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1 INTRODUCTION 
KNOWLEDGE bases and knowledge graphs have 

been widely used in search engines and automated 

question answering systems to improve the accuracy 

of query results. Traditional search engines can only 

mechanically retrieve relevant content through key-

words, while a search engine or automated question 

answering system powered by knowledge graphs can 

understand what the users want and look for answers. 

To achieve this goal, existing studies (Lopez et al., 

2006; Unger et al., 2012; Yahya et al., 2012; Zou et 

al., 2014) usually begin with the detection of phrases 

from texts and map them to resources in the 

knowledge graph. 

There are many studies that focus on phrase detec-

tion and resource mapping, which use multiple parsers 

to detect various types of phrases and rely on text cor-

pora to map the relational mappings of the forms 

(Yahya et al., 2012). Yuanzhe Zhan et al. (2016) used 

the resource label in the repository to build the re-

source dictionary and filter the word sequences in the 

problem though that dictionary. If the Levenshtein 

distance sim between resource tags and word sequenc-

es is similar, the similarity is higher than a certain 

threshold θ
3
. That is, this word is considered a usable 

phrase. After selecting candidate words through n-

grams, Shizhu He etal. (2014) filter candidate words 

using constraint conditions such as limiting word 

spans and then select different schemes to map entities 

to different types of semantic items. 

Existing schemes can strictly match or approxi-

mately match phrases and map resources from text, 

but mapping schemes that are limited to a single word 

and resource tag will miss the possibility of mapping 

multiple words to compound words. For example, the 

Levenshtein distance between “Cyanobacteria” and 

"Cyanobacteria process technology" will obviously be 

less than θ
3
, and the match will be lost and will map to 

the wrong item when there are more similar words 

(Yuanzhe Zhan et al., 2016). Yahayaetal. (2012) 

choose to map the detected phrases directly to the 

corresponding types through a dictionary. This scheme 

also maps “Cyanobacteria” to the wrong resources. 

Although these schemes may infer "Cyanobacteria 

process technology" by structured query construction, 

this will inevitably increase the depth of semantic 

processing and the complexity of the knowledge map. 

We hope to figure out a solution that can solve this 

problem as simply as possible, during phrase detection 

and resource mapping. 

In this paper, we propose a phrase detection and re-

source mapping algorithm that can handle complex 
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semantic resources to solve the above problems. In our 

solution, a single word will be mapped first to the 

resources in the knowledge graphs that contain it. 

These resources will be referred to as the relevant set 

of resources for that word, which in turn is the anchor 

of the elements within the set. We will find a resource 

with the highest number of anchors by enumerating a 

combination of related resource sets for all words. For 

semantic aggregation considerations, the anchor of the 

same resource should fall in a small area. After im-

plementing the algorithm, we find that its time over-

head is not ideal. Therefore, we propose a dynamic 

programming optimization algorithm based on state 

compression. The basic idea of the optimization algo-

rithm is to consider the resource mapping problem of 

sentences and phrases as a multistage dynamic pro-

gramming decision process. That is, each word is 

scanned from left to right in the sentence, and the re-

source mapping of the scanned word combination is 

needed as a stage. The best mapping result for each 

combination will be recursive to the next stage. Then, 

we will further prune and optimize the algorithm by 

removing the related resource set, in order to prevent 

this ineffective state from spreading to the matching of 

subsequent words. This pruning considerably reduces 

the running costs. Through the iterative work above, 

we will be able to find the resource mapping results of 

all the combinations of the substrings that it cuts down 

for each word of the sentence. When searching for the 

best mapping result, we only need to find the states 

with non-null resource sets and then map words from 

the set of words and their states, and the elements of 

its related resource set will be returned as the mapping 

result. 

2 LONGEST MATCHING RESOURCE MAPPING 
ALGORITHM 

2.1 Problem Description 
USUALLY, a resource mapping problem can be 

expressed as follows: for a natural language sentence 

SNL=w1w2w3w4 …wl, find a substring sil=wi1wi2...wik 

such that mapping(sil)->resource', where i1,i2,...,ik∈

[1,l], resource'∈KB. In general, KB., and sil and re-

source' will be mapped together as close as possible 

on a certain spatial scale, and the resource' with the 

highest degree of similarity can be regarded as the 

result of the mapping of sil. At the time of mapping, 

we expect the resource that matches |sil| to the largest 

extent to be the optimal mapping result. 

