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1 INTRODUCTION  
ENERGY disaggregation or non-intrusive load 

monitoring algorithms, which can be considered as the 
decomposing of aggregate households’, commercial, 
or industrial power consumption as the power 
consumption of related single devices, is currently an 
area of focus in energy saving research (Ehrhardt-
Martinez et al (2010), Berges, M. et.al (2011), Patel, 
S.N. et al. (2007), Jin, Y. et al. (2011), Raju L et al. 
(2017), Yuhua Peng. et al. (2018)). The residential 
power consumption in the European Union alone 
accounts for 30% of global electricity consumption 
(Cox, R. et al. (2006), Schoofs, A. et al. (2010), Giri, 
S. et al. (2012), Najmeddine, H. et al. (2008), Ruzzelli, 
A.G et al. (2010)). Furthermore, the International 
Energy Agency has forecasted that the probability of 
increase for global energy demand would be up to 
30% between now and 2040, equivalent to China's 
plus India's energy consumption; therefore, reduction 
of residential power consumption is critical. 
Compared with aggregated consumption data, the data 
for individual appliance have advantages relative to 

reflecting users’ electrical behavior modes and 
moderating electricity consumption. Furthermore, 
individual appliance data can be utilized to rapidly 
detect appliance malfunctions and precisely predict 
the power demand (Hart, G. (1992), Z Guan et. al. 
(2017), Z Guan et al. (2018), Zoha, A. (2012), 
Hosseini, S. S. et. al. (2017), K. Gai et. al(2018)). 

Energy disaggregation algorithms are commonly 
divided into supervised and unsupervised algorithms. 
The former uses individual appliance data for training, 
whereas the latter does not. Supervised algorithms 
utilize individual appliance data in the learning stage 
to form feature matrices used to disaggregate meter 
readings. Some prior knowledge can be useful in 
supervised schemes, such as the total number of 
activated electrical appliances or the collaborative 
working information of multiple appliances. (Kolter, J. 
et. al. (2010), Dong, Roy, et al. (2013), Wytock, Matt, 
and J. Zico Kolter. (2014), Yeqing Li et al. (2014), 
Altrabalsi, Hana, et al. (2014), Elhamifar, Ehsan, and 
Shankar Sastry. (2015), Mauch, Lukas, and Bin Yang. 
(2015)). Unsupervised algorithms (Parson, Oliver, et 
al. (2014), Bonfigli, R, et al. (2015), S. Pattem (2012), 
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K. S. Barsim, R. Streubel, and B. Yang (2014)) do not 
need to train the power consumption data of individual 
appliance; instead, they cluster aggregated meter 
readings directly. However, the performance of 
unsupervised algorithms is often not as good as that of 
supervised algorithms because unsupervised methods 
require manual labels after the learning stage, which 
may result in inaccurate and inefficient disaggregation 
results. Therefore, we focus on a supervised energy 
disaggregation scheme. 

Most supervised energy disaggregation algorithms 
utilize sparse coding (Kolter, J. et al. (2010), 
Elhamifar, Ehsan, and Shankar Sastry (2015), Wang, 
D. et al. (2017)), in which the power consumption of 
each individual appliance over a long period is used to 
model a sparse linear mixture of the elements in a 
learned feature dictionary. The drawback is that they 
require a large training set to determine the status of 
each appliance for each period by analyzing all meter 
readings and the time complexity for classification is 
very high. The PED (Elhamifar, Ehsan, and Shankar 
Sastry. (2015)) scheme proposes the “powerlet” 
dictionary, which is formed by the signature 
consumption pattern of individual appliance and 
utilizes the dissimilarity-based sparse subset selection 
(Elhamifar, E. et. al (2016)) algorithm to decompose 
the aggregated power consumption. The average 
accuracy of this scheme is approximately 72%, and 
the disaggregation time is approximately 12 s for 
every 15 readings. The PED scheme is efficient; 
however, it is based on many constrains. Thus, 
efficiency is unstable with some other datasets. The 
ESCD (Wang, D. et. al (2017)) scheme proposes an 
efficient sparse coding-based framework that utilizes 
the fast search and finds density peaks (FSFDP) 
clustering algorithm (Rodriguez, A., and Laio, A. 
(2014)) to learn an appliance’s feature matrix and the 
max-min pruning matching (MMPM) optimization 
algorithm to decompose the aggregate consumption 
data. This method achieves 77% accuracy within a 10 
s disaggregation time for 20 meter readings in each 
sliding window. The ESCD scheme promotes PED's 
performance; however, a series of parameters of the 
FSFDP and MMPM algorithms must be set manually, 
which results in poor stability and extensibility. Thus, 
we propose an efficient supervised energy 
disaggregation scheme. The primary contributions of 
this study are as follows. 
(1) We utilize the FSFDP clustering algorithm to 

