open environment. The two layers corresponds to self-
adaptation at the agent’s behavior level and agent’ 
organization level. Bonnet, et. al. (2015) proposed a 
self-adaptive multi-agent system for solving the 
satellite mission planning. They focused collective 
planning among agents for effective load balancing. 
Guo, et. al. (2013) have used self-adaptive multi-agent 
systems for solving the car pooling problem. Their 
approach is based on dynamic heuristics for the 
systems learning process. Self-adaptive multi-agent 
system’s and their interaction has been discussed in 
(Sanderson, et, al. (2013); Shan, et. al. (2015)). 
(Mac.as-Escriv, et. al. (2013); Abbas, et. al. (2015); 
Krupitzer, et. al. (2015); Baresi (2014); Puviani, et. al. 
(2015); Weyns and Andersson, (2013)) has presented 
an in depth analysis of the challenges, application and 
approaches of self-adaptive systems. Qasim, et. al. 
(2015a, b) have used mu-calculus and Timed-Arc 
Petri-nets for the formal specification and verification 
of multi-agent systems. In Weyns, et. al. (2012) a 
framework for the formal modelling of distributed 
self-adaptive systems has been proposed called 
FORMS, which provides different modelling elements 
and a set of relationships guiding the design of self-
adaptive software systems. (Qureshi, et. al. (2015); 
Alrashed, et. al. (2016)) have discussed a technique 
for efficient scheduling of real-time systems. In Iglesia 
and Weyns (2015) MAPE-K feedback loop based 
formal templates are specified in timed automata and 
targets the behavior and property aspects of self-
adaptive systems. Weyns, et. al. (2014) have 
comprehensively analyzed the self-adaptive software 
systems for their run-time assurances regarding the 
domain functionality under unpredictable situations. 



INTELLIGENT AUTOMATION AND SOFT COMPUTING  3 

Abbas, et. al. (2016) proposed an extension of the 
Architectural Reasoning Framework (eARF) to ensure 
that the design complies to the requirements. It has 
been argued in (Schaefer and Hahnle (2011); Gil de 
La Iglesia (2014)) that the formal methods should be 
used for the automated verification of safety critical 
and real-time systems to ensure their correct 
functioning.  

However very limited work has been done for the 
formal modelling of self-adaptive real-time multi-
agent systems. For complex systems, their formal 
specification is devised at the conceptual design phase 
before the system is implemented. Such specifications 
describe the semantics of the system being 
implemented without the concern for the 
implementation details and can be used as a basis for 
the verification and validation of the system’s 
functionality. Presently there is a lack of vocabulary 
for the formal modelling of real-time multi-agent 
systems with self-adaptive ability that will be 
expressive enough to capture their key architectural 
characteristics. In this paper we have proposed a 
framework for the formal modelling of real-time 
multi-agent systems named SMARTS (Self-adaptive 
Multi-Agent Real-Time Systems). Our framework 
makes use of the SIMBA agent architecture as 
proposed in Julian, et. al. (2002) and FORMS 
reference model for adaptation as proposed in Weyns, 
et. al. (2012). Basic agents of SMARTS are ARTIS 
agents, which will provide the system’s domain 
functionality. ARTIS agents have been designed to 
work in dynamic environments with temporal 
constraints. The proposed framework can be used for 
the architectural specification of any self-adaptive 
real-time multi-agent system. Our framework is FIPA 
(Foundation for Intelligent Physical Agents)-
compliant and supports communication with agents of 
other platform. FIPA works for the standardization of 
inter-agent and intra-agent communication for the 
multi-agent systems paradigm. A system’s designer 
should thus decide which features the ARTIS agents 
are going to have because communication with other 
agent platforms may prevent this real-time behavior. 
For readability we elaborate SMARTS framework 
using UML notations in this paper. For a precise 
semantic description of the constructs we use Timed 
Communicating Object-Z (TCOZ) language. 

The rest of this paper is divided as follows. In 
section 2 some preliminaries for entity descriptions of 
SIMBA agent architecture are explained. Section 3 
describes the proposed SMARTS framework. In 
section 4 we formally specify the SMARTS 
framework using TCOZ. Section 5 concludes the 
paper. 

2 SIMBA AGENT ARCHITECTURE 
SIMBA agent architecture was proposed for 

RTMAS in Julian, et. al. (2002). It is an extension of 
the ARTIS agent architecture proposed in Botti, et. al. 
(1999). Basically this architecture is formed by the 
collaboration of multiple ARTIS agents deployed in 
an environment with strict temporal restrictions. 
Major advantage of SIMBA system is that we can 
have different types of agents in our system to handle 
the non-critical activities. This architecture guarantees 
that all the agents will meet their temporal constraints 
by the use of an off-line schedulability analysis. Each 
ARTIS agent has a number of In-agents (internal 
agents) which actually executes the tasks to achieve its 
goals. An In-agent is another agent possessing the 
necessary knowledge to solve a specific problem. 
These In-agents periodically performs a particular 
task. In-agents are classified as critical or non-critical 
depending on their temporal restrictions. Every In-
agent has two layers namely reflex layer and real-time 
deliberative layer. The reflex layer only provides a 
minimal quality response and the deliberative layer 
provides an improved response. The mandatory phase 
of an ARTIS agent consists of reflex layers of all the 
In-agents it has. Similarly, the real-time deliberative 
layers of all the In-agents makes up the optional phase 
of an ARTIS agent. A reflex layer is absent in a non-
critical In-agent and only the real-time deliberative 
layer is present. There is a Control Module in every 
ARTIS agent that controls the execution of all the In-
agents that belongs to it. Major advantage of SIMBA 
architecture is that it is FIPA-compliant and allows 
communication between diverse agent platforms. 
FIPA-compliance requires an agent architecture to at 
least implement the Agent Communication Language 
specification and Agent Management specification. 
The Agent Management specification requires an 
agent architecture to implement a Directory Facilitator 
(DF) and an Agent Management System (AMS). DF 
will provide yellow-pages service to the agents 
involved. AMS will maintain the addresses of all the 
agents registered in the platform (white-pages 
service). The agent communication language 
specification enforces a standard message format to be 
used in the agent communication. Within every 
SIMBA architecture there is a single SIMBA 
communicator agent, which serves as a mediator agent 
for inter and intra-platform agent communication. 