The phrase mapping task, a substring starts with a 

phrase s and tries to identify resources that with high 

probability correspond to s. This step begins with a 

phrase (one or more words) and attempts to find a set 

of resources in the underlying KB that correspond to a 

high probability. For the phrase “Europe”,as a exam-

ple, possible resources in DBpediaare: 

dbr:Europe(band)
7
 (that refers to a Band called Eu-

rope), dbr:Europe (that refers to Europe as a continent) 

and dbr:Europe (dighy)(a particular type of boat).Than, 

some techniques would be used to determine which of 

the resources identified during the phrase mapping 

task are the right ones. In the above example, “Europe” 

cannot refer to a band or a boat since it does not make 

sense speak about their population. Therefore, these 

resources in the Knowledge Base or Knowledge 

Graph could be link to the nature language (Dennis et 

al, 2017). 

This process is aimed to detect phrase in the ques-

tion, and map into the resources in KBs (yzzhang et al. 

2014). Specifically, the labels of all resources in the 

employed KBs been exploited to build a resource dic-

tionary. Next, for all the word sequences at dictionary, 

contained in the question. If the similarity of the Le-

venshtein distance sim between the resource tag and 

the word sequence is greater than a certain threshold 

θ
3
, the word sequence would be outputedas a detection 

phrase and select the resource as the corresponding 

candidate resource. At the same time, set sim as the 

confidence value of the resource and also record the 

frequency of occurrence of the resource. Note that 

phrases can be mapped to multiple resources from 

different KB. Disambiguation is not performed in this 

step and will be performed in the joint inference step. 

Another solution for the phrase mapping task is 

calculate the distance of word2vec between phrase and 

resources in the knowledge graph (shizhu et al, 2014). 

For each phrase detected, can be mapped to the corre-

sponding semantic item in KB (entity, class and rela-

tion). For example, software is mapped to 

dbo:Software, dbo:developer, etc., and California is 

mapped to dbr:California, dbr:California(wine), etc. In 

order to mapping phrases to entities, considering that 

the entities in DBpediaand Wikipedia are consistent, 

anchor been employed, redirection and disambigua-

tion information from Wikipedia. For mapping 

phrases to resources in knowledge base such as Wik-

ipedia, considering that classes have lexical variation, 

especially synonyms, e.g., dbo:Film can be mapped 

from film, movie and show, we compute the similarity 

between the phrase and class in the KB with the 

word2vec tool8. The word2vec tool computes fixed-

length vector representations of words with a recur-

rent-neural-network based language model (Mikolove 

et al., 2010). Then calculate the similarity score as 

specific method and select top-N most similar re-

sources as potential resources. For mapping phrase 

relations, PATTY (Nakashole et al., 2012) and Re-

Verb(Fader et al., 2011) a employed. Compute the 

associations between the ontological relations in 

DBpediaand the relation patterns in PATTY and Re-

Verb through instance alignments as in (Berant et al., 

2013). Next, if detect a detected phrase is match to 

some relation pattern, the corresponding ontological 

relations in DBpedia will be returned as a candidate. 

This step only generates candidates for every possible 
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mapping, and the division of the best selection will be 

performed in the next step. 

Consider this sentence as an example: "We need 

some technologies to process cyanobacteria." This 

sentence under the analyzer should be divided into a 

string as 

We/need/some/technology/to/process/cyanobacteria. 

In the ontology library, we have a resource called "cy-

anobacterial process technology". Obviously, we need 

an algorithm to map the substring of the sentence 

“technologies to process cyanobacteria" to this re-

source, so we have proposed the Longest Matching 

Resource Mapping (LMRM) Algorithm. 

The idea of LMRM is to find a resource that will 

be semantically related to as many words as possible 

in a more compact area of the sentence. That is, "cya-

nobacterial process technologies” contains or is close 

to "process"," cyanobacterial" and "technology" in the 

original sentence, and they are considered to be relat-

ed. Hence, it is believed that "technology to process 

cyanobacteria" is related to "cyanobacterial process 

technologies". The LMRM solution is to find all the 

resource sets that include all words in the original 

sentence and find intersections among these sets. We 

find that "cyanobacteria process technologies" ap-

pears differently. The largest number in the collection 

is that where each word of the substring "pro-

cessing/cyanobacteria/technology" falls within "tech-

nology process cyanobacteria" and has the longest 

length. Therefore, this sentence, considered to be a 

part of the "technology to process cyanobacteria", will 

map to this resource. 

