
IntelligentAutomationAndSoftComputing,2019
Copyright © 2019, TSI® Press
Vol.25,no.3,625–635
https://doi.org/10.31209/2019.100000117

CONTACT Zhang Min jiangming@hdu.edu.cn

© 2019 TSI® Press

A Longest Matching Resource Mapping Algorithm with State Compression
Dynamic Programming Optimization

Zhang Min, Teng Haibin, Jiang Ming, Wen Tao, Tang Jingfan

School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou, 310018, China

KEY WORDS: Knowledge graphs, NLP application, Phrase detection, question answering systems, Resource
mapping, State Compression Dynamic Programming.

1 INTRODUCTION
KNOWLEDGE bases and knowledge graphs have

been widely used in search engines and automated

question answering systems to improve the accuracy

of query results. Traditional search engines can only

mechanically retrieve relevant content through key-

words, while a search engine or automated question

answering system powered by knowledge graphs can

understand what the users want and look for answers.

To achieve this goal, existing studies (Lopez et al.,

2006; Unger et al., 2012; Yahya et al., 2012; Zou et

al., 2014) usually begin with the detection of phrases

from texts and map them to resources in the

knowledge graph.

There are many studies that focus on phrase detec-

tion and resource mapping, which use multiple parsers

to detect various types of phrases and rely on text cor-

pora to map the relational mappings of the forms

(Yahya et al., 2012). Yuanzhe Zhan et al. (2016) used

the resource label in the repository to build the re-

source dictionary and filter the word sequences in the

problem though that dictionary. If the Levenshtein

distance sim between resource tags and word sequenc-

es is similar, the similarity is higher than a certain

threshold θ
3
. That is, this word is considered a usable

phrase. After selecting candidate words through n-

grams, Shizhu He etal. (2014) filter candidate words

using constraint conditions such as limiting word

spans and then select different schemes to map entities

to different types of semantic items.

Existing schemes can strictly match or approxi-

mately match phrases and map resources from text,

but mapping schemes that are limited to a single word

and resource tag will miss the possibility of mapping

multiple words to compound words. For example, the

Levenshtein distance between “Cyanobacteria” and

"Cyanobacteria process technology" will obviously be

less than θ
3
, and the match will be lost and will map to

the wrong item when there are more similar words

(Yuanzhe Zhan et al., 2016). Yahayaetal. (2012)

choose to map the detected phrases directly to the

corresponding types through a dictionary. This scheme

also maps “Cyanobacteria” to the wrong resources.

Although these schemes may infer "Cyanobacteria

process technology" by structured query construction,

this will inevitably increase the depth of semantic

processing and the complexity of the knowledge map.

We hope to figure out a solution that can solve this

problem as simply as possible, during phrase detection

and resource mapping.

In this paper, we propose a phrase detection and re-

source mapping algorithm that can handle complex

ABSTRACT

Mapping from sentence phrases to knowledge graph resources is an important step for
applications such as search engines, automatic question answering systems based on
acknowledge base and knowledge graphs. The existing solution maps a simple phrase
to a knowledge graph resource strictly or approximately from the text. However, it is
difficult to detect phrases and map the composite semantic resource. This paper pro-
poses a longest matching resource mapping scheme to solve this problem, namely, to
find the longest substring in a sentence that can match the knowledge base resource.
Based on this scheme, we propose an optimization algorithm based on state compres-
sion dynamic programming. Furthermore, we improve the operating efficiency by re-
moving invalid states. Experimental results show that our proposed optimization algo-
rithm considerably improves the efficiency of the benchmark algorithm in terms of
running time.

626 MIN ET AL

semantic resources to solve the above problems. In our

solution, a single word will be mapped first to the

resources in the knowledge graphs that contain it.

These resources will be referred to as the relevant set

of resources for that word, which in turn is the anchor

of the elements within the set. We will find a resource

with the highest number of anchors by enumerating a

combination of related resource sets for all words. For

semantic aggregation considerations, the anchor of the

same resource should fall in a small area. After im-

plementing the algorithm, we find that its time over-

head is not ideal. Therefore, we propose a dynamic

programming optimization algorithm based on state

compression. The basic idea of the optimization algo-

rithm is to consider the resource mapping problem of

sentences and phrases as a multistage dynamic pro-

gramming decision process. That is, each word is

scanned from left to right in the sentence, and the re-

source mapping of the scanned word combination is

needed as a stage. The best mapping result for each

combination will be recursive to the next stage. Then,

we will further prune and optimize the algorithm by

removing the related resource set, in order to prevent

this ineffective state from spreading to the matching of

subsequent words. This pruning considerably reduces

the running costs. Through the iterative work above,

we will be able to find the resource mapping results of

all the combinations of the substrings that it cuts down

for each word of the sentence. When searching for the

best mapping result, we only need to find the states

with non-null resource sets and then map words from

the set of words and their states, and the elements of

its related resource set will be returned as the mapping

result.

2 LONGEST MATCHING RESOURCE MAPPING
ALGORITHM

2.1 Problem Description
USUALLY, a resource mapping problem can be

expressed as follows: for a natural language sentence

SNL=w1w2w3w4 …wl, find a substring sil=wi1wi2...wik

such that mapping(sil)->resource', where i1,i2,...,ik∈

[1,l], resource'∈KB. In general, KB., and sil and re-

source' will be mapped together as close as possible

on a certain spatial scale, and the resource' with the

highest degree of similarity can be regarded as the

result of the mapping of sil. At the time of mapping,

we expect the resource that matches |sil| to the largest

extent to be the optimal mapping result.