3 PROPOSED SMARTS FRAMEWORK 
AN overview of the SMARTS’s primitives is 

provided in Figure 1. A TCOZ specification of the 
framework is provided in the next section. The shaded 
entities are part of the SMARTS framework whereas 
the un-shaded entities are taken from the FORMS 
reference model Weyns, et. al. (2012). As shown in 
the figure a distributed self-adaptive system is a self-



4 AWAIS QASIM & SYED ASAD RAZA KAZMI 

adaptive system comprising one or more local self-
adaptive multi-agent systems. A local self-adaptive 
multi-agent system comprises multiple local managed 
systems, self-adaptive units and a single SIMBA 
communicator agent. A local managed system 
provides domain functionality of the system in the 
form of ARTIS agents. An ARTIS agent corresponds 
to single local managed system. A local managed 
system is a subsystem comprising multiple In-agents, 
a set of domain models, a single dynamic agent 
organization and a single control module. The entities 
Monitor Agent, Analyze Agent, Plan Agent and 
Execute Agent corresponds to the MAPE-K interfaces 
that we have proposed in Qasim and Kazmi (2016). 

A model is a representation describing entities of 
interest in the physical or conceptual world. A domain 
model contains representations of entities necessary 
for the provision of required features. An environment 
comprises attributes and processes and corresponds to 
both conceptual and physical entities. An attribute is 
any observable characteristic of the environment. A 
process represents any activity that can modify the 
attributes of the environment. As described previously 
an In-agent is an agent configured to solve a particular 
problem. It periodically performs a specific task. An 
ARTIS agent will autonomously work in an 
environment and execute the required tasks with the 
help of In-agents by reading from and writing to the 
domain model. A self-adaptive unit is a subsystem 
responsible for implementing the adaptation process 
in a computing system. It can manage multiple local 
managed systems and self-adaptive units. It will 
manage another self-adaptive unit in case of more than 
one reflective levels in the system. It comprises 
multiple reflection models and reflective 
computations. A reflection model is similar to the 
meta-data and provides concrete instances of entities 
needed for the adaptation. It corresponds to the 
architectural models of the system. A reflective 
computation is analogous to an In-agent but it acts and 
reasons about the reflection models. It is responsible 
for environment monitoring to determine the required 

adaptations. A reflective computation is not capable of 
changing the environment directly and needs support 
from the other agents for doing so. A local reflective 
computation is basically a reflective computation with 
coordination mechanism. The coordination 
mechanism provides an ability so that the agents 
providing domain functionality and the local reflective 
computations can coordinate with other agents in the 
same layer. 

SMARTS’s coordination mechanism consists of a 
coordination protocol and a coordination model. A 
coordination model contains information like 
coordination partners, their roles, ongoing 
interaction’s information, entity representations 
needed by the local reflective computation to 
communicate with other self-adaptive unit’s reflective 
computations. The coordination protocol is a set of 
rules for governing the communication among the 
entities. For communication within the system, TCOZ 
channel communication will be utilized. The channel 
will be an abstraction for communication (message 
exchange or shared tuple spaces) between entities. The 
dynamic agent organization manages groups of the 
agents in the form of master/slave relationship. An 
agent in the role of master will manage the dynamics 
of its organization by communicating with all the 
slave/master agents of neighboring organizations. By 
default, an ARTIS agent is member of a single 
organization. Multiple ARTIS agents can however 
merge in one organization depending upon 
circumstances. 

4 TCOZ SPECIFICATION OF SMARTS 
FRAMEWORK 

AN environment will keep on updating itself after 
certain time units. With each update event the new 
attributes are available at the output channel. We 
formally specify the environment entity below. 
Concrete models can have different types of 
representations. We specify the models as generic 
constant. In domain model the 
EnvironmentRepresentation specifies the attributes of 
the environment.  
 



INTELLIGENT AUTOMATION AND SOFT COMPUTING  5 

 

Figure 1.  Proposed SMARTS Framework. 

Environment_______________ 
 

  attributes : ℙ Attribute 

  processes : ℙ  Process 

  c : chan 

   

     INIT 

  attributes ≠ ∅  

  processes ≠ ∅  

 
     Update 
  Δ attributes 
  Δ processes 
  c! = attributes 

 

MAIN ≙  μT ⦁ (Update ⦁ WaitUntil 1s); T 
 

Model [Representation]]_________ 
rep : ℙ  Representaion 
 
rep ≠ ∅  
 

 
     Domain model is defined as a passive class. The 
channel c is used for communication with any active 
class.  
 

 DomainModel_____________________ 
Model[EnvironmentRepresentation] 

map : ℙ  Attribute ↔ 

EnvironmentRepresentation 

envr : chan 

 
dom map ⊆  { attrs : ℙ  Attribute | attrs ⊆ 

envr?.attributes} 

ran map = { r : EnvironmentRepresentation 

| r ∈ rep} 
 

We specify a passive class named Task to represent 
any task in the system. Each task requires a single 
resource for certain duration without which it cannot 
execute. For brevity we have only handled the case of 
one resource per task but the approach can be 
extended for multiple resources per task. The 



6 AWAIS QASIM & SYED ASAD RAZA KAZMI 

ReflexExecute operation models the execution of a 
task when the agent executing it does not have extra 
time to improve the result. The DeliberativeExecute 
models the execution of a task when the task has soft 
deadline. The variable length represents the expected 
amount of time, which the task will take to execute. In 
SMARTS length is considered as the deadline before 
which the task should have been executed. margin 
represents additional time for soft deadline. In case a 
margin is available for a task then the 
DeliberativeExecute process will be executed. 
 