cluster individual appliance consumption data 
twice to learn an appliance’s feature matrix. In the 
first clustering procedure, we preprocess an 
individual appliance’s consumption data to 
automatically determine a number of cluster 
centers that is consistent with the number of 
different appliance state modes, which are 
manually set as a fixed value for all appliances in 
the ESCD scheme.  

(2) We improve the MMPM algorithm, which greatly 
improves the efficiency of the decomposing 
process, in the decomposing process for 
aggregated power consumption.  

(3) Experiments performed using the public reference 
energy disaggregation dataset (REDD) (Kolter, 
J.Z. et al. (2011)) demonstrate that the proposed 
scheme can greatly reduce disaggregation time 
and improve disaggregation accuracy. 

2 PRELIMINARIES 
THE core idea of the FSFDP clustering algorithm 

is to select cluster centers that with higher densities 
than their neighbors and the distance from other data 
points with higher density is relatively large.  

Here, assume that dataset S = {𝑥𝑖}𝑖=1𝑁  represents 
the data points to be clustered, 𝐼𝑆 = {1,2, … ,𝑁} is the 
set of relative indices, and 𝑑𝑖𝑖  is a defined distance 
between data points 𝑥𝑖 and 𝑥𝑖. For each data point 𝑥𝑖, 
the FSFDP clustering algorithm computes its local 
density 𝜌𝑖  and distance 𝛿𝑖  from points with higher 
densities. 

Note that 𝜌𝑖 can be calculated using either a cut-off 
or Gaussian kernel as shown in Equation (1) and (2), 
respectively. 

  (1) 

  (2) 

Here, 𝑑𝑐 > 0 is a predefined cut-off distance. For 
the cut-off kernel computation, 𝜌𝑖  is equal to the 
number of points closer than 𝑑𝑐 is to point 𝑥𝑖. For the 
Gaussian kernel computation, the value of 𝜌𝑖 increases 
with an increasing number of data points that are less 
than 𝑑𝑐 from 𝑥𝑖. The 𝜌𝑖 using a cut-off kernel takes a 
discrete value, and 𝜌𝑖 using a Gaussian kernel takes a 
continuous number. Therefore, 𝜌𝑖  of a cut-off kernel 
has a lower probability of conflict (i.e., different data 
points having the same value of ρ). 

Let {𝑞𝑖}𝑖=1𝑁  descend sort, and is the subscript 
indexes of {𝜌𝑖}𝑖=1𝑁 , i.e., 𝜌𝑞1 ≥ 𝜌𝑞2 ≥ ⋯ ≥ 𝜌𝑞𝑁 . 𝛿𝑖  is 
calculated as follows. 

  (3) 

Here, 𝐼𝑠𝑖 = {𝑘 ∈ 𝐼𝑠:𝜌𝑘 > 𝜌𝑖} . Equation (3) shows 
that 𝛿𝑖  is obtained through computing the minimum 
distance between point 𝑥𝑖  and any of other points 
whose density is higher. When 𝑥𝑖 has the highest local 
density (𝜌𝑖), 𝛿𝑖 represents the distance between 𝑥𝑖 and 
the data points from S that are the most distant from 
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𝑥𝑖 ; otherwise, 𝛿𝑖  is the shortest distance between 𝑥𝑖 
and any other data points with a higher density. 