The phrase mapping task, a substring starts with a

phrase s and tries to identify resources that with high

probability correspond to s. This step begins with a

phrase (one or more words) and attempts to find a set

of resources in the underlying KB that correspond to a

high probability. For the phrase “Europe”,as a exam-

ple, possible resources in DBpediaare:

dbr:Europe(band)
7
 (that refers to a Band called Eu-

rope), dbr:Europe (that refers to Europe as a continent)

and dbr:Europe (dighy)(a particular type of boat).Than,

some techniques would be used to determine which of

the resources identified during the phrase mapping

task are the right ones. In the above example, “Europe”

cannot refer to a band or a boat since it does not make

sense speak about their population. Therefore, these

resources in the Knowledge Base or Knowledge

Graph could be link to the nature language (Dennis et

al, 2017).

This process is aimed to detect phrase in the ques-

tion, and map into the resources in KBs (yzzhang et al.

2014). Specifically, the labels of all resources in the

employed KBs been exploited to build a resource dic-

tionary. Next, for all the word sequences at dictionary,

contained in the question. If the similarity of the Le-

venshtein distance sim between the resource tag and

the word sequence is greater than a certain threshold

θ
3
, the word sequence would be outputedas a detection

phrase and select the resource as the corresponding

candidate resource. At the same time, set sim as the

confidence value of the resource and also record the

frequency of occurrence of the resource. Note that

phrases can be mapped to multiple resources from

different KB. Disambiguation is not performed in this

step and will be performed in the joint inference step.

Another solution for the phrase mapping task is

calculate the distance of word2vec between phrase and

resources in the knowledge graph (shizhu et al, 2014).

For each phrase detected, can be mapped to the corre-

sponding semantic item in KB (entity, class and rela-

tion). For example, software is mapped to

dbo:Software, dbo:developer, etc., and California is

mapped to dbr:California, dbr:California(wine), etc. In

order to mapping phrases to entities, considering that

the entities in DBpediaand Wikipedia are consistent,

anchor been employed, redirection and disambigua-

tion information from Wikipedia. For mapping

phrases to resources in knowledge base such as Wik-

ipedia, considering that classes have lexical variation,

especially synonyms, e.g., dbo:Film can be mapped

from film, movie and show, we compute the similarity

between the phrase and class in the KB with the

word2vec tool8. The word2vec tool computes fixed-

length vector representations of words with a recur-

rent-neural-network based language model (Mikolove

et al., 2010). Then calculate the similarity score as

specific method and select top-N most similar re-

sources as potential resources. For mapping phrase

relations, PATTY (Nakashole et al., 2012) and Re-

Verb(Fader et al., 2011) a employed. Compute the

associations between the ontological relations in

DBpediaand the relation patterns in PATTY and Re-

Verb through instance alignments as in (Berant et al.,

2013). Next, if detect a detected phrase is match to

some relation pattern, the corresponding ontological

relations in DBpedia will be returned as a candidate.

This step only generates candidates for every possible

INTELLIGENTAUTOMATIONANDSOFTCOMPUTING 627

mapping, and the division of the best selection will be

performed in the next step.

Consider this sentence as an example: "We need

some technologies to process cyanobacteria." This

sentence under the analyzer should be divided into a

string as

We/need/some/technology/to/process/cyanobacteria.

In the ontology library, we have a resource called "cy-

anobacterial process technology". Obviously, we need

an algorithm to map the substring of the sentence

“technologies to process cyanobacteria" to this re-

source, so we have proposed the Longest Matching

Resource Mapping (LMRM) Algorithm.

The idea of LMRM is to find a resource that will

be semantically related to as many words as possible

in a more compact area of the sentence. That is, "cya-

nobacterial process technologies” contains or is close

to "process"," cyanobacterial" and "technology" in the

original sentence, and they are considered to be relat-

ed. Hence, it is believed that "technology to process

cyanobacteria" is related to "cyanobacterial process

technologies". The LMRM solution is to find all the

resource sets that include all words in the original

sentence and find intersections among these sets. We

find that "cyanobacteria process technologies" ap-

pears differently. The largest number in the collection

is that where each word of the substring "pro-

cessing/cyanobacteria/technology" falls within "tech-

nology process cyanobacteria" and has the longest

length. Therefore, this sentence, considered to be a

part of the "technology to process cyanobacteria", will

map to this resource.

2.2 Baseline Longest Matching Resource Map-
ping Algorithm

The Baseline Longest Matching Resource Mapping

Algorithm is an implementation of the LMRM, which

is aimed at finding long-range corpus resources that

are as accurate as possible from a single sentence.

Considering the tightness of semantics, the words

that make up a resource will converge in a local area

as close as possible. In this local area, the resources

pointed to by as many words as possible are obviously

more representative of the meaning of the local repre-

sentation. That is, for any string strin the specified

character set, it is divided into a sequence of words wi

by the corresponding analyzer, and the first-order syn-

onyms set of the extended by word vector approxima-

tion is ci. A resource in semantic networks containing

ci is considered as a related resource of wi. All related

resources about wi are contained in the related resource

set rrsi. Enumerating all substrings in the sentence, the

elements in the intersection of the related resource sets

of words in each substring are obviously related to all

the words in the substring. Therefore, when the related

resource set intersects with the longest nonempty sub-

string, the resources in the set are the mapping results.