TaskType ::= REFLEX | DELIBERATIVE 
AgentType ::= INAGENT | ARTISAGENT 
 

Task___________________ 
 
 resource : Resource 
 length : T 
 margin : ℕ  
 
      INIT 
  length > 0 
 
     ReflexExecute 
    Δlength 
    δ = length 
   length′ = 0 
 
      DeliberativeExecute 
   Δlength 
  δ = length + margin  
  length′ = 0 
 
 

Each agent can be uniquely identified by an id. We 
define the type id as 
ID == N 

No In-agent can occupy more than one resource at 
given anytime. An execution of a task necessitates that 
the In-agent executing it has the required resource for 
the needed duration. This condition is specified as a 
predicate in task execution. An In-agent might get 
multiple requests to solve the same type of tasks. To 
ensure their autonomous working every In-agent is 
specified as an active object. The set tasks represent 
those tasks for which the In-agent has been designed. 
The set agents represent those In-agents which come 
under the same ARTIS agent. The alloc maps 
resources to the In-agents. Since an active class can 
only communicate with other active classes via 
channels so an In-agent has a channel c to 

communicate with the ARTIS agent. The id represents 
unique identifier of the agent. 

InAgent____________________________ 
 
 id : ℕ  
 tasks : ℙ  task 
 alloc : (Resource × T ) → InAgent 
 c : chan 
 margin : ℕ   
 state : ℙ  State 
 type : AgentType 
  
 ∀ r1 , r2 : Resource; t : T r1 ≠ r2 ⦁ 
 alloc (self , r1 , t) ≠ alloc (self , r2, t) 
 
    INIT 
 type = INAGENT 
 request = ∅  
 
   CanExecuteDeliberately 
 task? : Task 
 task? ∈ tasks ∧ 
 ∃ currentTime == clock.time; l == 
 task?.length; r == task?.resource ⦁ 
 currentTime..currentTime + l + margin 
 ⊆  {t : T | alloc(r , t) = self } 
 
 ExecuteTask ≙  [task? : Task] ⦁ 
 ((CanExecuteDeliberately ∧ 

 
task?.DeliberativeExecute) 
   (!CanExecuteDeliberately ∧ 
 task?.ReflexExecute)) 
 MAIN ≙  μT ⦁ [tasks ≠∅ ] ⦁ 
 ExecuteTask; T 
 

The DF provides yellow-pages service to the platform 
agents. Agents of the platform register with the DF. 
This allows one agent to trace other agents that 
provide the services it requires. The method 
RegisterARTISAgent will register an ARTIS agent 
with the DF. There is only one DF in each platform. 
We define a service as an entity having name and type 
only. 
 



INTELLIGENT AUTOMATION AND SOFT COMPUTING  7 

ServiceDescription_______________ 
  
    INIT 
 type ≠ ∅  
 name ≠ ∅  
 
                                  
 type : ℕ   
 name : ℕ                                    
 

DirectoryFacilitator___________ 
 
 inagents :ℙ  InAgent 
 artisagents : ℙ  ARTISAgent 
 services : ℙ  ServiceDescription 
 c : chan 
 
      Init 
  requests =  ∅  
 
          RegisterInAgent′_____ 
 agent? : InAgent 
 services? : ℙ  ServiceDescription 
 inagents′ = inagents ∪ {agent} 
services′ = services ∪ {agent.services} 

 

        RegisterARTISAgent′_________ 

 agent? : ARTISAgent 

 services? : ℙ  ServiceDescription 

 artisagents′ = artisagents ∪ {agent} 

 services′ = services ∪ {agent.services} 

 

 PublishServices ≙  c!services → SKIP 

 SearchService ≙  [name : N; type : ℕ ] ⦁ 

 ( ∃ s : services | s.name = name ^ 

 s.type = type) ⦁ c!s → SKIP 

 RegisterInAgent ≙  [agent? : InAgent; 

 services? : ℙ  ServiceDescription] ⦁ 

 RegisterInAgent′ → SKIP 

 RegisterARTISAgent ≙  [agent? : 

 ARTISAgent; services? : ℙ  

 ServiceDescription] ⦁ 

 RegisterARTISAgent′ → SKIP 

 MAIN ≙  μ T ⦁ (PublishServices  

 SearchService  RegisterInAgent  

 RegisterARTISAgent); T 
 

AMS is responsible for providing the white-pages 
service and maintains the identifiers of all the agents 
in the platform. It ensures that each agent in the 
platform has a unique identifier. It performs several 
management tasks as well, such as creating and 
destroying agents. There is only one AMS in each 
platform and all the agents must be registered in the 
AMS. The operation AddARTISAgent and AddInAgent 
will create an instance of a ARTIS agent and In-agent 
respectively with unique identifiers. The lsamas 
represents a channel with which the AMS will 
communicate with 
LocalSelfAdaptiveMultiAgentSystem. The method 
CreateNewAgent takes as input the agent type and 
creates an instance with unique identifier. The method 
RemoveAgentByIdentifier removes an agent from the 
platform by taking the agent identifier and type. 



8 AWAIS QASIM & SYED ASAD RAZA KAZMI 

AgentManagementSystem___________ 
 
 inagents : InAgent 
 artisagents : ARTISAgent 
 lsamas : chan 
 
      AddARTISAgent′______ 
  agent : ARTISAgent 
  agent : CreateNewAgent[type = ARTIS] 
  artisagents′ = artisagents ∪  {agent} 
  #artisagents′ = (# artisagents + 1) 
     AddInAgent′___________ 
 agent : InAgent 
 agent : CreateNewAgent[type = INAGENT] 
 inagents′ = inagents ∪ {agent} 
 #inagents′ = (# inagents + 1) 
 
       RemoveARTISAgent′_____ 
  id? : ℕ 
 RemoveAgentByIdentifier[type = 
 ARTIS, id] 
 #artisagents′ = (#artisagents - 1) 
 
       RemoveInAgent′__________ 
  id? : ℕ 
  
  RemoveAgentByIdentifier[type = 
  INAGENT,  id] 
  #inagents′ = (#inagents - 1) 
 
