
Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press
Vol. 25, no. 3, 637–647
https://doi.org/10.31209/2019.100000118

CONTACT Jiangang Shi lukepro@163.com

© 2019 TSI® Press

Novel Android Malware Detection Method Based on Multi-dimensional
Hybrid Features Extraction and Analysis

Yue Li1,Guangquan Xu2,3, Hequn Xian1,*, Longlong Rao3 and Jiangang Shi4,*

1College of Computer Science and Technology, Qingdao University, Shandong Province, 266071,China
2 Big Data School, Qingdao Huanghai University, Qingdao City, Shandong Province, 266427, China
3 Tianjin Key Laboratory of Advanced Networking (TANK), College of Intelligence and Computing, Tianjin University, Tianjin,
300350, China
4 Shanghai Shang Da Hai Run Information System Co., Ltd, Shanghai, 200444, China
*Corresponding author: Hequn Xian and Jiangang Shi

KEY WORDS: Android Malware Detection, Dynamic Analysis, Feature Selection, Machine Learning, Multi-
dimensional Hybrid Features.

1 INTRODUCTION
WITH Internet-centric mobile applications and

mobile intelligent devices becoming increasingly

popular, mobile applications are playing increasingly

critical roles in helping users fulfil a number of types

of functions, including shopping, map navigation, and

online work. According to statistics from Gartner

(2018), in 2017, smartphone sales to end-users totaled

over 1.5 billion units, an increase of 2.7 percent over

2016, among which Android systems accounted for

85.9 %, iOS 14.0 %, and other operating systems 0.1

%. Data from AppBrain (AppBrain, 2018) indicated

that, as of April 25, 2018, the number of applications

available from the Google Play Store, the official

Android application (app) market, is approximately

3.8 million. Nowadays, hackers and malware

developers are more inclined to select Android

operating systems as the preferred attack target (Felt,

Finifter, Chin, Hanna, & Wagner, 2011; Park, Seo, &

Yi, 2016). The reasons for this are attributed to the

open-source nature and openness of the Android

system, and the fact that numerous Android third-

party application markets do not have a rigorous app

review mechanism. The increase in the number of

malicious Android apps is significant. A report from

Symantec (2018) indicates that threats in the mobile

space continue to increase annually. The number of

new mobile malware variants increased by 54 % in

2017, as compared to 2016. And in the year of 2017,

ABSTRACT

In order to prevent the spread of Android malware and protect privacy
information from being compromised, this study proposes a novel multi-
dimensional hybrid features extraction and analysis method for Android malware
detection. This method is based primarily on a multidimensional hybrid features
vector by extracting the information of permission requests, API calls, and
runtime behaviors. The innovation of this study is to extract greater amounts of
static and dynamic features information and combine them, that renders the
features vector for training completer and more comprehensive. In addition, the
feature selection algorithm is used to further optimize the extracted information
to remove a number of extraneous features, and a new multi-dimensional
hybrid features vector is obtained. The multi-dimensional hybrid features vector
is then used to train the classification model. Finally, the unknown samples are
detected and identified by using the obtained classification model. Our
experiment is conducted based on 359 malicious and 500 benign applications as
experimental samples, and the results indicate that our proposed method
performs better in the accuracy rate of Android malware detection compared
with those methods using static methods alone.

638 XU, RAO, and SHI

there were on average 24,000 malicious mobile

applications blocked each day. As is well known,

malicious software is a significant threat to the

Android system. And the speed of malware spreading

is also amazing (Xiao, Gong, & Yu, 2011). The

common malicious behaviors of malicious apps

include malicious fee deductions, information theft,

and SMS hijacking, that could lead to serious

disclosure of user privacy information, and possibly

result in loss of life or property. As the usage of

Android smartphones is increasing significantly,

malicious software is also becoming more prevalent.

Privacy data of mobile phone users has become a

primary target of malicious software. In order to

effectively prevent the spreading of Android malware,

it is necessary to develop a safe and efficient detection

method to identify and prevent the disclosure of

privacy information.