The Baseline Longest Match Resource Mapping

Algorithm is as follows:

1) Use the corresponding analyzer to break the sen-

tence into separate words to form a word stream

2) For each word as wi in the stream of words, find

the synonym for wi and constitute as a semantic set of

it denoted by ci.

3) For the i-th word in the sentence, find all re-

sources containing any of ci, denoted by Related Re-

source[i]

4) According to the given length n, enumerate each

partial sequence of length n in the entire word stream

from left to right

5) For a subsequence of wiwi+1...wi+n-1, the enumer-

ation extracts each combination of at least two words,

wiwi+1, wiwi+1wi+2,...,wi...wk... wn-1,...,wn-2wn-1,

6) For a composition ofwi...wj...wk, i<j<k, its poten-

tial mapped set of resource

resourceSet = relatedResource[i] ∩

rrelatedResource[j]∩relatedResource[k]

7) For all nonempty resource sets, select a related

resource set that was hit as much as possible. That

means maximizing |wi...wj...wk| in all compositions,

and the nonempty resource set pointed to by that com-

position is the mapped result of the local area.

Remark:

Step 1) refers to the analyzer, i.e., the word seg-

mentation tool. The word segmentation tools for Ro-

mance and Germanic families, such as English, are

usually separated by spaces and punctuation. In the

Chinese context, special segmentation tools are used.

Step 2) finds synonyms of words needed to estab-

lish a synonym and word vector model in advance. In

LMRM, the words that have the closest cosine value

in the word vector space and the synonym lists that are

sorted out by hand-made dictionaries such as Chinese

dictionaries are sought. Using inverted indexes and

nonrelational databases can improve the efficiency.

Step 3), similar to step 2), creates an inverted index

for the resources in the knowledge graphs, which will

effectively improve the efficiency of partial retrieval

from compound words to the complete resource.

2.3 Complexity Analysis of the Baseline Long-
est Matching Resource Mapping Algorithm

The BLMRM algorithm enumerates, from left to

right, all the participating word states in each of the

length N local areas. For a sentence of length L, the

longest matching solution of the current region is

solved for (L-N+1) local areas. In the process of find-

ing the longest matching solution in each local area,

we enumerate all possible mapping combinations. In

each of these combinations, each word has two states,

“participating mapping” and “not participating in

mapping”. There are 2
N
 cases in the local domain of

length N that need to be mapped. In summary, the

complexity of a sentence should be O((L-

N)*2
N
+L*C).

628 MIN ET AL

In view of the problem of repeated matching in

calculations, we propose the following optimization

algorithm.

3 LONGEST MATCHING RESOURCE MAPPING
ALGORITHM WITH STATE COMPRESSION
DYNAMIC PROGRAMMING OPTIMIZATION

STATE compression dynamic programming is a

typical dynamic programming. It is usually used in

small-scale solutions of NP problems. Although it has

exponential-level complexity, the speed is faster than

searching, which is an idea worth learning. In the op-

timal algorithm, we use state compression dynamic

programming ideas to optimize the phrase detection

and resource mapping described in Chapter 2.

3.1 State compression of word sequences
When performing phrase detection and resource

mapping algorithms, we solve all the combinations by

enumeration. This causes problems, such as repeated

calculations and taking up a lot of space, when the

words window is moved. This problem can be avoided

by reusing the intermediate results of the already cal-

culated words. To reuse the intermediate results, the

solution needs to store certain state data (a data value

representing a word state in a substring). Each state

datum is usually represented by a binary system. This

requires each unit of the state data to have only two

states. A bit 0 or 1 of the state string indicates whether

the corresponding word participates in the resource

mapping calculation. Therefore, the mapping state of

the entire string must be a binary number.

For a string w1w2w3w4w5..., an analyzer generates

an isolated word string w1|w2|w3|w4|…. For a 0-1 sta-

tus string equal to the length of the string, statusi=1

indicates that wi is valid in this word combination, and

the set of resources to which it maps should also par-

ticipate in the mapping operation in this calculation.

As shown in Figure 1, for a substring consisting of

w1w2w3w4w5, the status string 10011 indicates that we

want to find some resources that can be mapped by

w1,w4,w5 at the same time. Therefore, we will find the

resources containing w1, w4, and w5 separately and

construct the related resource set rrs1,rrs4,rrs5 for each

word. Then, we calculaterrs1∩rsc4∩rrs5 and get the

r3 as the mapping result under this word combination.

Obviously, r3 has three words w1, w4, and w5 as anchor

points in the string. The status string 01010 represents

the attempt to find the resources to which w2 and w4

map to. After obtaining the respective set of related

resources and performing the intersect operation, {r3,

r4} is obtained. This is the optimal result of the map-

ping in that state.

To quickly locate the relationship between words

and related resources, complex semantic resources

will be collated and indexed in an inverted index. A

string representing a composite semantic resource will

be split by the segmentation tool of the corresponding

language into the smallest semantic unit, i.e., the

word. Each word segmented by a composite semantic

resource is linked to the resource itself. Because a

word usually has multiple links, this is often stored in

the form of a key-value pair in which the word is a

key name with a different linked list.