 RemoveARTISAgent ≙ [id? : N, result : 
 BOOL] ⦁ RemoveARTISAgent′ → 
 lsamas!(result) → SKIP 
 RemoveInAgent ≙ [id? : N, result : 
 BOOL] ⦁ RemoveInAgent′ → lsamas!(result) 
 → SKIP 
 AddARTISAgent ≙ [agent! : ARTISAgent] 
 ⦁ AddARTISAgent′ → lsamas!(agent) 
 → SKIP 
 AddInAgent ≙ [agent! : AddInAgent] 
 ⦁ AddInAgent′ → lsamas!(agent) → SKIP 
 MAIN ≙ μ T ⦁ (RemoveARTISAgent  
 RemoveInAgent  AddARTISAgent  
 AddInAgent); T 

SIMBA communicator agent is a mediator agent 
and makes the communication possible with agents of 
other platform. It is basically equivalent to Message 
Transport Service (MTS) supporting the 
communication of FIPA ACL (Agent Communication 
Language) messages between agents of inter-agent 
platform and intra-agent platform. The channels df, 
ams are used to communicate with DF and AMS of 
the agent platform respectively. The mts represents 
mediator agents of other agent platforms with which 
SIMBA communicator agent is interacting. The 
SIMBA communicator agent can send message to any 
agent within the agent platform by using the method 
SendMessageWithinAgentPlatform. It can also 
communicate with any agent of other platform by 
using the method SendMessageAcrossAgentPlatform. 
 

SIMBACommunicatorAgent_______ 
 
 df , ams : chan 
 mts : ℙ MessageTransportService 
 inagents : ℙ InAgent 
 artisagents : ℙ ARTISAgent 
 
      INIT 
 inagents ≠ ∅  ∧  artisagents ≠ ∅  
 
     SendMessageWithinAgentPlatform′ 
 message? : Message 
 sender? : AgentType 
 receiver? : AgentType 
 (sender ∈ inagents ∨ sender ∈ 
 artisagents) 
 ^ (receiver ∈ inagents ∨ receiver 
 ∈ artisagents) 
 SendMessage(sender, receiver , message); 
 
      SendMessageAcrossAgentPlatform′ 
 message? : Message 
 sender? : AgentType 
 receiver? : AgentType 
 mts? : MessageTransportService 

 
 



INTELLIGENT AUTOMATION AND SOFT COMPUTING  9 

{∃ agent ∈ inagents | agent = (sender 
 ∨ receiver )} 
 ∨ {∃ agent ∈ artisagents | 
 agent = (sender ∨ receiver )} 
 SendMessage(sender, receiver , mts, 
 message); 
 
SendMessageWithinAgentPlatform ≙ [ 
message? : Message; sender? : Agent; 
receiver? : Agent] 
⦁ SendMessageWithinAgentPlatform′ 
→ SKIP 
SendMessageAcrossAgentPlatform ≙ 
[message? : Message; sender? : Agent; 
receiver? : Agent; 
mts? : MessageTransportService] ⦁ 
SendMessageAcrossAgentPlatform′ → 
SKIP 
MAIN ≙ μ T ⦁ 
(SendMessageWithinAgentPlatform 

 SendMessageAcrossAgentPlatform); T 
 
 

Each ARTIS agent manages multiple In-agents 
providing the domain functionality. It includes a set of 
domain models. There should be at least one In-agent 
for every ARTIS agent. We use a function SUM which 
will return the sum of all the tasks of In-agents that 
any ARTIS agent has. 

 ARTISAgent__________________ 
 
 id : ℕ 
 agents : ℙ InAgent 
 models : ℙ DomainModel 
 tasks : ℙ Task 
 c : chan 
 type : AgentType 
 state : ℙ State 
 cm : ControlModule 
 readAction : ℙ DomainModel ×  ℙ  State → 
 ℙ State 

 
writeAction : ℙ State × ℙ DomainModel → 
 ℙ DomainModel 
 perceiveAction : ℙ State × Context → 
 ℙ State 
 effectAction : ℙ State × Context → Context 
 dom tasks ⊆ SUM(∀ agent : agents ⦁ 

 agent.tasks) 
 
        INIT 
 agents ≠ ∅, models ≠ ∅, tasks ≠ ∅ 
 type = ARTISAGENT 
 
      AddTask′ 
 Δmodels, Δtasks 
 t? : Task 
 dm? : ℙ DomainModel 
 dm! : ℙ DomainModel 
 agent? : InAgent 
 dm? ⊆ models ^ tasks′ = tasks ∪  {t} ^ 
 dm! = writeAction(state, dm?) ^ 
 models′ = models∖ dm? ∪ dm! 
 agent.tasks′ = agent.tasks′ ∪ {t} 
 
        RemoveTask′ 
 Δmodels, Δtasks 
 t? : Task 
 dm? : ℙ DomainModel 
 dm! : ℙ DomainModel 
 agent? : InAgent 
 tasks ≠∅ ^ dm? ⊆ models ^ 
 tasks′ = tasks∖ {t} ^ 
 dm! = writeAction(state, dm?) ^ 
 models′ = models∖ dm? ∪ dm! 
 agent.tasks′ = agent:tasks′∖ {t} 
 
AddTask ≙ [t? : Task; agent? : InAgent; 
dm? : ℙ DomainModel] ⦁ c?(t, agent, dm) 
→ cm.AnalyzeTask → AddTask′ 
→ c!(dm) → SKIP 
RemoveTask ≙ [t? : Task; agent? : 
InAgent; dm? : ℙ DomainModel] ⦁ 
c?(t, agent, dm) → RemoveTask′ 
→ c!(dm) → SKIP 
MAIN ≙ μ T ⦁ (AddTask  
RemoveTask); T 
 
 

ARTIS agent has a single control module and 
controls the execution of tasks by the In-agents that 
belongs to it. It is divided into two sub-modules 
namely Reflex server (RS) and the Deliberative Server 
(DS). RS controls the execution of components with 
critical temporal restrictions. DS controls the 
execution of deliberative components. Control 



10 AWAIS QASIM & SYED ASAD RAZA KAZMI 

Module ensures that only tasks that can be executed 
are added to the system. 
 