2.2 Baseline Longest Matching Resource Map-
ping Algorithm 

The Baseline Longest Matching Resource Mapping 

Algorithm is an implementation of the LMRM, which 

is aimed at finding long-range corpus resources that 

are as accurate as possible from a single sentence. 

Considering the tightness of semantics, the words 

that make up a resource will converge in a local area 

as close as possible. In this local area, the resources 

pointed to by as many words as possible are obviously 

more representative of the meaning of the local repre-

sentation. That is, for any string strin the specified 

character set, it is divided into a sequence of words wi 

by the corresponding analyzer, and the first-order syn-

onyms set of the extended by word vector approxima-

tion is ci. A resource in semantic networks containing 

ci is considered as a related resource of wi. All related 

resources about wi are contained in the related resource 

set rrsi. Enumerating all substrings in the sentence, the 

elements in the intersection of the related resource sets 

of words in each substring are obviously related to all 

the words in the substring. Therefore, when the related 

resource set intersects with the longest nonempty sub-

string, the resources in the set are the mapping results. 

The Baseline Longest Match Resource Mapping 

Algorithm is as follows: 

1) Use the corresponding analyzer to break the sen-

tence into separate words to form a word stream 

2) For each word as wi in the stream of words, find 

the synonym for wi and constitute as a semantic set of 

it denoted by ci. 

3) For the i-th word in the sentence, find all re-

sources containing any of ci, denoted by Related Re-

source[i] 

4) According to the given length n, enumerate each 

partial sequence of length n in the entire word stream 

from left to right 

5) For a subsequence of wiwi+1...wi+n-1, the enumer-

ation extracts each combination of at least two words, 

wiwi+1, wiwi+1wi+2,...,wi...wk... wn-1,...,wn-2wn-1, 

6) For a composition ofwi...wj...wk, i<j<k, its poten-

tial mapped set of resource 

resourceSet = relatedResource[i] ∩

rrelatedResource[j]∩relatedResource[k] 

7) For all nonempty resource sets, select a related 

resource set that was hit as much as possible. That 

means maximizing |wi...wj...wk| in all compositions, 

and the nonempty resource set pointed to by that com-

position is the mapped result of the local area. 

Remark: 

Step 1) refers to the analyzer, i.e., the word seg-

mentation tool. The word segmentation tools for Ro-

mance and Germanic families, such as English, are 

usually separated by spaces and punctuation. In the 

Chinese context, special segmentation tools are used. 

Step 2) finds synonyms of words needed to estab-

lish a synonym and word vector model in advance. In 

LMRM, the words that have the closest cosine value 

in the word vector space and the synonym lists that are 

sorted out by hand-made dictionaries such as Chinese 

dictionaries are sought. Using inverted indexes and 

nonrelational databases can improve the efficiency. 

Step 3), similar to step 2), creates an inverted index 

for the resources in the knowledge graphs, which will 

effectively improve the efficiency of partial retrieval 

from compound words to the complete resource. 

2.3 Complexity Analysis of the Baseline Long-
est Matching Resource Mapping Algorithm 

The BLMRM algorithm enumerates, from left to 

right, all the participating word states in each of the 

length N local areas. For a sentence of length L, the 

longest matching solution of the current region is 

solved for (L-N+1) local areas. In the process of find-

ing the longest matching solution in each local area, 

we enumerate all possible mapping combinations. In 

each of these combinations, each word has two states, 

“participating mapping” and “not participating in 

mapping”. There are 2
N
 cases in the local domain of 

length N that need to be mapped. In summary, the 

complexity of a sentence should be O((L-

N)*2
N
+L*C). 
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In view of the problem of repeated matching in 

calculations, we propose the following optimization 

algorithm. 

3 LONGEST MATCHING RESOURCE MAPPING 
ALGORITHM WITH STATE COMPRESSION 
DYNAMIC PROGRAMMING OPTIMIZATION 

STATE compression dynamic programming is a 

typical dynamic programming. It is usually used in 

small-scale solutions of NP problems. Although it has 

exponential-level complexity, the speed is faster than 

searching, which is an idea worth learning. In the op-

timal algorithm, we use state compression dynamic 

programming ideas to optimize the phrase detection 

and resource mapping described in Chapter 2. 