As shown in Figure 2, the resources r1 and r2 in the

semantic network composed of w1w2w3w4 and

w3w2w6w7, respectively, are split into eight pairs of

words and resources, i.e., records. These records are

indexed separately in the inverted index library based

on the word. In this indexing mode, when we need to

query the related resources of a word, we only need to

find the value with the word as the key name to get all

the words that contain it.

Figure 1. Relationship between the state string, word and resource set.

INTELLIGENTAUTOMATIONANDSOFTCOMPUTING 629

Figure 2. Mapping relationship between a word and resource
set.

3.2 State Compression Dynamic Programming
The most important part of the dynamic planning

of the multistage decision-making process is to divide

the stage and find the state transfer equation. To solve

the problem of mapping relations between phrases and

resources, we need to find the longest word sequence

with a mapped result. Therefore, we can use each new

word as a new stage in the process of solving the pre-

vious calculation results. Another important factor is

the state transfer equation. The state transfer equation

is the basis for retrieving state data. To add new words

as a new stage, we have constructed the following

state transfer equations:

dp𝑖,𝑠𝑡𝑎𝑡𝑢𝑠+0 = dp𝑖−1,𝑠𝑡𝑎𝑡𝑢𝑠, sta ∈ 𝐿𝑆𝑖−1(1)

𝑑𝑝𝑖,𝑠𝑡𝑎𝑡𝑢𝑠+1 = 𝑚𝑎𝑝(𝑤𝑖) ∩ 𝑑𝑝𝑖−1,𝑠𝑡𝑎𝑡𝑢𝑠, 𝑠𝑡𝑎𝑡𝑢𝑠 ∈
 𝐿𝑆𝑖−1(2)

In the recursion function (1)(2),dpi,status represents

the set of related resources when recursively to wi and

the word combination state is status. In Function(1),

wi does not participate in the operation. Therefore,

adding 0 to the end of the state string indicates that the

current word is invalid, and the mapping result also

inherits directly from the state corresponding to the

previous round. In Function (2), add 1 to the end of

the state string to denote that wi is related to the map-

ping result. Therefore, that result of the relevant re-

source set of wi intersected with the related resource

set under the predecessor state is equal to the resource

mapped by wi and the word effective in state.

Among them, LSi-1 is a set of word combination

states capable of adding new words recursively up to

wordi-1, that is, a set of available states for performing

resource mapping operations with wi. In the LMRM

algorithm, we specify a threshold N as the size of the

detection window. Under this constraint, we want to

filter out the state where the former in bits are 0. Oth-

erwise, it indicates a word outside the window is in-

volved in the resource mapping operation, and that

violates our rules. Therefore, the transfer rules from

LSi-1 to LSi are as follows:

for status in LSi-1:

 if status[0] == 0:

 push status+0 and status+1 to LSi

In the table of new state generation rules, a phe-

nomenon can be observed: after consecutive opera-

tions, every element in LSi has a leading 0 from the

beginning to the (i-n+1)th bit, which satisfies the ear-

liest constraint condition and ensures that only all

participating mappings are performed when the words

of the operation are all within the window of length N

that contains wi. During the detection of a long sen-

tence, the length of the state string increases, and a

sentence of length L produces 2
L
states without proper

pruning. An obvious pruning scheme is to stop the

extension of the state in which LSi-1 cannot perform

the mapping operation with wi, which is in accordance

with the processing of the state in which the (i-n+1)th

bit is 1 in the LSi-1. This pruning scheme plays a deci-

sive role in the optimization algorithm of our state

compression dynamic programming, which reduces

the overall computational complexity from O(2
L
) of

the entire sentence length to O(L*2
N
). As resource

mapping requires the cohesiveness of words, we look

for a relatively short resource as a short substring

among very long sentences. This means that the length

of N is usually much smaller than L, which means that

the optimized space complexity will fall into the cor-

rect range.

Taking Figure 3 as an example, the previous opera-

tion result set dp0,0 derives two result sets dp1,00 and

dp1,01 after querying the common related resource set

with word ci, where dp1,00 is the complete set contain-

ing all the resources of the knowledge graph, but dp1,01

is an empty set representing no common related re-

sources. Obviously, the latter does not have any com-

mon related resource set even with other words in the

source string, so removing the state string 01 from LS1

to prevent the invalidation state from further degrada-

tion does not affect the accuracy of the calculation

result.

The second optimization program for pruning is to

remove the empty set state, i.e., to remove status from

LSi when it is found that dpwi,status is already an empty

set in one of the LSi states. Because there is an empty

set of results in LSi, this state will not participate in the

generation of the final mapping result, nor will it pro-

duce a usable mapping set with subsequent words.

Table 1. Rules of new state generation

state in LSi-1 state at i-n+1 Operate status in LSi

00…01XXX 1 Pop --

00…00XXX 0
mapping calculate with wi 00…00XXX1

not mapping calculate with wi 00...00XXX0

630 MIN ET AL

Figure 3. Remove empty resource set state

Another optimization that can be done is removing

leading 0s. From the generation rule of the new state

of the constraint condition, it can be found that there

are many leading 0s of the status string, and the length

of the state string starting from 0 is increased from LSi-

1 to LSi. Therefore, after we have discarded the state

that cannot be mapped with wi, we can also reduce the

length of the state string by further removing the

common leading 0s in the state set, reducing the space

we need to save the state and reducing the time spent

on the retrieval of the state string. When looking for a

legal state string, the state of the (i-n)th bit is also

judged as the state of the first bit, which leads to a

clearer logical representation.

