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1 INTRODUCTION 
TOTAL knee arthroplasty (TKA) is a common and 

cost-effective surgical treatment for knee osteoarthritis 
(OA), rheumatoid arthritis (RA), and other conditions, 
which replaces a damaged knee joint by an artificial 
one (Murray et al., 2014). The fabricated knee joint, 
also known as a TKA prosthesis, consists mainly of 
the femoral component, the tibial component, and an 
insert. There are various types of knee prostheses, of 
which three types, cruciate retaining, posterior 
stabilized, and cruciate substituting, are well-known to 
surgeons. Because of the anatomical structure and 
functional variability of the knee joint from patient to 
patient, there should be an appropriate TKA implant 
for each individual for patient-specific treatment. 
Currently, the surgeon has to select a TKA operation 
method and an implant product model without 

predicting the outcome quantitatively. Nonetheless, 
the outcome of TKA depends strongly on the TKA 
prosthesis, surgical technique, expertise of the 
clinician, and postoperative physiotherapy (Berend et 
al., 2013; Victor et al., 2010). Thus, the prediction of 
postoperative knee function before surgery is essential 
for the best surgical planning and patients’ satisfaction 
(Choi et al., 2016) as well.   

A non-invasive method has recently become more 
commonly used for knee kinematic analysis than an 
invasive method (Hiroshi et al., 2012; Tei et al., 2012) 
because of patient safety. Using the first type, one can 
investigate implanted knee kinematics (i.e., 
postoperative knee functions) using 2-D/3-D image 
registration technique with 2-D X-ray digital 
radiograph movies and 3-D computer-aided design 
(Yamazaki et al., 2004; Kobashi et al., 2005) and 3-D 
magnetic position sensors (Tomaru et al., 2010) only 
after the surgery. Some studies have investigated the 
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relationship between preoperative and postoperative 
knee kinematics after the surgery to evaluate surgical 
performance and/or other clinical issues (Seon et al., 
2011; Onsem et al., 2016; Hasega et al., 2015). 
Although these methods are essential for such 
applications, they are inappropriate for predicting the 
postoperative knee kinematics of a new patient prior 
to surgery, which has been done in this work. 
Additionally, a predictive model has recently attracted 
substantial attention among researchers for predicting 
surgical outcomes (Reinbolt et al., 2009; Sridevi et al., 
2017, Miao et al., 2017, Galarranga et al., 2017). 

The present work proposes predictive models for 
forecasting postoperative implanted knee kinematics 
by using regression analysis to calculate a mapping 
function from preoperative to postoperative 
kinematics. The principal contribution of this work is 
to predict the postoperative knee functions of a new 
patient before surgery by measuring the preoperative 
knee functions for possible application in patient-
specific knee surgical planning. Two prediction 
methods (without and with principal component 
analysis (PCA), followed by generalized linear 
regression, GLR, analysis) along with their sub-
classes are proposed, and they were evaluated by a 
leave-one-out cross-validation (LOOCV) procedure. 
Furthermore, the methods were also optimized for best 
prediction precision with respect to different 
predictive variables. Another objective was to show 
the possibility of predicting postoperative kinematics, 
as well as investigating the effectiveness of PCA for 
dimension reduction and GLR analysis for predictive 
model construction. A part of this article has appeared 
previously in Hossain, et al. (2016). 

2 SUBJECTS AND MATERIALS 

2.1 Subjects 
THIS study analyzed knee joint functions of 35 OA 

patients (11 males, 24 females; mean±standard 
deviation (SD) age 74.08±6.90, range 57-83 years). 
The TKA operations of all subjects were carried out 
individually by two experienced surgeons, using 
posterior stabilized (PS) type knee implants (Vega, 
Aesculap, B/Braun, Melsungen, Germany). This study 
was approved by the local Ethics Committee, and each 
subject provided informed consent. 

2.2 Data acquisition 
Basically, knee joint functions are described by 

three rotation angles and three translations. These 
angles, namely flexion-extension (f-e), valgus-varus 
(v-v), and internal-external (i-e), as well as the 
translations called medial-lateral (M-L), anterior-
posterior (A-P), and superior-inferior (S-I) are defined 
along the X, Y and Z axes, respectively, following the 
Grood and Suntay coordinate system (Grood & 
Suntay, 1983), shown in Figure. 1. 