With the FSFDP algorithm, we select cluster 
centers with the greater 𝜌𝑖 and 𝛿𝑖 values. 

Next, we introduce the process of the clustering 
algorithm. 

We assume dataset S = {𝑥𝑖}𝑖=1𝑁  represents the data 
points to be clustered. Here there are 𝑛𝑐(≥ 1) clusters 
in total. {𝑚𝑖}𝑖=1

𝑛𝑐  demonstrates the number of data 
points corresponding to the cluster centers, i.e., 𝑋𝑚𝑗 is 
the j − th  cluster center. {𝑐𝑖}𝑖=1𝑁  denotes the clusters, 
where 𝑐𝑖  is the i − th data point in S belonging to the 
𝑐𝑖 − 𝑡ℎ  cluster. 𝑑𝑚𝑚𝑚 = {𝑑𝑖𝑖}𝑖<𝑖

𝑚𝑚𝑚  represents the 
distance between the two most distant data points 
from S. 

{𝑛𝑖}𝑖=1𝑁 : 𝑛𝑖  is the number of data points in S whose 
ρ is greater than that of 𝑥𝑖  and is closest to 𝑥𝑖 . The 
definition is expressed as follows. 

(4) 

Here, {𝑞𝑖}𝑖=1𝑁  is as defined previously. 
{ℎ𝑖}𝑖=1𝑁  represents the cluster halo or cluster core. 

All data points in a cluster belong to the cluster core or 
cluster halo. Note that the cluster halo represents data 
points with greater 𝜌𝑖. If ℎ𝑖 = 1, then 𝑋𝑖  belongs to the 
cluster halo; otherwise, 𝑋𝑖  belongs to the cluster core. 

The FSFDP algorithm proceeds as follows. 
Step 1. Initialization and preprocessing. 
1.1 Determine parameter t ∈ (0,1) corresponding to 

cut-off distance 𝑑𝑐. 
1.2 Compute 𝑑𝑖𝑖, where 𝑑𝑖𝑖 = 𝑑𝑖𝑖 , 𝑖 < 𝑗, 𝑖, 𝑗 ∈ 𝐼𝑆 . 
1.3 Determine cut-off distance 𝑑𝑐 as follows. 
 Arrange all 𝑑𝑖𝑖 values calculated in the previous 

step in ascending order to obtain sequence 
𝑑1 ≤ 𝑑2 ≤ ⋯ ≤ 𝑑𝑀. Let 𝑑𝑐 = 𝑑𝑓(𝑀𝑀), where f(Mt) 
is an integer that is half adjust by Mt. 

1.4 Compute {𝜌𝑖}𝑖=1𝑁  and {𝑞𝑖}𝑖=1𝑁  in descending order, 
which is the subscript indexes. 

1.5 Compute {𝛿𝑖}𝑖=1𝑁  and {𝑛𝑖}𝑖=1𝑁  as follows: 

  
In this process, function dist(X𝑞𝑖 , X𝑞𝑗)  yields the 
distance between X𝑞𝑖  and X𝑞𝑗. 
Step 2. Determine the set of cluster centers {𝑚𝑖}𝑖=1

𝑛𝑐  
and initialize {𝑐𝑖}𝑖=1𝑁  as follows. 

(5) 
Step 3. Cluster all data points which are not belonging 
to cluster centers. 