The longest matching resource mapping algorithm

for dynamic programming optimization based on state

compression is as follows：

3.3 Longest matching resource mapping re-
sults

The dynamic programming after the state compres-

sion saves the result of the mapping operation of

words under a certain state string. It represents the

collection of resources pointed to by these words. The

longest matching resource mapping algorithm requires

that the set of resources to be mapped to is the one

with the most words in this local space. Among the

state strings, status[i]= 1 means that wi participates in

the mapping operation, so the number of 1s in a state

string represents the number of words involved in the

operation. Thus, the result of the longest matching

resource mapping from the intermediate results of

dynamic programming is:

for status in LSi:

 select max count one in status and dpi,status !=

∅as id

Returndpi,id

In this way, we filter out a local longest matching

resource mapping result with wi as the right boundary.

Table 2. Remove Leading 0 in the state

state in LSi-1 first bit operate new status remove leading 0 reality status in LSi

1XXXX 1 pop --- --- ---

0XXXX
0 map calculation with wi 0XXXX1 XXXX1 00…00XXXX1

0 map calculation without wi 0XXXX0 XXXX0 00…00XXXX0

Table 3. Algorithm for DPLMRM

Algorithm: Dynamic Programming

with State Compression LMRM

1 dp0 = {0:null, 1:related_resource[w0]}

 # dp as a list consist by key-value

2 for i in range(1, l):

3 for i in range(1, l): #scan all word

4 for (status, r_set) in dpi-1 items:

5 if status == 0:

6 dpi = {0:null, 1:related_resource[wi]}

7 else:

8 if status &first_one != 0:

9 Continue

10 else:

11 tmp_set = dpi-1,status∩related_resource[wi]

12 Iftmp_set != ∅:

13 push ((status<<1)|1, tmp_set) to dpi

14 push (status<<1, dpi-1,status) to dpi

3.4 Complexity Analysis of the State Compres-
sion Dynamic Program LMRM Algorithm

Without considering any optimization such as emp-

ty-set pruning, a sentence of length l will be mapped

= 2
i+1

 times; therefore, obviously its complexity

is O(2
l
). Through the transfer mechanism of the state

set, it can be found that the first n words will cause

=2
n+1

 mapping operations, and the n+1th to the

i-th words will be generated each time from the last

2
n-1

 legal states. There will be 2
n
 new states and new

states. The number of set operations for the entire

sentence is 2n+1+(l-n)*2
n
. In other words, we can

reduce the complexity from O(2
l
) to O(l*2

n
) by re-

moving the invalid preamble state.

Although the state compression dynamic pro-

gramming LMRM algorithm without null-set state

pruning optimization is similar to the simple LMRM

algorithm in terms of complexity, the former is much

more optimized than the latter in terms of coefficients.

The simple LMRM algorithm repeatedly calculates

from wi-n+1 to wi-1 mapping results when the window

moves. The state compression dynamic programming

LMRM algorithm retains the above calculation result

through the state string and can be directly used for

the mapping operation with wi.

INTELLIGENTAUTOMATIONANDSOFTCOMPUTING 631

In the empty-set states pruning scheme, the states

without mapping results will be discarded and will no

longer participate in the mapping calculation of the

following words. As the actual performance of this

optimization is closely related to the sentences and

corpora involved in the operation, we cannot obtain a

mathematical expression through accurate derivation.

However, in practice, there are considerable differ-

ences between the single word mapping resource sets

in the neighboring domain. This makes it very com-

mon for the result to be an empty set and to be dis-

carded. Because the number of valid nonempty map-

ping states will be very small, this optimization works

well in practical use.

4 EXPERIMENT
TO verify the related calculations of time complex-

ity in Chapter 4, an experiment comparing the running

time of BLMRM and DPLMRM was conducted. The

experimental platform is a MacbookPro 13-inch with

retina, the CPU is Intel i5-6300, the memory is 8G,

and the operating system is Mac OS High Sierra. Both

algorithms are implemented using Java, JDK version

1.8.0_66. To speed up the retrieval of knowledge

graph resources, we use the reverse indexing service

provided by Lucene, whose version is Apache Lucene

6.6.1.

The experimental dataset was based on the acquisi-

tion of 51,520 articles on water conservation and

10,801 articles on hydrological policy. These materi-

als constitute our hydrology corpus. We randomly

selected 10 documents as experimental materials. Af-

ter data cleaning, ensuring that the literature is com-

posed of plain text, we divide the content into separate

clauses by breaking ideographic symbols, such as

commas, periods, and semicolons, and then we look

for resources that each local area may map to in claus-

es through the BLMRM and DPLMRM.

The data we get from the government website will

be cleaned. In the pre-processing, data such as policy

messages in different formats are converted into plain

text files. Then select a dedicated tokenizer to divide

these articles into word streams. These word flows

flow into the BLMRM and DPLMRM resource map-

pers, respectively, to record their time and space over-

head.