ControlModule________________ 
 
 result : BOOL 
 artis : chan 
 rs : ReflexServer 
 ds : DeliberativeServer 
 
 AnalyzeTask ≙ [task? : Task] ⦁ artis?task 
 → (ds.CanDeliberativeExecute ^ 
 task .type = DELIBERATIVE ^ 
 artis!:result)  (rs:CanReflexExecute ^ 
 task .type = REFLEX ^ artis!.result) 
 
 

ReflexServer_________________ 
 
c : chan  
 
      CanReflexExecute 
 task? : Task 
 ∃ currentTime == clock.time; l == 
 task?.length; r == task?.resource ⦁ 
 currentTime..currentTime + l ⊆ 
 {t : T | alloc(r , t) = self } 
 
 

 
DeliberativeServer_________________ 

 
 c : chan 
 margin : ℕ 
 
         CanDeliberativeExecute 
 task? : Task 
 ∃ currentTime == clock.time; l 
 == task?.length; r == task?.resource ⦁ 
 currentTime..currentTime + l + margin 
 ⊆ {t : T | alloc(r , t) = self } 
 
 

A computation is an activity that manages its own 
state. Its current status is represented by attribute state. 

Computation__________________ 
 
 state : ℙ State 
 compute : ℙ State ↔ ℙ State 
 dom compute = {s : ℙ State | s ⊆ state} 
 
        INIT 
 state ≠∅ 
 
       ComputationOp 
 Δstate 
 Δcompute 
 s?, s! : ℙ State 
 s! = compute(s?) ^ 
 state′ = state ∖  s? ∪ s! 
 
 

A reflection model is similar to meta-data and 
provides concrete instances of entities needed for 
adaptation. It corresponds to architectural models of 
the system. 

ReflectionModel___________________ 
Model [ ReflectionModelRepresentation] 
 

A reflective computation is analogous to an In-
agent but it acts and reasons about the reflection 
models. It is responsible for environment monitoring 
to determine the required adaptations. A reflective 
computation is not capable of changing the 
environment directly and needs support from the 
agents for doing so. 
 

[ReflectiveComputation[LMS]]___________ 
 
Computation 
read : ℙ ReflectionModel × ℙ State → ℙ State 
writeAction : ℙ State × ℙ ReflectionModel 
→  ℙ ReflectionModel 
perceiveAction : Context × ℙ State → ℙ State 
senseAction : ℙ LocalManagedSystem × ℙ 
State → ℙ State 
adaptAction : ℙ LocalManagedSystem × ℙ 
State → ℙ LocalManagedSystem 
triggerAction : ℙ State × ℙ 
ReflectiveComputation[LocalManagedSystem] 
→ ℙ ReflectiveComputation 
[LocalManagedSystem] 
 
 



INTELLIGENT AUTOMATION AND SOFT COMPUTING  11 

A coordination mechanism contains coordination 
protocol and a coordination model. 
 

[CoordinationMechanism[Protocol,Model]]_ 
 
 protocol : Protocol 
 model : Model 
 

 
A local managed system contains multiple domain 

models and an ARTIS agent. Each local managed 
system corresponds to a single ARTIS agent. 

 [LocalManagedSystem[Protocol;Model]]_ 
 
agent : ARTISAgent 
models : ℙ DomainModel 
 

 
A local reflective computation is basically a 

reflective computation with coordination mechanisms. 
 

 [LRC[LMS, Protocol,Model]__________ 
 
Computation 
coordinationMechanism : 
CoordinationMechanism[Protocol,Model] 
readAction : ℙReflectionModel× 
ℙ State → ℙ State 
writeAction : ℙ State × ℙ 
ReflectionModel → ℙ ReflectionModel 
triggerAction : ℙ State × ℙ 
LocalReflectiveComputation 
[LocalManagedSystem, Protocol,Model] → 
ℙ LocalReflectiveComputation 
[LocalManagedSystem, Protocol, Model] 
senseAction : ℙ LocalManagedSystem × 
ℙ State → ℙ State 
adaptAction : ℙ LocalManagedSystem × 
ℙ State →  ℙ LocalManagedSystem 
perceiveAction : Context × ℙ State → 
ℙ  State 
 
 

A self-adaptive unit is a reflective subsystem 
comprising reflection models and local reflective 
computations. It is defined as an active class 
continuously monitoring the system. 
 

SelfAdaptiveUnit______________ 
 
 state : ℙ State 
 models : ℙ ReflectionModel 
 computations : ℙ 
 LRC[LMS, Protocol, Model] 
 c : chan 
 readAction : ℙ ReflectionModel × 
 ℙ State → ℙ State 
 writeAction : ℙ State × 
 ℙ ReflectionModel → ℙ ReflectionModel 
 triggerAction : ℙ State × 
 ℙ LRC[LMS, Protocol, Model] → 
 ℙ LRC[LMS, Protocol, Model] 

 
∀ c : computations ⦁ 

 dom c.readAction = {m : ℙ 

 ReflectionModel | m ⊆ models ⦁ 

 (m, c.state)} ^ 

 dom c.writeAction = {m : ℙ 

 ReflectionModel | m ⊆ models ⦁ 

 (c.state, m)} ^ 

 dom c.triggerAction = {ct : ℙ 

 LRC[LMS, Protocol, Model] 

 | ct ⊆ computations∖ {c} ⦁ (c.state, ct)} 

 Read ≙ [m? : ℙ ReflectionModel; state? : 

 ℙ State] ⦁ c?(m, state) → readAction → 

 c!(state) → SKIP 

 Write ≙ [state? : ℙ State; m? : ℙ 

 ReflectionModel] ⦁ c?(state,m) → 

 writeAction → c!(m) → SKIP 

 Trigger ≙ [state? : ℙ State; ct : ℙ LRC 

 [LMS, Protocol, 

 Model]] ⦁ c?(state, ct) → triggerAction 

 → c!(ct) → SKIP 

 MAIN ≙ μ T ⦁ (Read  Write  Trigger ); 

 T 

 

 



12 AWAIS QASIM & SYED ASAD RAZA KAZMI 

A local self-adaptive multi-agent system contains 
multiple local managed systems and self-adaptive 
units. Local managed systems can be sensed and 
adapted by the self-adaptive units. It will contain a list 
of all the ARTIS agents and In-agents. It also contains 
SIMBA communicator agent for communication with 
any agent within the platform or outside the platform. 
An agent is added to the multi-agent system via AMS 
which assigns a unique identifier to every agent. 
Similarly, an agent is removed from the multi-agent 
system via AMS. 
 