3.1 State compression of word sequences 
When performing phrase detection and resource 

mapping algorithms, we solve all the combinations by 

enumeration. This causes problems, such as repeated 

calculations and taking up a lot of space, when the 

words window is moved. This problem can be avoided 

by reusing the intermediate results of the already cal-

culated words. To reuse the intermediate results, the 

solution needs to store certain state data (a data value 

representing a word state in a substring). Each state 

datum is usually represented by a binary system. This 

requires each unit of the state data to have only two 

states. A bit 0 or 1 of the state string indicates whether 

the corresponding word participates in the resource 

mapping calculation. Therefore, the mapping state of 

the entire string must be a binary number. 

For a string w1w2w3w4w5..., an analyzer generates 

an isolated word string w1|w2|w3|w4|…. For a 0-1 sta-

tus string equal to the length of the string, statusi=1 

indicates that wi is valid in this word combination, and 

the set of resources to which it maps should also par-

ticipate in the mapping operation in this calculation. 

As shown in Figure 1, for a substring consisting of 

w1w2w3w4w5, the status string 10011 indicates that we 

want to find some resources that can be mapped by 

w1,w4,w5 at the same time. Therefore, we will find the 

resources containing w1, w4, and w5 separately and 

construct the related resource set rrs1,rrs4,rrs5 for each 

word. Then, we calculaterrs1∩rsc4∩rrs5 and get the 

r3 as the mapping result under this word combination. 

Obviously, r3 has three words w1, w4, and w5 as anchor 

points in the string. The status string 01010 represents 

the attempt to find the resources to which w2 and w4 

map to. After obtaining the respective set of related 

resources and performing the intersect operation, {r3, 

r4} is obtained. This is the optimal result of the map-

ping in that state. 

To quickly locate the relationship between words 

and related resources, complex semantic resources 

will be collated and indexed in an inverted index. A 

string representing a composite semantic resource will 

be split by the segmentation tool of the corresponding 

language into the smallest semantic unit, i.e., the 

word. Each word segmented by a composite semantic 

resource is linked to the resource itself. Because a 

word usually has multiple links, this is often stored in 

the form of a key-value pair in which the word is a 

key name with a different linked list. 

As shown in Figure 2, the resources r1 and r2 in the 

semantic network composed of w1w2w3w4 and 

w3w2w6w7, respectively, are split into eight pairs of 

words and resources, i.e., records. These records are 

indexed separately in the inverted index library based 

on the word. In this indexing mode, when we need to 

query the related resources of a word, we only need to 

find the value with the word as the key name to get all 

the words that contain it. 

 

Figure 1.  Relationship between the state string, word and resource set. 
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Figure 2.  Mapping relationship between a word and resource 
set. 

3.2 State Compression Dynamic Programming 
The most important part of the dynamic planning 

of the multistage decision-making process is to divide 

the stage and find the state transfer equation. To solve 

the problem of mapping relations between phrases and 

resources, we need to find the longest word sequence 

with a mapped result. Therefore, we can use each new 

word as a new stage in the process of solving the pre-

vious calculation results. Another important factor is 

the state transfer equation. The state transfer equation 

is the basis for retrieving state data. To add new words 

as a new stage, we have constructed the following 

state transfer equations: 

dp𝑖,𝑠𝑡𝑎𝑡𝑢𝑠+0  =  dp𝑖−1,𝑠𝑡𝑎𝑡𝑢𝑠, sta ∈ 𝐿𝑆𝑖−1(1) 

𝑑𝑝𝑖,𝑠𝑡𝑎𝑡𝑢𝑠+1 = 𝑚𝑎𝑝(𝑤𝑖) ∩ 𝑑𝑝𝑖−1,𝑠𝑡𝑎𝑡𝑢𝑠, 𝑠𝑡𝑎𝑡𝑢𝑠 ∈
                                              𝐿𝑆𝑖−1(2) 

In the recursion function (1)(2),dpi,status represents 

the set of related resources when recursively to wi and 

the word combination state is status. In Function(1), 

wi does not participate in the operation. Therefore, 

adding 0 to the end of the state string indicates that the 

current word is invalid, and the mapping result also 

inherits directly from the state corresponding to the 

previous round. In Function (2), add 1 to the end of 

the state string to denote that wi is related to the map-

ping result. Therefore, that result of the relevant re-

source set of wi intersected with the related resource 

set under the predecessor state is equal to the resource 

mapped by wi and the word effective in state. 