Considering that the length of the articles’ content

and the length of the sentences differ considerably, the

two LMRM algorithms are more dependent on the

length of the sentences, that is, the number of words in

the sentences. It is obvious that it is more reasonable

for the cumulative number of detected words rather

than the number of documents or the number of sen-

tences to serve as a benchmark for time comparison.

Simultaneously, the size of the local area N is also an

important indicator. We compare the time perfor-

mance of time consumption of N=3, N=5 and N=8.

The comparison results are shown in Fig. 4. The ab-

scissa shows the number of accumulated words of the

test content, and the horizontal axis shows the time

consumed by the algorithm.

In Figure 4, we can see that the line representing

the BLMRM algorithm has some fluctuation when

N=3, while there is a simple linear increase when N=5

and N=8. Furthermore, DPLMRM shows a simple

linear growth with N=3, N=5, and N=8, which means

that the BLMRM can be considerably influenced by

the content when the window is small. This can be

blamed on the fact that the words in some sentences

have several relevant resources, leading to high time

consumption when calculating the intersection set. As

the window becomes larger, the number of calculated

intersections within the window increases, and the

fluctuations of a few words with several related re-

sources are covered.

Another obvious fact is that, despite the approxi-

mately linear growth of the two, regardless of the size

of the window, RLMRL costs much more to run than

DPLMRM. As N increases, the proportion of the two

will also increase accordingly, consistent with the

analysis of BLMRM and DPLMRM in section 3.5 that

when a local domain is moved to a new word, a larger

local window means more repeated calculations, while

the number of calculations for DPLMRM decreases

further.

From Fig. 4d and Fig. 4e, it can be found that with

the growth of N, the running time overhead of the

BLMRM becomes drastically larger, while the time

growth of the DPLMRM is in a very limited range.

Furthermore, in the experiments where N = 5 and N =

8, there was a time when the situation was closer. This

is consistent with our previous expectation that

BLMRM has a large number of repetitive operations,

while DPLMRM can reduce the number of operations

by generating states through the multiplexing and iter-

ation of optimal substructures.

These figures show that in the BLMRM algorithm,

the nature language string to be processed is split into

a stream of words by corresponding analyzer. A slid-

ing window traverses the word stream. In the words in

the sliding window, each potential combination of

words is enumerated and the corresponding set of

related resources is obtained. Among all the states that

have a collection of non-empty related resources, the

most useful words, that is, the set of related resources

to which the longest substring is mapped, is the map-

ping result. In DPLMRM, the combination of words is

represented by a status string represented by the 01

binary string. The size of the sliding window is con-

trolled by constraining the derived condition of the

state string. The meaningless matching calculation is

pruned by filtering the status string that no longer

matches the new word. With a variety of optimization

632 MIN ET AL

Figure 4. Performance for BLMRM and DPLMRM

measures, DPLMRM has significant performance

optimizations over BLMRM in terms of time and

space overhead.

5 CONCLUSIONS
TO map phrases in sentences to the composite se-

mantic resources, a longest matching resource map-

ping scheme is proposed in this paper. This solution

solves the problem of mapping the composite seman-

tic resources in the resource mapping phase by finding

the longest substring in the sentence that can match

the knowledge graphs resource, without additional

means such as structured query. This work effectively

reduces the depth of semantic processing and reduces

the complexity of knowledge graph construction.

We propose an optimization algorithm based on

state compression dynamic programming to increase

the processing speed. Simultaneously, with state com-

pression, we can reduce the running overhead by re-

moving invalid state pruning schemes. Experimental

results show that the proposed optimization algorithm

considerably improves the efficiency of the baseline

algorithm in terms of time consumption.

6 REFERENCES
Amaral C, Figueira H, Martins A, et al. Priberam’s

Question Answering System for Portuguese[M]//

Accessing Multilingual Information Repositories.

Springer Berlin Heidelberg, 2005:364-371.

Blooma M J, Chua Y K, Goh H L, et al. Towards a

Hierarchical Framework for Predicting the Best

Answer in a Question Answering System[M]//

Asian Digital Libraries. Looking Back 10 Years

and Forging New Frontiers. Springer Berlin Hei-

delberg, 2007:497-498.

Breck E, Burger J D, Ferro L, et al. How to Evaluate

your Question Answering System Every Day and

Still Get Real Work Done[C]// 2000:1495--1500.

Buchholz S, Daelemans W. Complex answers: a case

study using a WWW question answering sys-

tem[J]. Natural Language Engineering, 2002,

7(4):301-323.

Cao, Y. G., Liu, F., Simpson, P., Antieau, L., Bennett,

A., & Cimino, J. J., et al. (2011). Askhermes: an

online question answering system for complex

clinical questions. Journal of Biomedical Informat-

ics, 44(2), 277-288.

Cimiano, P., Lopez, V., Unger, C., Cabrio, E., Ngomo,

A. C. N., & Walter, S. (2013, September). Multi-

lingual question answering over linked data (qald-

3): Lab overview. In International Conference of

the Cross-Language Evaluation Forum for Euro-

pean Languages (pp. 321-332). Springer, Berlin,

Heidelberg.