LocalSelfAdaptiveMultiAgentSystem_____ 
 
 localManagedSystems : ℙ LMS 
 [Protocol,Model] 
 selfAdaptiveUnits : ℙ SelfAdaptiveUnit 
 [LMS, Protocol, Model] 
 sca : SIMBACommunicatorAgent 
 
 
 
 ∀ sau : selfAdaptiveUnits; lrcSense; 
 lrcAdapt : LocalReflectiveComputation ⦁ 
 lrcSense ∈ sau : computations ^ lrca ∈ 
 sau : computations ^ 
 dom lrcSense.sense = {lms : ℙ LMS 
 | lms ⊆ localManagedSystems ⦁ 
 (lms, lrcSense.state)} ^ 
 dom lrcAdapt.adapt = {lms : ℙ LMS 
 | lms ⊆ localManagedSystems ⦁ 
 (lms, lrcAdapt.state)} 
 
 

Finally, a distributed self-adaptive system contains 
multiple local self-adaptive multi-agent systems. We 
use external choice operator between all the active 
classes to allow a choice of behavior according to the 
environmental events. 
 

DistributedSelfAdaptiveSystem_________ 
 
 localSelfAdaptiveSystems : ℙ 
 LocalSelfAdaptiveMultiAgentSystem 
 [Protocol, Model] 
 MAIN ≙ μ T ⦁ (Environment  
 InAgent   DirectoryFacilitator  
 AgentManagementSystem 
  SIMBA Communicator Agent  
 ARTIS Agent  SelfAdaptiveUnit); T 
 
 

5 DISCUSSION AND FUTURE WORK 
THE proposed SMARTS framework can be used 

for the formal architectural specification of any real-
time multi-agent systems and it is an extension of the 
FORMS reference model as proposed in Weyns, et. al. 
(2012). The major limitation of the FORMS reference 
model is that it is not directly applicable to the multi-
agent systems. Our framework uses MAPE-K 
interfaces Qasim and Kazmi (2016), reflection 
perspective and unification with distribution 
perspective of the FORMS reference model into the 
SIMBA agent architecture and overcomes this 
limitation. It is to be noted that in our framework the 
agents themselves are not adaptable, but the multi-
agent system as a whole is adaptable. The framework 
provides a clear distinction between those 
computations providing the domain functionality and 
the reflective computations (computations needed for 
adaptation). We intend to modify the ARTIS agents in 
future to make them adaptable by integrating the 
MAPE-K loops as proposed in Kephart and Chess 
(2003) into them. State of the art in the self-adaptive 
software systems recommend the use of formal 
methods. We used TCOZ for the formal specification 
of our framework and utilized the expressiveness of Z-
language and Process Algebra. The active class and 
passive class concept of TCOZ makes it easier for the 
designer to differentiate the entities responsible for 
capturing the agents state and entities responsible for 
dynamic interaction. The provision of communication 
channels in TCOZ greatly simplify the class 
definitions, class referencing, enhancing their 
modularity. For future work we intend to work on the 
issues of communication between multiple self-
adaptive systems using diverse agent platforms. Also 
TCOZ is a specification language so no system 
properties like Liveness, Safety, etc. can be verified at 
the design time. We intend to overcome this problem 
by using some other formal modelling technique like 
Petri-nets. 



INTELLIGENT AUTOMATION AND SOFT COMPUTING  13 

6 CONCLUSION 
In this paper we have shown how self-adaptive 

real-time multi-agent systems can be formally 
modelled. We proposed a formal framework named 
SMARTS for the formal modelling of such systems. 
The multi-agent systems paradigm has been in use for 
the ubiquitous and pervasive environments and they 
are seen as a key enabling technology to model critical 
components of a large number of distributed 
applications. To ensure a high degree of reliability of 
these systems their formal modelling is necessary as 
state of the art in the self-adaptive software systems 
recommend the use of formal methods. A 
comprehensive review of the related works reveals 
that there is a lack of research on consolidating design 
knowledge for real-time self-adaptive multi-agent 
systems. Hence there is a dire need of formal 
vocabulary that can be used for the conceptual design 
of any real-time multi-agent system with self-
adaptation. SMARTS incorporates various aspects of 
self-adaptation and the domain functionality is 
handled by the SIMBA real-time agent architecture. 
The framework as a whole is FIPA-compliant and the 
run-time schedulability ensures that the tasks meet 
their deadline when deployed. The research conducted 
will help to formally model self-adaptive real-time 
multi-agent systems at the design time. 

DISCLOSURE STATEMENT 
No potential conflict of interest was reported by 

the authors. 

REFERENCES 
Abbas, H. A., Shaheen, S. I., & Amin, M. H. (2015). 

Organization of multi-agent systems: an overview. 
arXiv preprint arXiv:1506.09032. 

Abbas, N., Andersson, J., Iftikhar, M. U., & Weyns, 
D. (2016, April). Rigorous architectural reasoning 
for self-adaptive software systems. In Software 
Architectures (QRASA), 2016 Qualitative 
Reasoning about (pp. 11-18). IEEE. 