Among them, LSi-1 is a set of word combination 

states capable of adding new words recursively up to 

wordi-1, that is, a set of available states for performing 

resource mapping operations with wi. In the LMRM 

algorithm, we specify a threshold N as the size of the 

detection window. Under this constraint, we want to 

filter out the state where the former in bits are 0. Oth-

erwise, it indicates a word outside the window is in-

volved in the resource mapping operation, and that 

violates our rules. Therefore, the transfer rules from 

LSi-1 to LSi are as follows: 

for status in LSi-1: 

 if status[0] == 0: 

  push status+0 and status+1 to LSi 

In the table of new state generation rules, a phe-

nomenon can be observed: after consecutive opera-

tions, every element in LSi has a leading 0 from the 

beginning to the (i-n+1)th bit, which satisfies the ear-

liest constraint condition and ensures that only all 

participating mappings are performed when the words 

of the operation are all within the window of length N 

that contains wi. During the detection of a long sen-

tence, the length of the state string increases, and a 

sentence of length L produces 2
L
states without proper 

pruning. An obvious pruning scheme is to stop the 

extension of the state in which LSi-1 cannot perform 

the mapping operation with wi, which is in accordance 

with the processing of the state in which the (i-n+1)th 

bit is 1 in the LSi-1. This pruning scheme plays a deci-

sive role in the optimization algorithm of our state 

compression dynamic programming, which reduces 

the overall computational complexity from O(2
L
) of 

the entire sentence length to O(L*2
N
). As resource 

mapping requires the cohesiveness of words, we look 

for a relatively short resource as a short substring 

among very long sentences. This means that the length 

of N is usually much smaller than L, which means that 

the optimized space complexity will fall into the cor-

rect range. 

Taking Figure 3 as an example, the previous opera-

tion result set dp0,0 derives two result sets dp1,00 and 

dp1,01 after querying the common related resource set 

with word ci, where dp1,00 is the complete set contain-

ing all the resources of the knowledge graph, but dp1,01 

is an empty set representing no common related re-

sources. Obviously, the latter does not have any com-

mon related resource set even with other words in the 

source string, so removing the state string 01 from LS1 

to prevent the invalidation state from further degrada-

tion does not affect the accuracy of the calculation 

result. 

The second optimization program for pruning is to 

remove the empty set state, i.e., to remove status from 

LSi when it is found that dpwi,status is already an empty 

set in one of the LSi states. Because there is an empty 

set of results in LSi, this state will not participate in the 

generation of the final mapping result, nor will it pro-

duce a usable mapping set with subsequent words. 

 
Table 1. Rules of new state generation 

state in LSi-1 state at i-n+1 Operate status in LSi 

00…01XXX 1 Pop -- 

00…00XXX 0 
mapping calculate with wi 00…00XXX1 

not mapping calculate with wi 00...00XXX0 
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Figure 3. Remove empty resource set state 

Another optimization that can be done is removing 

leading 0s. From the generation rule of the new state 

of the constraint condition, it can be found that there 

are many leading 0s of the status string, and the length 

of the state string starting from 0 is increased from LSi-

1 to LSi. Therefore, after we have discarded the state 

that cannot be mapped with wi, we can also reduce the 

length of the state string by further removing the 

common leading 0s in the state set, reducing the space 

we need to save the state and reducing the time spent 

on the retrieval of the state string. When looking for a 

legal state string, the state of the (i-n)th bit is also 

judged as the state of the first bit, which leads to a 

clearer logical representation. 