 

 

Figure 1.  Knee joint function definition. 

The A-P translations and the i-e rotations were 
measured for every 10° f-e angle (i.e., 10°, 20°, 
...100°) by passively flexing the knee joint between 
flexion angles of 10° and 100° with the patient in a 
supine position under a non-load-bearing condition, 
hereafter known as the A-P and i-e patterns, 
respectively. The measurements were taken both 
before and after the TKA surgery of every patient in 
the operating room of Hyogo College of Medicine 
(Hyogo, Japan) between May 14, 2014 and November 
27, 2015 using a CT-free navigation system 
(OrthoPilot, B/Braun, Aesculap, Melsungen, 
Germany) for implant positioning and limb alignment. 
The before and after measurements were confirmed as 
the preoperative and postoperative knee functions, 
respectively. Figure 2 shows examples of measured 
preoperative (dash dotted black color) and 
postoperative (dash dotted blue color) knee kinematics 
(both A-P and i-e patterns) of a patient. There were 35 
pairs of samples for each type of pattern (total 70 pairs 
of patterns) in the dataset. Each pair comprised one 
preoperative and one postoperative kinematic data of a 
patient; one example is shown in Figure 2. Kinematic 
patterns of each sample of all subjects were 
investigated carefully, with non-linearity and discrete 
(A-P/i-e values available for every 10º f/e angle only) 
features found among preoperative and postoperative 
data in all pairs. It was also observed that the 
kinematic pattern varied from subject to subject, i.e. 
there was no direct correlation among them that could 
be represented by any generic algebraic equation. 
Therefore, to grasp the inter-individual variation, a 
statistical technique (i.e. PCA) combined with a 
machine learning method (i.e. GLR) was used to 
predict surgical outcomes of TKA patients, where, 
during training the models, the preoperative and 
postoperative data were assigned as predictive (input 
data) and response (output data) variables, 
respectively (details explained in Section 4). 

3 PROPOSED METHODS 

3.1 Data pre‐processing 
CONSIDER a pre-operative kinematic pattern of 

training data of size, Ns×Nm, as shown in (1), 
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(a) A‐P pattern 

 

(b) i‐e pattern  

Figure 2.  Examples of knee kinematics data of a test patient before (dash dotted black color) and after (dash dotted blue color) 
the surgery.
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where Ns is the number of subjects, Nm is the number 
of measurement points, and ݂

ሺ݆ሻ	denotes reading 
(i.e., A-P translation, i-e rotation value) of subject i at 
measurement point, j. Thus, an entire row corresponds 
to a preoperative kinematic pattern of one subject. 
Similarly, postoperative kinematic training data of the 
same subjects are also organized as shown in (2).  

ࢌ ൌ

ۉ

ۈ
ۇ

ଵ݂
ሺ1ሻ ଵ݂

ሺ2ሻ ⋯ ଵ݂
ሺܰሻ

ଶ݂
ሺ1ሻ ଶ݂

ሺ2ሻ … ଶ݂
ሺܰሻ

⋮ ⋮ ⋱ ⋮
ே݂ೞ
ሺ1ሻ ே݂ೞ

ሺ2ሻ ⋯ ே݂ೞ
ሺܰሻی

ۋ
ۊ

 (2) 

3.2 Model construction 
Firstly, preoperative and postoperative kinematics 

training data (Eq. 1 & Eq. 2) were projected 
independently into a lower dimensional space using 
PCA (scaling is recommending if the range of values 
in the variables is larger) (Jollifee, 2002). In the 
following context, let principal components (PCs), 
principal axes (PAs), and mean kinematic pattern be 
  of sizeࣆ  of size Nm×Nm, andࢂ	 ,of size Ns×Nmࣅ
Nm×1, respectively, for preoperative training data, and 
let ࣅ, ࢂ, and ࣆ be the same parameters and size 
defined above but corresponding to the postoperative 
training data. 