Alrashed, S., Alhiyafi, J., Shafi, A., & Min-Allah, N. 
(2016). An efficient schedulability condition for 
non-preemptive real-time systems at common 
scheduling points. The Journal of 
Supercomputing, 72(12), 4651-4661. 

Baresi, L. (2014, September). Self-adaptive systems, 
services, and product lines. In Proceedings of the 
18th International Software Product Line 
Conference-Volume 1 (pp. 2-4). ACM. 

Bonnet, J., Gleizes, M. P., Kaddoum, E., Rainjonneau, 
S., & Flandin, G. (2015, September). Multi-
satellite mission planning using a self-adaptive 
multi-agent system. In Self-Adaptive and Self-
Organizing Systems (SASO), 2015 IEEE 9th 
International Conference on (pp. 11-20). IEEE. 

Botti, V., Carrascosa, C., Julián, V., & Soler, J. 
(1999). Modelling agents in hard real-time 
environments. Multi-Agent System Engineering, 
63-76. 

de la Iglesia, D. G., Calderón, J. F., Weyns, D., 
Milrad, M., & Nussbaum, M. (2015). A Self-
adaptive multi-agent system approach for 
collaborative mobile learning. IEEE Transactions 
on Learning Technologies, 8(2), 158-172. 

De Lemos, R., Giese, H., Müller, H. A., Shaw, M., 
Andersson, J., Litoiu, M., and Weyns, D. (2013). 
Software engineering for self-adaptive systems: A 
second research roadmap. In Software 
Engineering for Self-Adaptive Systems II (pp. 1-
32). Springer Berlin Heidelberg. 

El Kholy, W., El Menshawy, M., Laarej, A., Bentahar, 
J., Al-Saqqar, F., & Dssouli, R. (2015, October). 
Real-Time Conditional Commitment Logic. In 
International Conference on Principles and 
Practice of Multi-Agent Systems (pp. 547-556). 
Springer, Cham. 

Gascueña, J. M., Navarro, E., & Fernández-Caballero, 
A. (2012). Model-driven engineering techniques 
for the development of multi-agent systems. 
Engineering Applications of Artificial Intelligence, 
25(1), 159-173. 

Gil de la Iglesia, D. (2014). A formal approach for 
designing distributed self-adaptive systems 
(Doctoral dissertation, Linnaeus University Press). 

Graja, Z., Migeon, F., Maurel, C., Gleizes, M. P., & 
Kacem, A. H. (2016). A stepwise refinement-
based development of self-organising multi-agent 
systems: application to the foraging ants. 
International Journal of Agent-Oriented Software 
Engineering, 5(2-3), 134-166. 

Guerin, F. (2002). Specifying agent communication 
languages (Doctoral dissertation, University of 
London). 

Guo, M., & Dimarogonas, D. V. (2015). Multi-agent 
plan reconfiguration under local LTL 
specifications. The International Journal of 
Robotics Research, 34(2), 218-235. 

Guo, Y., Goncalves, G., & Hsu, T. (2013). A multi-
agent based self-adaptive genetic algorithm for the 
long-term car pooling problem. Journal of 
Mathematical Modelling and Algorithms, 1-22. 

Herrero, Á., Navarro, M., Corchado, E., & Julián, V. 
(2013). RT-MOVICAB-IDS: Addressing real-time 
intrusion detection. Future Generation Computer 
Systems, 29(1), 250-261. 

Iglesia, D. G. D. L., & Weyns, D. (2015). MAPE-K 
formal templates to rigorously design behaviors 
for self-adaptive systems. ACM Transactions on 
Autonomous and Adaptive Systems (TAAS), 10(3), 
15. 

Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). 
A roadmap of agent research and development. 



14 AWAIS QASIM & SYED ASAD RAZA KAZMI 

Autonomous agents and multi-agent systems, 1(1), 
7-38. 

Johnson, K., Sinha, R., Calinescu, R., & Ruan, J. 
(2015, August). A multi-agent framework for 
dependable adaptation of evolving system 
architectures. In Software Engineering and 
Advanced Applications (SEAA), 2015 41st 
Euromicro Conference on (pp. 159-166). IEEE. 

Julian, V., & Botti, V. (2004). Developing real-time 
multi-agent systems. Integrated Computer-Aided 
Engineering, 11(2), 135-149. 

Julian, V., & Botti, V. (2004). Developing real-time 
multi-agent systems. Integrated Computer-Aided 
Engineering, 11(2), 135-149. 

Kephart, J. O., & Chess, D. M. (2003). The vision of 
autonomic computing. Computer, 36(1), 41-50. 

Klös, V., Göthel, T., & Glesner, S. (2015, August). 
Adaptive knowledge bases in self-adaptive system 
design. In Software Engineering and Advanced 
Applications (SEAA), 2015 41st Euromicro 
Conference on (pp. 472-478). IEEE. 

Krupitzer, C., Roth, F. M., VanSyckel, S., Schiele, G., 
& Becker, C. (2015). A survey on engineering 
approaches for self-adaptive systems. Pervasive 
and Mobile Computing, 17, 184-206. 

Li, Z., & Miao, H. (2015, June). Formal specification 
and reasoning for situated multi-agent system. In 
Computer and Information Science (ICIS), 2015 
IEEE/ACIS 14th International Conference on (pp. 
455-460). IEEE. 

Macías-Escrivá, F. D., Haber, R., Del Toro, R., & 
Hernandez, V. (2013). Self-adaptive systems: A 
survey of current approaches, research challenges 
and applications. Expert Systems with 
Applications, 40(18), 7267-7279. 

Mao, X., Dong, M., & Zhu, H. (2014). A two-layer 
approach to developing self-adaptive multi-agent 
systems in open environment. International 
Journal of Agent Technologies and Systems 
(IJATS), 6(1), 65-85. 

Nair, R. R., Behera, L., Kumar, V., & Jamshidi, M. 
(2015). Multisatellite formation control for remote 
sensing applications using artificial potential field 
and adaptive fuzzy sliding mode control. IEEE 
Systems Journal, 9(2), 508-518. 