  
Step 4. If  𝑛𝑐 > 1, classify all the data points in each 
cluster to “cluster core” or “cluster halo”. 
4.1 Initially set  ℎ𝑖 = 0,𝑤ℎ𝑒𝑒𝑒 𝑖 ∈ 𝐼𝑆. 
4.2 Compute {𝜌𝑖𝑏}𝑖=1

𝑛𝑐  for each cluster as follows: 

 
4.3 Compute the cluster halo as follows: 

   

3 SCHEME 

3.1 The framework of the scheme 
THE framework of our proposed energy 

disaggregation scheme will be demonstrated in detail 
in this part. In the proposed scheme, a dataset 
containing both the total power signal and the 
individual appliance’s signal is utilized. Here, N 
denotes the number of appliances, 𝑥𝑖(𝑡) is the power 
signal of the 𝑖 − th appliance at time t  (using 𝑥𝑖(𝑡), 
we know the usage condition of the i − th appliance), 
and y(t) is the aggregated power signal at time t. We 
obtain the following equation. 

y(t) = �𝑥𝑖(𝑡)
𝑁

𝑖=1

 

The proposed scheme attempts to recover the 
electricity consumption signal of each appliance, 
namely, infer 𝑥𝑖(𝑡) i ∈ {1,2, … , N}  through the 
aggregated power consumption y(t). 

Here, T is assumed to be the length of the training 
data’s time, w  represents the length of a sliding 
window, where w ≪ T , and we represent the 



588 LIU, ET AL. 

 

aggregated signal and each appliance signal with w-
dimensional vectors 𝑇𝑤�y(t)� = (𝑦(𝑡),𝑦(𝑡 +
1), … ,𝑦(𝑡 + 𝑤 − 1))  and 𝑇𝑤�𝑥𝑖(𝑡)� = �𝑥𝑖(𝑡), 𝑥𝑖(𝑡 +
1), … , 𝑥𝑖(𝑡 + 𝑤 − 1)�  in the interval [t, t + w − 1] . 
𝐵𝑖 ∈ 𝑅𝑀𝑖×𝑤 represents the feature matrix of the 𝑖 − th 
appliance, where 𝑀𝑖  is the number of features of the 
𝑖 − th appliance, i.e., the number of rows of 𝐵𝑖 . If we 
can obtain an appropriate feature matrix, we can 
approximate the 𝑖th appliance as 𝑇𝑤�𝑥𝑖(𝑡)� ≈ 𝐵𝑖𝑐𝑖(𝑡), 
where 𝑐𝑖(𝑡) is activation of feature matrix 𝐵𝑖  and 𝑐𝑖(𝑡) 
is a sparse vector with mostly 0 elements and only one 
1 elements. 

We employ a two-step process to complete the 
energy disaggregation task. In the first step, we learn a 
feature matrix 𝐵𝑖  for each appliance. Here, we use the 
improved semi-automatic FSFDP clustering 
algorithm. In the second step, we use the improved 
MMPM algorithm and utilize the appliances’ feature 
matrices to decompose the aggregated signal data to 
obtain 𝑐𝑖(𝑡). 

3.2 Learning appliances’ feature  
In the proposed scheme, we assume the length of 

the training time for the appliance signal is T and w is 
the length of a sliding window; therefore, the size of a 
sliding window can be computed as (T − w + 1). In 
this study, all signal data were processed in units of 
sliding windows, i.e., we consider the sliding window 
of the data as data points 𝑄𝑖 , where i ∈ {1,2, … , T −
w + 1} . We go through all data points 𝑄𝑖 , remove 
duplicate points, form a dataset 𝑄𝑢𝑛𝑖  with L  unique 
data points, and record their repeated times using L-
dimensional vector S = {𝑠1, 𝑠2, … , 𝑠𝐿}. We define the 
distance matrix for these L  unique data points as 
D = {𝑑𝑖𝑖, i, j ∈ {1,2, … , L}} , where 𝑑𝑖𝑖 = ‖𝑄𝑖 − 𝑄𝑖�2 . 
We then obtain the feature matrix of each appliance 
using the FSFDP clustering algorithm. Here, every 
feature matrix is obtained by executing the FSFDP 
algorithm twice. We discuss these two processes in the 
following. 