Let us propose a prediction method for dimpr (< 
Nm) PCs at preoperative kinematics, and dimpo PCs at 
postoperative kinematics, but retaining at least a 95% 
cumulative contribution ratio (CCR), i.e., dimpo 
predictive models are constructed from PCs of first 
dimpr PCs. Thus, the first predictive model (say, glm1) 

based on a general linear model (GLM) (McCullagh & 
Nelder, 1989) is constructed between the lower 
dimensional PCs of first dimpr PAs of pre- and first PC 
of post-operative kinematic training data. The 
regression model is represented by (3),  

ࢅ ൌ  (3) ࢼࢄ
where predictor variables, 
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are constructed by first dimpr PCs taken from ࣅ. ݔ, 
is the jth PC of subject i; here i = 1, 2, … Ns, j= 1, 2, … 
dimpr. Y is represented by (5), obtained from the 1st PC 
taken from ࣅ; where i = 1,2, … Ns.  
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்
 is a vector of regression 

coefficients and must be estimated from the training 
data. Statistically significant predictor variables could 
be tested during training the model by Akaike’s 
Information Criterion (AIC) (Akaike, 1974) to 
optimize the model.  

So far, the first regression model (glm1) was 
constructed by relating first dimpr preoperative PCs as 
predictive variables with the first postoperative PCs as 
response variables. Similarly, dimpo regression models 
(glm2,… ݈݃݉ௗ

) were constructed by considering 

subsequent 2nd, 3rd, .., dimpo
th postoperative PCs as 

response variables without any change in predictor 
variables. Note that different preoperative PC 
dimensions, dimpr=1, 2, ..., Nm-1, with postoperative 
PC, dimpo= 1st or 2nd or …, Nm

th-1, retaining at least 
95% CCR were tested to optimize prediction precision 
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and finally chosen to train the model for kinematics 
prediction of a new patient.  

3.3 Kinematic prediction 
A new patient’s same type preoperative kinematic 

pattern ( ݂௪
 ) is projected to a lower-dimension of 

size, dimpr by PCA as shown in (6), 
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 (6) 

where j = 1, 2, …, dimpr.  
Then, postoperative PCs of the new patient are 

estimated using ࣅ௪
  from corresponding trained 

models, (glm1, glm2,… ݈݃݉ௗ
), and are combined 

as shown in (7),  
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Finally, the postoperative kinematic pattern of the 
patient is predicted using estimated ࣅ௪

  as shown in 
(8). 
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where i = 1, 2, …, Nm. Thus, the maximum dimpr 
dimensions at preoperative and dimpo dimensions at 
postoperative are used for predicting the kinematic 
pattern. 

4 EXPERIMENTAL METHODS AND 
EVALUATION 

4.1 Training data organization 
THIS study used two types of knee functions, A-P 

translation vs. f-e angle (A-P pattern) and i-e rotation 
vs. f-e angle (i-e pattern) from a dataset of 35 pairs of 
samples for each type of pattern (total 70 samples) to 
train the models to assess the proposed methods, and 
since the knee functions are supposed to be associated 
with each other, the training data matrices were 
organized according to the variables used for training 
the models, as follows, 

(Individual mapping, IM) Predicting the A-P or i-e 
pattern by training the predictive models with 
preoperative and postoperative data of either A-P or i-
e type only (9). 

/ࢌ
 ൌ ,ሺ݅ࢌ ݆ሻ 
/ࢌ
 ൌ ,ሺ݅ࢌ ݆ሻ 

(9) 

where subject’s number, i=1, 2, … 35 and 
measurement points, j= 1, 2, … 10. 	ࢌ/

  and 

/ࢌ	
 were defined as the preoperative (predictor 

variables) and postoperative (response variables) A-P 
(or i-e) kinematic training data matrices, respectively. 

(Combined to individual mapping, CIM) Predicting 
the A-P or i-e pattern by gathering data of both 
patterns (A-P and i-e) of preoperative kinematic data 

as predictor variables and corresponding postoperative 
A-P or i-e kinematic data as response variables (10).  
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where ࢎ


 is preoperative training data (predictive 
variables) by gathering both A-P and i-e patterns, of 
size Ns-by-2×Nm (35×20); ࢎ

 and ࢎ/
  are predictor 

and response variables of preoperative and 
postoperative data for predicting A-P or i-e patterns, 
respectively.  

(Combined mapping, CM) Predicting A-P and i-e 
patterns by gathering preoperative and postoperative 
data of both patterns (A-P and i-e) as predictor 
variables and response variables, respectively (11). 
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where the parameters were defined the same as before, 
with a difference; in this case, response variables 
ࢎ)

) were defined by combining postoperative data 
of both patterns, ࢌ

  and ࢌ
.  