The longest matching resource mapping algorithm 

for dynamic programming optimization based on state 

compression is as follows： 

3.3 Longest matching resource mapping re-
sults 

The dynamic programming after the state compres-

sion saves the result of the mapping operation of 

words under a certain state string. It represents the 

collection of resources pointed to by these words. The 

longest matching resource mapping algorithm requires 

that the set of resources to be mapped to is the one 

with the most words in this local space. Among the 

state strings, status[i]= 1 means that wi participates in 

the mapping operation, so the number of 1s in a state 

string represents the number of words involved in the 

operation. Thus, the result of the longest matching 

resource mapping from the intermediate results of 

dynamic programming is: 

for status in LSi: 

 select max count one in status and dpi,status !=  

∅as id 

Returndpi,id 

In this way, we filter out a local longest matching 

resource mapping result with wi as the right boundary. 

 

Table 2. Remove Leading 0 in the state 

state in LSi-1 first bit operate new status remove leading 0 reality status in LSi 

1XXXX 1 pop --- --- --- 

0XXXX 
0 map calculation with wi 0XXXX1 XXXX1 00…00XXXX1 

0 map calculation without wi 0XXXX0 XXXX0 00…00XXXX0 

 
Table 3. Algorithm for DPLMRM 

Algorithm: Dynamic Programming  

with State Compression LMRM 

1 dp0 = {0:null, 1:related_resource[w0]} 

 # dp as a list consist by key-value 

2 for i in range(1, l): 

3   for i in range(1, l):              #scan all word 

4     for (status, r_set) in dpi-1 items: 

5       if status == 0: 

6 dpi = {0:null, 1:related_resource[wi]} 

7       else: 

8         if status &first_one != 0: 

9           Continue 

10         else: 

11 tmp_set = dpi-1,status∩related_resource[wi] 

12 Iftmp_set != ∅: 

13             push ((status<<1)|1, tmp_set) to dpi 

14           push (status<<1, dpi-1,status) to dpi 

3.4 Complexity Analysis of the State Compres-
sion Dynamic Program LMRM Algorithm 

Without considering any optimization such as emp-

ty-set pruning, a sentence of length l will be mapped 

= 2
i+1

 times; therefore, obviously its complexity 

is O(2
l
). Through the transfer mechanism of the state 

set, it can be found that the first n words will cause  

=2
n+1

 mapping operations, and the n+1th to the 

i-th words will be generated each time from the last 

2
n-1

 legal states. There will be 2
n
 new states and new 

states. The number of set operations for the entire 

sentence is 2n+1+(l-n)*2
n
. In other words, we can 

reduce the complexity from O(2
l
) to O(l*2

n
) by re-

moving the invalid preamble state. 

Although the state compression dynamic pro-

gramming LMRM algorithm without null-set state 

pruning optimization is similar to the simple LMRM 

algorithm in terms of complexity, the former is much 

more optimized than the latter in terms of coefficients. 

The simple LMRM algorithm repeatedly calculates 

from wi-n+1 to wi-1 mapping results when the window 

moves. The state compression dynamic programming 

LMRM algorithm retains the above calculation result 

through the state string and can be directly used for 

the mapping operation with wi. 
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In the empty-set states pruning scheme, the states 

without mapping results will be discarded and will no 

longer participate in the mapping calculation of the 

following words. As the actual performance of this 

optimization is closely related to the sentences and 

corpora involved in the operation, we cannot obtain a 

mathematical expression through accurate derivation.  

However, in practice, there are considerable differ-

ences between the single word mapping resource sets 

in the neighboring domain. This makes it very com-

mon for the result to be an empty set and to be dis-

carded. Because the number of valid nonempty map-

ping states will be very small, this optimization works 

well in practical use. 

4 EXPERIMENT 
TO verify the related calculations of time complex-

ity in Chapter 4, an experiment comparing the running 

time of BLMRM and DPLMRM was conducted. The 

experimental platform is a MacbookPro 13-inch with 

retina, the CPU is Intel i5-6300, the memory is 8G, 

and the operating system is Mac OS High Sierra. Both 

algorithms are implemented using Java, JDK version 

1.8.0_66. To speed up the retrieval of knowledge 

graph resources, we use the reverse indexing service 

provided by Lucene, whose version is Apache Lucene 

6.6.1. 

The experimental dataset was based on the acquisi-

tion of 51,520 articles on water conservation and 

10,801 articles on hydrological policy. These materi-

als constitute our hydrology corpus. We randomly 

selected 10 documents as experimental materials. Af-

ter data cleaning, ensuring that the literature is com-

posed of plain text, we divide the content into separate 

clauses by breaking ideographic symbols, such as 

commas, periods, and semicolons, and then we look 

for resources that each local area may map to in claus-

es through the BLMRM and DPLMRM. 