In the first clustering process, we compute 𝜌𝑖 , 𝛿𝑖  for 
each data point 𝑄𝑖  i ∈ {1,2, … , L}  of the target 
appliance (𝜌𝑖 is computed as a Gaussian kernel in the 
proposed scheme). The FSFDP clustering algorithm 
selects data points with greater 𝜌𝑖  and 𝛿𝑖  values as 
cluster centers. However, the number of cluster 
centers cannot be determined automatically. In the 
ESCD (Wang, D. et al. (2017)) scheme, a fixed m 
value is determined for all appliances, which is 
unreasonable and inflexible. To address this issue, we 
observe the appliance signal data and find that, for 
each appliance, the same operation state produces 
similar fluctuations in the power consumption process 
(Figure 1). Thus, the value of m is more reasonable as 
the number of cluster centers than that in the ESCD 
scheme. 

 

 

(a)  
 
 
 
 
 
 
 
 
 
 

 
 

(b) 
Figure 1. Power consumption signals of (a) a refrigerator and 
(b) a heat pump 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We employ a data preprocessing algorithm 
(Algorithm 1) to deal with each target appliance to 
obtain the number of appliance states m. In Algorithm 
1, array stm[ ]  stores the data corresponding to 
different states. The algorithm then traverses all input 
data. If the value of the data is 0.5 times smaller or 1.5 
times greater than the value of the previous data, then 
the data may represent a new state. Then, the 
algorithm traverses all data in stm. If the input data 
are 0.5 times greater or 1.5 times less than the value of 
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a single data element in stm (denoted stm[j]), then the 
input data belong to the j − th class and the algorithm 
calculates their average value. Otherwise, the input 
data represent a new state, and we set m = m + 1 and 
add this input data to stm. 

After obtainingm , we begin clustering from the 
point with the greater 𝜌𝑖  and 𝛿𝑖  values. Then, cyclic 
clustering is performed. If the number of cluster 
centers is less than m , we continue the clustering 
process, where the ρ and δ values are reduced by 1% 
each iteration. The algorithm will de ended until the 
number of cluster centers is greater than or equal to m. 
After the first clustering process, we classify all data 
points into m  classes. Consequently, the cluster 
centers obtained in the first process are the data points 
with greater distances, which may result in some 
appliance features denoted by some data points with a 
smaller distance to be masked. Therefore, we perform 
the second clustering process to obtain a better result. 

In the second clustering process, each class 
obtained in the first clustering process is further 
subdivided by computing the frequency of occurrence 
of duplicate data points for the given class. For each 
class 𝐶𝑖 𝑖 ∈ {1,2, … ,𝑚} , we assume 𝑝𝑖  is the 
probability of the occurrence of duplicate points. Here, 
𝑝𝑖 = 𝑛𝑢𝑚(𝐶𝑖)

∑ 𝑟𝑖𝐿
𝑖=1

, where num(𝐶𝑖)  is the number of 

duplicate points. Finally, the number of cluster centers 
for each class is given as 𝑀𝑖 = m × α × ∑ 𝑝𝑖𝑚

𝑖=1 , 
where α is determined experimentally. 

After performing these two clustering processes, 
we obtain feature matrix 𝐵𝑖 𝑖 ∈ {1,2, … ,𝑁}  for each 
appliance. 𝐵𝑖  is a matrix comprising 𝑀𝑖  row vectors. 
Each row vector is w-dimensional, where w is the size 
of the sliding window. The algorithm used to learn the 
appliance feature matrix is given in Algorithm 2. 