4.2 Performance assessment 
For each kinematic pattern, the prediction 

performance of the methods was tested by the RMSE 
(12) and the cc between the original ( ݂

௧௦௧) and the 
predicted kinematics pattern ( ݂

ௗ) to observe 
prediction error and their linear relationship, 
respectively. Here, ܰ௧௦ is the total number of data 
points both in the original and predicted patterns.  
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The proposed method was evaluated by a cross-
validation test, where part of the data is usually used 
for training the model, and the rest of the data is used 
for prediction. In this work, the LOOCV procedure 
(Duda et al., 2000; Miller, 1974) was used in our 
datasets of 35 patterns from each type: when a patient 
s was tested, both preoperative and postoperative 
kinematics data of patient s were removed from the 
training set. Then, generalized linear regression was 
performed with data of the other remaining patients, 
and, subsequently, the kinematics data of patient s 
were tested on the trained model. This process was 
repeated for all patients in the database. Finally, to 
compare the methods, the mean RMSE and mean cc 
were calculated for each type of kinematic pattern.  

5 EXPERIMENTAL RESULTS 
THE methods were implemented in the open 

source software library R Ver. 3.2.2 (R core team, 
2016).  Different PCA dimensions (1 to 10 and/or 20) 
were tested corresponding to the best prediction 
precision (high mean correlation coefficient (cc) and 
low mean root mean squared error (RMSE)) for 
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Figure 3.  Output of the methods for a test patient obtained by the proposed methods, PB and NP. Dash‐dotted black, blue, red 
(PB), and green (NP) lines correspond to the preoperative, postoperative, and predicted knee functions, respectively. In the first 
column, the first to last rows (a, c, & e) represent A‐P patterns obtained from (PB/NP IM), (PB/NP CIM), and (PB/NP CM) 
methods, respectively. In the second column, the first to last rows (b, d & f) represent i‐e patterns obtained from (PB/NP IM), 
(PB/NP CIM), and (PB/NP CM) methods, respectively. In‐set prediction accuracy is shown, i.e. refer to (a), cc of PB‐IM and NP‐IM 
is 0.96 and 0.57, respectively. 
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regression analysis, retaining more than 95% CCR. 
Basically, in the case of kinematic data acquisition 
with a navigation system, the range of data values in 
the A-P or i-e pattern was not larger. Therefore, PCA 
was applied without any scaling, although the units of 
the A-P and i-e patterns were different. Thus, the 
percentage of total variance (also known as CCR) was 
explained by the first five PCA dimensions for both 
cases (10 or 20 variables). Finally, the models were 
trained with a PCA dimension of 5 for preoperative 
data and 3 for postoperative data, both of which 
contained at least 98% of the total variance in all 
methods. This method, PCA followed by generalized 
linear regression, was identified as the PCA-based 
(PB) method, and sub-categorized as (PB-IM), (PB-
CIM), and (PB-CM), according to Eq. (9), (10), and 
(11), respectively, to optimize prediction precision 
with high cc and low RMSE among these methods of 
both A-P and i-e patterns, since they are supposed to 
be associated with each other.  
 
Table 1a. Performance comparison of the proposed methods 
(mean±SD)‐  A‐P translation prediction. 

   cc    RMSE [mm] 

Methods With PCA  
(PB) 

Without PCA 
(NP) 

With PCA 
(PB) 

Without PCA 
(NP) 

IM 0.840.15 0.710.26 3.551.83 3.991.91 

CIM 0.810.16 0.540.39 3.271.42 5.592.95 

CM 0.800.20 0.560.34 3.301.38 5.192.82 

 
Table 1b. Performance comparison of the proposed methods 
(mean±SD)‐  i‐e rotation prediction. 

   cc    RMSE [deg.] 

Methods 
With PCA  

(PB) 
Without PCA 

(NP) 
With PCA 

(PB) 
Without PCA 

(NP) 
IM 0.880.12 0.860.17 4.431.98 4.552.32 

CIM 0.880.17 0.690.39 4.251.92 5.592.68 

CM 0.890.15 0.690.39 4.251.95 5.992.68 

 
Furthermore, regression models were also created 

without PCA pre-processing, which predicted A-P and 
i-e patterns directly by constructing GLMs (10 models 
for (9) & (10); 20 models for (11)) whose variables, 
used for prediction, were either of A-P or i-e, or both 
as described in equations (9), (10), and (11). The 
method without PCA was identified as the non-PCA 
(NP)-based method and sub-classified as (NP-IM), 
(NP-CIM), and (NP-CM), respectively.  