The data we get from the government website will 

be cleaned. In the pre-processing, data such as policy 

messages in different formats are converted into plain 

text files. Then select a dedicated tokenizer to divide 

these articles into word streams. These word flows 

flow into the BLMRM and DPLMRM resource map-

pers, respectively, to record their time and space over-

head. 

Considering that the length of the articles’ content 

and the length of the sentences differ considerably, the 

two LMRM algorithms are more dependent on the 

length of the sentences, that is, the number of words in 

the sentences. It is obvious that it is more reasonable 

for the cumulative number of detected words rather 

than the number of documents or the number of sen-

tences to serve as a benchmark for time comparison. 

Simultaneously, the size of the local area N is also an 

important indicator. We compare the time perfor-

mance of time consumption of N=3, N=5 and N=8. 

The comparison results are shown in Fig. 4. The ab-

scissa shows the number of accumulated words of the 

test content, and the horizontal axis shows the time 

consumed by the algorithm. 

In Figure 4, we can see that the line representing 

the BLMRM algorithm has some fluctuation when 

N=3, while there is a simple linear increase when N=5 

and N=8. Furthermore, DPLMRM shows a simple 

linear growth with N=3, N=5, and N=8, which means 

that the BLMRM can be considerably influenced by 

the content when the window is small. This can be 

blamed on the fact that the words in some sentences 

have several relevant resources, leading to high time 

consumption when calculating the intersection set. As 

the window becomes larger, the number of calculated 

intersections within the window increases, and the 

fluctuations of a few words with several related re-

sources are covered. 

Another obvious fact is that, despite the approxi-

mately linear growth of the two, regardless of the size 

of the window, RLMRL costs much more to run than 

DPLMRM. As N increases, the proportion of the two 

will also increase accordingly, consistent with the 

analysis of BLMRM and DPLMRM in section 3.5 that 

when a local domain is moved to a new word, a larger 

local window means more repeated calculations, while 

the number of calculations for DPLMRM decreases 

further. 

From Fig. 4d and Fig. 4e, it can be found that with 

the growth of N, the running time overhead of the 

BLMRM becomes drastically larger, while the time 

growth of the DPLMRM is in a very limited range. 

Furthermore, in the experiments where N = 5 and N = 

8, there was a time when the situation was closer. This 

is consistent with our previous expectation that 

BLMRM has a large number of repetitive operations, 

while DPLMRM can reduce the number of operations 

by generating states through the multiplexing and iter-

ation of optimal substructures. 

These figures show that in the BLMRM algorithm, 

the nature language string to be processed is split into 

a stream of words by corresponding analyzer. A slid-

ing window traverses the word stream. In the words in 

the sliding window, each potential combination of 

words is enumerated and the corresponding set of 

related resources is obtained. Among all the states that 

have a collection of non-empty related resources, the 

most useful words, that is, the set of related resources 

to which the longest substring is mapped, is the map-

ping result. In DPLMRM, the combination of words is 

represented by a status string represented by the 01 

binary string. The size of the sliding window is con-

trolled by constraining the derived condition of the 

state string. The meaningless matching calculation is 

pruned by filtering the status string that no longer 

matches the new word. With a variety of optimization 
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Figure 4. Performance for BLMRM and DPLMRM  

measures, DPLMRM has significant performance 

optimizations over BLMRM in terms of time and 

space overhead. 

5 CONCLUSIONS 
TO map phrases in sentences to the composite se-

mantic resources, a longest matching resource map-

ping scheme is proposed in this paper. This solution 

solves the problem of mapping the composite seman-

tic resources in the resource mapping phase by finding 

the longest substring in the sentence that can match 

the knowledge graphs resource, without additional 

means such as structured query. This work effectively 

reduces the depth of semantic processing and reduces 

the complexity of knowledge graph construction. 

We propose an optimization algorithm based on 

state compression dynamic programming to increase 

the processing speed. Simultaneously, with state com-

pression, we can reduce the running overhead by re-

moving invalid state pruning schemes. Experimental 

results show that the proposed optimization algorithm 

considerably improves the efficiency of the baseline 

algorithm in terms of time consumption. 
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