 
 
 
 
 

3.3 Total power data disaggregation  
In Section 3.1, the i − th appliance is expressed as 

𝑇𝑤�𝑥𝑖(𝑡)� ≈ 𝐵𝑖𝑐𝑖(𝑡). If we can obtain feature matrix 
𝐵𝑖  and activation vector 𝑐𝑖(t) , we can obtain 𝑥𝑖(𝑡) , 
which is the objective of the energy disaggregation 
problem. Note that ≈ indicates that we cannot find an 
exact solution where 𝑇𝑤�𝑥𝑖(𝑡)� = 𝐵𝑖𝑐𝑖(𝑡). Thus, the 
disaggregation task is to find an optimal solution. 
Therefore, given feature matrix 𝐵𝑖  and the constraint 
that y(t) = ∑ 𝑥𝑖(𝑡)𝑁

𝑖=1 , the goal is to obtain 𝑐𝑖(t). 
Specifically, the goal is to obtain a global optimal 

solution of 𝑥𝑖(𝑡) . If the disaggregation problem 
involves N  appliances, each appliance will have a 
feature matrix 𝐵𝑖  with 𝑀𝑖  rows. However, the time 
complexity to solve this problem is O(∏ 𝑀𝑖

𝑁
𝑖=1 ) , 

which is unacceptable. Therefore, we improve the 
MMPM algorithm to address this disaggregation 
problem. The improved algorithm (Algorithm 3) 
involves three main steps.  

 
First, the algorithm traverses all feature matrices 

𝐵𝑖 , 𝑖 ∈ [1,𝑁] , and, for each 𝐵𝑖 , the algorithm 
eliminates rows where the meter reading is greater 
than 𝑇𝑤(𝑦(𝑡)) in the same column. This is performed 
because the reading of any appliance can never be 
greater than the aggregate reading at any time. This 
elimination operation reduces the size of the matrices 
significantly; thus, the time required to solve the 
problem is reduced. 

Second, maximum pruning is performed. The 
maximum element of 𝑇𝑤(𝑦(𝑡)), whose column order 
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is j , is obtained. Then, all rows of each matrix 
𝐵𝑖 , 𝑖 ∈ [1,𝑁] are sorted in descending order according 
to the value of the 𝑗 − th  element. The maximum 
𝑗 − th  element in each matrix 𝐵𝑖 , 𝑖 ∈ [1,𝑁]  is then 
determined. The maximum pruning parameter is 
computed as follows. 

𝑉𝑚𝑚𝑚 = 𝑇𝑤�𝑦(𝑡 + 𝑗 − 1)� −�𝑚𝑚𝑥𝑖

𝑁

𝑖=1

 

In the matching operation, if 𝑉𝑚𝑚𝑚 > 0, the 𝑉𝑚𝑚𝑚 
value of the remaining loops must be also be greater, 
which cannot contain the optimal solutions. Therefore, 
we cut off the remaining loops, which will reduce 
matching time. 

Third, minimum pruning is performed. We define a 
vector 𝑇𝑤(𝑒(𝑡, 𝑡 + 1, … , 𝑡 + 𝑤 − 1))  to represent the 
remainder power, which is computed by the aggregate 
power minus the corresponding value of the upper 
loop. If min (𝑇𝑤(r(t))) < 0, we can cut off the invalid 
loop, which reduces matching time. 

4 EXPERIMENTS 
IN Section 3, we described the flow of the 

proposed scheme and demonstrated that it is 
theoretically feasible. Here, we evaluate the proposed 
scheme’s feasibility in a real-world scenario. 

We used the REDD (Kolter, J.Z. et al. (2011)), 
which is the first public dataset that contains sufficient 
training data to obtain appliance features. The REDD 
contains aggregate data for six houses and 20 
appliances. The data were collected over two weeks at 
a frequency of 1/3 Hz. In our evaluation, data for 
house five was excluded because these data contained 
few fluctuations; thus, appliance feature matrices 
could not be obtained. 

We selected five different appliances for testing. 
The first week of data were used to learn the feature 
matrix, and the remaining data were used for 
decomposing testing. The size of the sliding window 
was w = 20. Note that a larger sliding window will 
result in more appliance features, which may produce 
a more accurate disaggregation result. However, an 
increased number of appliance features may increase 
computation time. Therefore, based on a previous 
study (Wang, D. et al. (2017)), we set the sliding 
window size to 20, which is considered a compromise. 