Collaborative QoS Prediction for Mobile Service with

Data Filtering and SlopeOne Model. Mobile In-

formation Systems 2017: 7356213:1-7356213:14

(2017)

INTELLIGENTAUTOMATIONANDSOFTCOMPUTING 633

Collaborative Service Selection via Ensemble Learn-

ing in Mixed Mobile Network Environments. En-

tropy 19(7): 358 (2017)

Dima, C. (2013, September). Intui2: A Prototype Sys-

tem for Question Answering over Linked Data. In

CLEF (Working Notes).

Güler F M, Birturk A. Natural intelligence: com-

monsense question answering with conceptual

graphs[C]// International Conference on Concep-

tual Structures: From Information To Intelligence.

Springer-Verlag, 2010:97-107.

Hao Li, Yong Ma, Kun Liang, et al. Rapid matching

algorithm for hyperspectral image based on norm

sifting[J]. Chinese Optics Letters, 2012(1):67-70.

He, S., Liu, K., Ji, G., & Zhao, J. (2015, October).

Learning to represent knowledge graphs with

gaussian embedding. In Proceedings of the 24th

ACM International on Conference on Information

and Knowledge Management (pp. 623-632).

ACM.

He, S., Liu, K., Zhang, Y., Xu, L., & Zhao, J. (2014).

Question answering over linked data using first-

order logic. In Proceedings of the 2014 Confer-

ence on Empirical Methods in Natural Language

Processing (EMNLP) (pp. 1092-1103).

Heck L, Huang H. Deep learning of knowledge graph

embeddings for semantic parsing of Twitter dia-

logs[C]// Signal and Information Processing.

IEEE, 2015:597-601.

Hu H, Jiang P, Ren F, et al. A New Question Answer-

ing System for Chinese Restricted Domain[J].

IEICE - Transactions on Information and Systems,

2006, E89-D(6):1848-1859.

Jia K, Pang X, Li Z, et al. Query expansion based on

semantics and statistics in Chinese question an-

swering system[J]. Wuhan University Journal of

Natural Sciences, 2008, 13(4):505-508.

Jo, Y., Lagoze, C., & Giles, C. L. (2007, August).

Detecting research topics via the correlation be-

tween graphs and texts. In Proceedings of the 13th

ACM SIGKDD international conference on

Knowledge discovery and data mining (pp. 370-

379). ACM.

Katz B, Lin J, Felshin S. Gathering Knowledge for a

Question Answering System from Heterogeneous

Information Sources[C]// Human Language Tech-

nology. 2001.

Li, H., Wang, Y., de Melo, G., Tu, C., & Chen, B.

(2017, April). Multimodal question answering

over structured data with ambiguous entities. In

Proceedings of the 26th International Conference

on World Wide Web Companion (pp. 79-88). In-

ternational World Wide Web Conferences Steer-

ing Committee.

Liu P, Li L, Li Z. Research on the Question Answer-

ing System in Chinese Based on Knowledge Rep-

resent of Conceptual Graphs[M]// Applied Infor-

matics and Communication. Springer Berlin Hei-

delberg, 2011:205-214.

Liu P, Li L, Li Z. Research on the Question Answer-

ing System in Chinese Based on Knowledge Rep-

resent of Conceptual Graphs[C]// The, Internation-

al Conference on Computational Intelligence and

Industrial Application. 2010:132-133-134-135-

136.

Lukovnikov D, Fischer A, Lehmann J. Neural Net-

work-based Question Answering over Knowledge

Graphs on Word and Character Level[C]// Interna-

tional Conference on World Wide Web. Interna-

tional World Wide Web Conferences Steering

Committee, 2017:1211-1220.

Molaei, M. R., Anvari, M. H., & Haqiri, T. (2007). On

relative semi-dynamical systems. Intelligent Au-

tomation & Soft Computing, 13(4), 405-413.

Ning Q, Wang Q, Zou Y, et al. Intelligent Question

Answering System Based on Data Mining[J].

Journal of Zhengzhou University, 2007.

Park, S., Kwon, S., Kim, B., Han, S., Shim, H., & Lee,

G. G. (2015). Question Answering system using

multiple information source and open type answer

merge. In Proceedings of the 2015 Conference of

the North American Chapter of the Association for

Computational Linguistics: Demonstrations (pp.

111-115).

Pechsiri C, Piriyakul R. Developing a Why–How

Question Answering system on community web

boards with a causality graph including procedural

knowledge[J]. Information Processing in Agricul-

ture, 2016, 3(1):36-53.

Pujara J, Miao H, Getoor L, et al. Ontology-aware

partitioning for knowledge graph identification[J].

2013, 71(7):19-24.

Purwarianti A, Tsuchiya M, Nakagawa S. A machine

learning approach for Indonesian question answer-

ing system[C]// Iasted International Conference on

Artificial Intelligence and Applications. 2007:573-

578.

QoS Prediction for Web Service Recommendation

with Network Location-Aware Neighbor Selec-

tion. International Journal of Software Engineering

and Knowledge Engineering 26(4): 611-632

(2016)

Sadeghi, F., Kumar Divvala, S. K., & Farhadi, A.

(2015). Viske: Visual knowledge extraction and

question answering by visual verification of rela-

tion phrases. In Proceedings of the IEEE confer-

ence on computer vision and pattern recognition

(pp. 1456-1464).

Selvi, P., & Bnerjee, A. K. (2010). Automatic short -

answer grading system (asags). Computer Science.

Sherkat, E., & Farhoodi, M. (2014). A hybrid ap-

proach for question classification in Persian auto-

matic question answering systems. International

Econference on Computer and Knowledge Engi-

neering (pp.279-284). IEEE.