Finally, the outcome of the method (NP) was 
compared to the PCA-based method (PB) with 
corresponding sub-classes. The predicted kinematic 
curves of a test patient obtained by the proposed 
methods are summarized in Figure 3, which depicts 
differences in predicted kinematics in terms of both 
correlation and prediction error between the methods, 

(PB) and (NP), which were also observed for other 
test patients.  

Table 1 summarizes the results of all subjects for 
the different methods. Statistically significant 
differences between two methods (PB and NP) for 
both A-P (Table 1a) and i-e patterns (Table 1b) (p < 
0.05) were evaluated by the paired-samples t-test, and 
in every case, the null hypothesis (H0) was rejected. 
Method PB outperformed NP in terms of cc and 
RMSE for both patterns. However, method (IM) 
provided similar performance in terms of cc between 
methods (PB and NP) for i-e rotation prediction only, 
whereas the performance of methods (CIM) and (CM) 
was very different performance compared to method 
(IM).   

For further quantification in addition to mean cc 
and mean RMSE, Figure 4 shows the distribution of 
the performance of the methods, which also shows the 
superiority of the PCA-based method (PB) for 
kinematics prediction over the non-PCA method (NP). 
Higher mean cc and lower mean RMSE were 
observed for all subgroups of the PB method 
compared to those of the NP method. Both cc and 
RMSE values of most subjects were more closely 
distributed around the respective mean values for all 
PB methods than that for respective NP methods. 
However, both methods have some outliers, the 
possible reasons for which are explained in the 
Discussion section. These findings are valid in both 
types of pattern.   

 

(a) A‐P pattern 

 

(b) i‐e pattern 

Figure 4.  Boxplots show the performance of the methods. 
They show the distributions of cc and RMSE of the predicted 
patterns obtained from the methods and comparisons among 
them. 
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(a) A‐P translation prediction 

 

(b) i‐e rotation prediction 

Figure 5.  Histograms of cc and RMSE obtained from the (PB) methods for both the A‐P (a) and i‐e (b) patterns. It shows the 
number of subjects that corresponds to cc and RMSE.  

 

(a) A‐P vs. f‐e pattern 

 

(b) i‐e vs. f‐e pattern  

Figure 6.  Cumulative histogram of cc and RMSE derived from different methods. Green‐circle, blue‐square, and red‐diamond lines 
correspond to methods (PB‐IM), (PB‐CIM), and (PB‐CM), respectively. 
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Since the A-P and i-e patterns are seemed to be 
associated with each other, to evaluate prediction 
precision with high cc and low RMSE within (PB), 
histograms for cc and RMSE of these methods (PB-
IM, PB-CIM, & PB-CM) were plotted by counting the 
number of subjects for a specific value of cc and 
RMSE, respectively (Figure 5). In such a plot, ideally, 
all subject cc values are expected to be close to 1, 
which means a single bar at the cc value of 1. 
Pragmatically, the outcomes depicted in the figure 
(location of the maximum bars at the right side of the 
plot) show that a relatively large number of subjects 
has higher cc values are accumulated around the value 
of 1. In contrast, theoretically, all subject RMSE 
values are expected to be zero. In the present findings 
(location of the maximum bars at the left side of the 
plot), although none of the subjects has zero RMSE, 
most of them are accumulated close to zero RMSE. 
Thus, it can be concluded that the predicted pattern 
obtained by the proposed methods has a good 
correlation for pattern shape, but it is not free of error. 