Ntika, M., Kefalas, P., & Stamatopoulou, I. (2014). 
Formal modelling and simulation of a multi-agent 
nano-robotic drug delivery system. Scalable 
Computing: Practice and Experience, 15(3), 217-
230. 

Puviani, M., Cabri, G., Capodieci, N., & Leonardi, L. 
(2015, January). Building self-adaptive systems by 
adaptation patterns integrated into agent 
methodologies. In International Conference on 
Agents and Artificial Intelligence (pp. 58-75). 
Springer, Cham. 

Qasim, A., & Kazmi, S. A. R. (2016). MAPE-K 
interfaces for formal modeling of real-time self-

adaptive multi-agent systems. IEEE Access, 4, 
4946-4958. 

Qasim, A., Kazmi, S. A. R., & Fakhir, I. (2015). 
Executable semantics for the formal specification 
and verification of E-agents. Indian Journal of 
Science and Technology, 8(16), 1. 

Qasim, A., Kazmi, A. R., & Fakhir, I. (2015). Formal 
specification and verification of real-time multi-
agent system using timed arc Petri nets. Advances 
in Electrical and Computer Engineering, 15(3), 
73-8. 

Qureshi, M. B., Alrashed, S., Min-Allah, N., 
Kołodziej, J., & Arabas, P. (2015). Maintaining 
the Feasibility of Hard Real–Time Systems with a 
Reduced Number of Priority Levels. International 
Journal of Applied Mathematics and Computer 
Science, 25(4), 709-722. 

Sanderson, D., Pitt, J., & Busquets, D. (2013, 
November). Interactions of Multiple Self-Adaptive 
Mechanisms in Multi-agent Systems. In 
Proceedings of the 2013 IEEE/WIC/ACM 
International Joint Conferences on Web 
Intelligence (WI) and Intelligent Agent 
Technologies (IAT)-Volume 02 (pp. 301-308). 
IEEE Computer Society. 

Schaefer, I., & Hahnle, R. (2011). Formal methods in 
software product line engineering. Computer, 
44(2), 82-85. 

Shan, L., Du, C., & Zhu, H. (2015, July). Modeling 
and Simulating Adaptive Multi-Agent Systems 
with CAMLE. In Computer Software and 
Applications Conference (COMPSAC), 2015 IEEE 
39th Annual (Vol. 2, pp. 147-152). IEEE. 

Tesar, D. (2016). Next Wave of Technology. 
Intelligent Automation & Soft Computing, 22(2), 
211-225. 

Webster, M., Dixon, C., Fisher, M., Salem, M., 
Saunders, J., Koay, K. L., & Dautenhahn, K. 
(2014). Formal verification of an autonomous 
personal robotic assistant. Proc. AAAI FVHMS, 
74-79. 

Weyns, D., & Andersson, J. (2013, July). On the 
challenges of self-adaptation in systems of 
systems. In Proceedings of the First International 
Workshop on Software Engineering for Systems-
of-Systems (pp. 47-51). ACM. 

Weyns, D., Bencomo, N., Calinescu, R., Camara, J., 
Ghezzi, C., Grassi, V., and Mirandola, R. (2017). 
Perpetual assurances in self-adaptive systems. 

Weyns, D., & Calinescu, R. (2015, May). Tele 
assistance: A self-adaptive service-based system 
examplar. In Proceedings of the 10th International 
Symposium on Software Engineering for Adaptive 
and Self-Managing Systems (pp. 88-92). IEEE 
Press. 

Weyns, D., Malek, S., & Andersson, J. (2012). 
FORMS: Unifying reference model for formal 
specification of distributed self-adaptive systems. 



INTELLIGENT AUTOMATION AND SOFT COMPUTING  15 

ACM Transactions on Autonomous and Adaptive 
Systems (TAAS), 7(1), 8. 

Wooldridge, M. (2000). Semantic issues in the 
verification of agent communication languages. 
Autonomous agents and multi-agent systems, 3(1), 
9-31. 

7 NOTES ON CONTRIBUTORS 
Awais Qasim received the B.S. 
degree in Computer Science from 
the Punjab University College of 
Information Technology (PUCIT), 
Lahore, Pakistan, in 2009, M.S. 
degree in Computer Science from 
Lahore University of Management 
Sciences (LUMS), Lahore, 

Pakistan, in 2011 and the Ph.D degree in Computer 
Science from Government College University, Lahore, 
Pakistan, in 2017. He has worked as a Software 
Engineer in Industry and developed a number of 
iPhone and Android applications. He joined the 
Computer Science Department, Government College 
University in 2012 as a Lecturer. He has published 9 
research papers in peer-reviewed ISI indexed journals. 
His research interests include model checking, multi-
agent systems, real-time systems, self-adaptive 
systems. 
 

Syed Asad Raza Kazmi received 
the M.S. degree in Computer 
Science from Sir Syed Engineering 
University, Karachi, Pakistan. He 
received the Ph.D. degree in 
Computer Software and Theory 
from State Key Laboratory of 
Computer Science Institute of 

Software Chinese, Academy of Sciences, Beijing, 
China, in 2008. He is currently working as an 
Assistant Professor/In-charge at the Computer Science 
Department, Government College University, Lahore. 
He conducts research in the area of Formal Methods 
specifically using techniques like LTL, CTL, modal 
mu-calculus to specify the properties of reactive and 
concurrent systems for the verification of properties 
like Safety, Liveness, Deadlock, etc. He has also 
worked in the area of formal modeling of real-time 
multi-agent systems, model checking, compositional 
reasoning, fixed point theory and has written over 10 
peer-reviewed ISI indexed journals. 
 
 

 


	1 INTRODUCTION
	2 SIMBA Agent Architecture
	3 Proposed SMARTS Framework
	4 TCOZ Specification of SMARTS Framework
	5 Discussion and Future Work
	6 conclusion
	Disclosure Statement
	references
	7 Notes on contributors