Suchanek, F., & Weikum, G. (2013, June).

Knowledge harvesting in the big-data era. In Pro-

ceedings of the 2013 ACM SIGMOD International

634 MIN ET AL

Conference on Management of Data (pp. 933-

938). ACM.

Sun, J., Shaban, K., Podder, S., & Karry, F. (2003).

Fuzzy semantic measurement for synonymy and

its application in an automatic question-answering

system. International Conference on Natural Lan-

guage Processing and Knowledge Engineering,

2003. Proceedings (pp.263-268). IEEE.

Sven Hartrumpf. Extending Knowledge and Deepen-

ing Linguistic Processing for the Question An-

swering System InSicht[J]. 2005.

Taieb M A H, Aouicha M B, Hamadou A B. Compu-

ting semantic relatedness using Wikipedia fea-

tures[J]. Knowledge-Based Systems, 2013,

50(50):260-278.

Vang K J. Ethics of Google's Knowledge Graph: some

considerations[J]. Journal of Information Commu-

nication & Ethics in Society, 2014, 11(4):245-

260(16).

Verner, I., & Ahlgren, D. (2007). Robot projects and

competitions as education design experiments. In-

telligent Automation & Soft Computing,13(1), 57-

68.

Wang, Z., Zhang, J., Feng, J., & Chen, Z. (2014).

Knowledge graph and text jointly embedding. In

Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP)

(pp. 1591-1601).

Xia, Q., Chang, B., & Sui, Z. (2017). A Progressive

Learning Approach to Chinese SRL Using Heter-

ogeneous Data. arXiv preprint arXiv:1702.06740.

Xu, Kun, Reddy, Siva, Feng, Yansong, et al. Question

Answering on Freebase via Relation Extraction

and Textual Evidence[J]. 2016:2326-2336.

Yahya, M., Berberich, K., Elbassuoni, S., Ramanath,

M., Tresp, V., & Weikum, G. (2012). Natural lan-

guage questions for the web of data. Joint Confer-

ence on Empirical Methods in Natural Language

Processing and Computational Natural Language

Learning (pp.379-390). Association for Computa-

tional Linguistics.

Yahya, M., Berberich, K., Elbassuoni, S., Ramanath,

M., Tresp, V., & Weikum, G. (2012, April). Deep

answers for naturally asked questions on the web

of data. In Proceedings of the 21st international

conference on World Wide Web (pp. 445-449).

ACM.

Yamamoto Y, Tanaka K. Towards Web Search by

Sentence Queries: Asking the Web for Query Sub-

stitutions[C]// Database Systems for Advanced

Applications -, International Conference,

DASFAA 2011, Hong Kong, China, April 22-25,

2011, Proceedings. DBLP, 2011:83-92.

Yin Y Y, Li Y, Deng S G, et al. Verifying Consistency

of Web Services Behavior[C]// Asia-Pacific Ser-

vices Computing Conference, 2008. APSCC '08.

IEEE. IEEE, 2009:1308-1314.

Yin Y Y, Wu Q, Wu B. Towards High-Availability

for Services Oriented Application[C]// Interna-

tional Symposium on Computer, Consumer and

Control. IEEE, 2012:60-63.

Yuyu Yin, Song Aihua, Gao Min, Yueshen Xu, Wang

Shuoping:

Yuyu Yin, Wenting Xu, Yueshen Xu, He Li, Lifeng

Yu:

Yuyu Yin, Yueshen Xu, Wenting Xu, Min Gao,

Lifeng Yu, Yujie Pei:

Zhang, Y., He, S., Liu, K., & Zhao, J. (2016, Febru-

ary). A Joint Model for Question Answering over

Multiple Knowledge Bases. In AAAI (pp. 3094-

3100).

Zhuang, H., & Wongsoontorn, S. (2008). Design and

tuning of fuzzy control surfaces with bezier func-

tions. Intelligent Automation & Soft Computing,

14(1), 13-28.

7 NOTES ON CONTRIBUTORS
Min Zhang received the Ph.D. degree

in computer science from Zhejiang

University in 2012, and currently

works at College of Computer Sci-

ence at Hangzhou Dianzi University.

His research areas include image pro-

cessing, machine vision and machine

learning.

HaibinTeng is studying for a master's

degree in computer science and tech-

nology, Hangzhou Dianzi University，
HangZhou, China. He is currently

doing research on nature language

processing based on deep learning,

and focus about apply NLP in com-

puter game.

Ming Jiang received the Ph.D. degree

in computer science from Zhejiang

University in 2004, and currently is a

professor of College of Computer

Science at Hangzhou Dianzi Universi-

ty. His research areas include data

mining, image processing and artifi-

cial intelligence.

Tao Wen is studying for a master's

degree in Software Engineering,

Hangzhou Dianzi University, Hang-

Zhou, China. He is currently doing

research on natural language pro-

cessing based on deep learning.

INTELLIGENTAUTOMATIONANDSOFTCOMPUTING 635

Tang Jingfan, received the Ph.D.

degree in computer science from

Zhejiang University in 2005, and

currently works at College of Com-

puter Science at Hangzhou Dianzi

University. His research areas in-

clude Software Engineering and

artificial intelligence.

	Blank Page