Since there was no statistically significant 
difference (p<0.05) within (PB) methods, the area 
ratio under the cumulative histogram curve (AUCHC, 
mathematically known as the definite integral) was 
also calculated to test the performance within (PB) 
methods. First, the cumulative histogram of each 
method was plotted, and then the area under the 
histogram curve of the corresponding method was 
calculated, following the principle of the definite 
integral. Then, the AUCHC was defined as the ratio of 
the area under the curve to the whole area of the plot. 
It takes a value between 0 and 1; a smaller AUCHC 
value of cc and a larger AUCHC value of RMSE 
indicate better performance, because this means fewer 
worse cases. The horizontal range was set to [0.1, 1.0] 
for cc and [1, 10] for RMSE to include all cases. 
Figure 6 visualizes the cumulative histogram curves of 
the three subgroups of PB methods for both patterns. 
The method corresponds to the smallest area in the cc 
plot and the greatest area in the RMSE plot under the 
curve to the horizontal axis has high prediction 
precision. Thus, for comparison, the AUCHC derived 
from the cumulative histograms of cc and RMSE 
(Table 2) suggests that PB-CM and PB-CIM have the 
best performance with respect to cc and RMSE, 
respectively, for predicting the A-P pattern, whereas 
PB-CM and PB-IM are the best methods with respect 
to cc and RMSE, respectively, for predicting the i-e 
pattern.  

 

Table 2. Comparison of the area ratio under the cumulative 
histogram curve (AUCHC) among the proposed methods. 

 A-P translation i-e  rotation 

Methods cc RMSE  
[mm] 

cc RMSE 
 [deg.] 

PB-IM 0.199 0.687 0.233 0.721 
PB-CIM 0.199 0.717 0.156 0.616 
PB-CM 0.156 0.616 0.150 0.626 

6 DISCUSSION 
THE present approach is the first to enable us to 

predict the postoperative knee functions of a new 
TKA patient by measuring the preoperative knee 
functions. Other methods are usually effective for 
postoperative knee kinematic analysis to evaluate the 
surgical outcome after the surgery (Seon et al., 2011 & 
Hasegawa et al., 2015) and/or postoperative 
complications (Onsem et al., 2016). Basically, the 
proposed methods derived a mapping function from 
the clinical training data by using generalized 
regression analysis. 

In the case of method (NP), since every 10° f-e 
angle was used as a predictive variable (10 for Eq. 9 
and 10; 20 for Eq. 12) for both preoperative and 
postoperative kinematics to train the predictive 
models, the prediction accuracy decreased due to 
irregularity in pattern shape, and thus it was 
incompatible with clinical application. One possible 
reason for the reduced precision of this method could 
be construction of individual predictive models for 
every 10° f-e angle between the preoperative and 
postoperative kinematics, and hence data redundancy 
affected prediction performance. 

In contrast, method (PB) overcame this limitation 
by projecting the training data into a lower 
dimensional space by PCA, retaining at least 95% 
CCR (Jolliffe, 2002), and after that, training the 
predictive models by the PCs. The role of PCA was 
essentially to optimize features. Hence, higher 
prediction precision was achieved with dimensionality 
reduction than without it. Thus, the outcome of this 
work suggests PCA-based predictive methods for 
forecasting postoperative knee kinematics. 

Additionally, for PCA-based intra-methods 
comparison, with respect to cc, the best method was 
PB-IM for A-P pattern prediction (0.840.15), but it 
provided a higher RMSE value than other methods, 
and PB-CM was the best method for i-e pattern 
prediction (0.890.15). However, the AUCHC area 
ratio comparison showed that PB-CM is the best for 
both patterns (0.156 (A-P) and 0.150 (i-e)). Thus, PB-
CM is expected to give the best prediction and fewer 
inconsistent cases. This suggests that we should 
evaluate both preoperative A-P and i-e patterns to 
achieve better prediction, and it also means that there 
is a relationship between the A-P and i-e patterns.  

With respect to RMSE, there were also no 
significant difference within any combination of the 
PCA-based method (p<0.05). However, the AUCHC 
area ratio comparison showed that the best method is 
PM-CIM for A-P translation (0.717) and PB-IM for i-e 
rotation (0.721). Thus, PB-CIM is the best A-P pattern 
method to give the best prediction and fewer 
inconsistent cases, and PB-IM is the best i-e pattern 
prediction method. Basically, the PB-CM method 
produced the best prediction accuracy in terms of the 
cc value, as described in the previous paragraph, 
which should also be true in terms of the RMSE value. 
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In other words, the PB-CM method was also expected 
to produce the best prediction outcome in terms of the 
RMSE value. However, this discrepancy could be due 
to calibration error of the navigation system, as 
described in the following context. 