The number of features, i.e., the number of rows in 
each appliance feature matrix, is expressed as 
𝑀𝑖 = 𝑚𝑖 × 𝛼 × 𝑝𝑖 .  Note that different 𝛼  values may 
lead to different results. 

As 𝛼  increases, disaggregation accuracy also 
increases because greater α values yield a greater 𝑀𝑖 
value, i.e., more features are acquired. More feature 
matrix may produce a more accurate disaggregation 
result; however, computation time will increase. 
Figure 2 shows the relationship between 
disaggregation accuracy and different 𝛼  values. As 
can be seen, 𝛼 = 10  yields relatively high 

decomposition accuracy in a relatively short time. 
Thus, in our experiment, 𝛼 = 10 . Note that the 
decomposing task for the given sliding window 
required approximately 8 s. 

In this experiment, accuracy was calculated as 
follows (Elhamifar, Ehsan, and Shankar Sastry 
(2015)).  

energy disaggregation acc

= 1 −
∑ ∑ ‖𝑇𝑤(𝑦(𝑡))−𝑇�𝑤(𝑥𝑖(𝑡))�

1
𝑁
𝑖=1𝑀∈𝜑

2∑ ‖𝑇𝑤(𝑦(𝑡))‖1𝑀∈𝜑
 

 
(a) 

 
(b) 

Figure 2.  (a) Disaggregation accuracy for different α values by 
house and (b) disaggregation time (s) for different α values 
 

Here, φ = {1,𝑇𝑤 + 1,2𝑇𝑤 + 1, … } , and 𝑇�𝑤(𝑥𝑖(𝑡)) 
represents the power signal data of the optimal 
solution for the i − th  appliance. We compared the 
proposed scheme to the PED (Elhamifar, Ehsan, and 
Shankar Sastry (2015)), ESCD (Wang, D. et al. 
(2017)), and the naive simple mean methods. The 
results are shown in Table 1. As can be seen, the 
proposed scheme outperforms the other schemes. 
Compared with ESCD (Wang, D. et al. (2017)), the 
accuracy can be raised about 4.5% on average. Figure 
3 shows the difference between an actual aggregated 
power signal and aggregated signal estimated by the 
proposed scheme. Here, the red line represents the 
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actual waveform of the aggregated power signal and 
the blue line represents the estimated waveform. 

 
Table 1. The accuracy of energy disaggregation(%). 

 House 
1 

House 
2 

House 
3 

House 
4 

House 
6 

Average 

Simple 41.4 39.0 46.7 52.7 33.7 42.7 
PED 81.6 79.0 61.8 58.5 79.1 72.0 
ESCD 84.3 82.7 70.2 71.0 78.9 77.4 
ours 88.8 87.3 74.5 75.7 83.4 81.9 
 
 

 

 

 

 

 

Figure 3.  Comparison of actual and estimated aggregated 
power consumption signals  

5 CONCLUSIONS AND FUTURE WORK 
WE have proposed an efficient supervised scheme 

for energy disaggregation. In the proposed scheme, the 
semi-automatic FSFDP clustering algorithm first 
learns appliance feature matrices to determine the 
number of cluster centers, i.e., the number of the rows 
in the feature matrix, which improves the accuracy of 
the final energy disaggregation. The proposed scheme 
also employs an improved MMPM algorithm to 
perform the energy disaggregation task, which greatly 
reduces disaggregation time and improves efficiency. 
In addition, experiments using the public REDD have 
demonstrated the feasibility and effectiveness of the 
proposed scheme. The experimental results 
demonstrate that the proposed scheme reduces 
disaggregation time from 10.7 s to 8 s and increases 
decomposition accuracy from 77.4% to 81.9% 
compared with ESCD (Wang, D. et al. (2017)). 

In future, to improve energy disaggregation 
accuracy, we plan to further improve the FSFDP 
clustering algorithm to fully automate determining the 
number of cluster centers. We also plan to find a more 
stable matching algorithm to replace the MMPM 
algorithm because its performance is overly dependent 
on the given dataset. 
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