In comparing cc and RMSE, the results suggested 
that RMSE performance was relatively lower than that 
of cc performance, and there were some outliers, as 
shown in Figure 4. In our measurement procedure, 
preoperative and postoperative kinematics were 
measured using a CT-free navigation system in an 
operating room. It calibrated the patient’s knee 
anatomical coordinate system used for measuring 
kinematics before the surgery, and it also used the 
same coordinate system through preoperative and 
postoperative measurements because of the system’s 
limitation and to measure the kinematic change in the 
same coordinate system. However, in some clinical 
cases (referring to outliers in Figure 4), the surgeon 
implanted TKA intentionally with some rotation angle 
to revise the patient’s knee joint alignment, and it 
could affect the zero-position and orientation of the 
coordinate system. This could be one reason for 
deterioration of the method’s performance, 
specifically prediction error. Thus, prediction 
precision was degraded for some cases because the 
proposed predictive methods were trained by 
kinematic data that could include calibration error of 
the navigation system. However, it could be improved 
by calibrating the knee anatomical coordinate system 
after implantation or by measuring the kinematics a 
few months after the TKA operation by using, for 
example, 2-D/3-D image registration technique with a 
2-D X-ray digital radiograph movie and 3-D 
computer-aided design (Yamazaki et al., 2004 & 
Kobashi et al., 2005). Actually, it is very effective for 
predict the outcome of TKA a few months after the 
operation because there would be a slight change with 
recovery. 

Although the proposed methods were validated to 
one type of prosthesis, they could be applicable to 
other implants as well, because the definition of knee 
kinematics, measured by the same navigation system, 
is appropriate for other implants. Furthermore, the 
proposed method could also be applicable to the load-
bearing condition, because Yoshiya, et. al. (2005) 
showed that the basic kinematics patterns were similar 
in both conditions (non-load bearing and load-
bearing). In addition, it could also be applicable for 
suggesting the appropriate TKA implant in patient-
specific knee surgical treatment before the surgery for 
accurate TKA planning, if it is trained by knee 
function data operated with other implants and by 
surgery code. This result shows its possible 
application in predicting postoperative knee function 
by measuring preoperative function, which could help 
the surgeon investigate the postoperative outcome of a 
patient before surgery. The outcome of the system 

could also serve as motivation for patients to proceed 
with TKA. 

As a limitation, for some cases, prediction accuracy 
could be less because the operation outcome depends 
on the surgeon’s skill and could deviate slightly for 
other surgeons (Victor et al., 2010), which was not 
considered during model implementation.  

7 CONCLUSIONS 
THIS study introduced PCA-based generalized 

linear regression analysis and optimized predictive 
variables during training the models to predict the 
most likely surgery outcome, specifically for TKA, 
before the surgery, by measuring only the preoperative 
knee functions. The methods were validated for two 
types of knee functions, and acceptable performance 
was achieved. The methods can predict the 
postoperative outcome of a new patient with a mean 
cc of at most 0.840.15 (mean SD) (PB-IM) and 
mean RMSE of at least 3.271.42 mm (PB-CIM) for 
the A-P pattern, and a mean cc of at most 0.890.15 
(PB-CM) and a mean RMSE of at least 4.251.92 deg. 
(PB-CIM) for the i-e pattern. The best optimized 
prediction accuracy was obtained by method PB-CM 
for both patterns, although it provides a slightly higher 
RMSE value than others, which could be due to 
navigation calibration error. Thus, this study suggests 
method PB-CM for postoperative kinematics 
prediction in the future, considering the relationship 
between both the A-P and i-e patterns.   

Although this work dealt with two types of patterns 
of knee functions, and one type of prosthesis, it could 
be applicable to other patterns, i.e. v/v rotation, 
because the data type of kinematics is the same as for 
other rotations, i.e. i-e rotation, and prostheses as well, 
since the knee kinematic definition using the same 
navigation system is similar for other prostheses. 
Finally, this work represents encouraging progress 
towards predicting postoperative kinematics before 
surgery using preoperative kinematics of TKA 
patients, in order to help clinicians to choose the 
optimal treatment and to help patients better 
understand the operation outcome. By incorporating 
more training data and/or investigating preoperative 
knee function, the model’s performance could be 
enhanced in the future. 
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