Besides the threat to user privacy, malware could

significantly threaten the underlying infrastructure as

it could open a gate to the legal access if the core

network is vulnerable in (for example) fog/edge

computing or mobile edge computing. Mobile-edge

computing provides IT and cloud-computing

capabilities within the radio access network (RAN) in

close proximity to mobile subscribers, that are

primarily mobile phones for users. Mobile-edge

computing allows content, services, and apps to be

accelerated, increasing responsiveness from the edge.

The experience of mobile subscribers can be enriched

through efficient network and service operations,

based on insight into the radio and network conditions.

Although computing platforms can provide secure

facilities, the potential threat from malware in mobile

phones still exists.

In recent years, numerous Android malware

detection methods have been proposed. The traditional

Android malware detection methods can be divided

into signature-based methods (Grace, Zhou, Zhang,

Zou, & Jiang, 2012) and behavior-based methods

(Zolkipli & Jantan, 2010). Signature-based detection

methods (Grace et al., 2012) are employed to extract

the signatures of malicious software samples and store

them in a database. When scanning the app to be

tested, the stored signatures can be compared to the

scanned one to determine whether it is a known

malware. This method has the advantages of fast

detection speed and high accuracy. However, the

disadvantage lies in that it cannot detect unknown

malware, and the virus signature database has to be

continually updated. Behavior-based detection

methods (Zolkipli & Jantan, 2010) are employed to

monitor the behavior features of an app when it is

running, and then match it to the known malicious

behavior features to determine whether the target file

contains malicious feature code. Although this method

has a significant false-positive rate, it can detect

unknown malicious codes or viruses.

As malicious software constantly uses new

technologies and methods, the typical analysis

methods based on signature and behavior analysis

have lost their timeliness. As a result, people are

continually attempting to apply new algorithms and

methods to Android malicious software detection

(Liang, Wu, Xu, & Ma, 2015; Sufatrio, Tan, Chua, &

Thing, 2015). With the maturing of large-data-related

technologies in recent years, a number of researchers

have begun to introduce data mining and machine

learning methods into Android malware detection

(Arslan, Gunduz, & Sagiroglu, 2016).

Machine learning-based detection methods train

the machine learning classification algorithm (Gu,

Sun, & Sheng, 2017) by using the feature vector set

extracted from the sample set, that can automatically

predict the classification of unknown malware. The

method of extracting features for each Android app is

divided into static analysis and dynamic analysis. The

static analysis method (Shabtai, Moskovitch, &

Elovici, 2009) primarily utilizes the decompile

technology to extract the application programming

interface (API) call sequence, program instruction

sequence, and other static features from an app, while

it is not necessary to run the app. This method has the

advantages of rapid detection and high efficiency.

Static analysis methods are typically based on a

number of rules to retrieve, match, and compare the

known features, and then obtain the relevant results.

However, in a number of cases, the static analysis

method could yield false positives, that reduces the

overall accuracy of static detection. In addition,

utilizing code obfuscation techniques (You & Yim,

2010; Yin et al., 2016, 2017) can bypass detection by

the static analysis method. Therefore, it can be

combined with dynamic analysis to improve the

accuracy rate. The dynamic analysis method (Tam,

Fattori, Khan, & Cavallaro, 2015) uses "sandbox or

virtual machine" to simulate the running of apps and

analyzes the run-time behavior characteristics of the

application through interception and monitoring

technologies. To some extent, this method can bypass

code obfuscation and other code protection

mechanisms, however, the detection speed is

relatively slow.

In order to overcome the shortcomings of the

existing research methods, we propose a hybrid

features analysis method to detect Android malware,

that combines the advantages of static and dynamic

analysis methods. In this study, the hybrid features

vectors are extracted using a hybrid feature analysis

method. In order to determine the most efficient

detection method to deal with Android malware

threats, we train the five different machine learning

classifiers with the vectors, including the support

vector machine (SVM), decision tree (J48), random

forest, naive Bayes, and k-nearest neighbor.

Experimental results indicate that, compared to using

only the static analysis method, the feature set

INTELLIGENT AUTOMATION AND SOFT COMPUTING 639

extracted by the hybrid analysis method is more

efficient in training classifiers.

The rest of this study is organized as follows.

Related work is discussed in Section 2. Section 3

briefly describes the Android malware detection

model, analyzes the various feature extraction

methods, and optimizes the extracted feature sets

using the feature selection algorithm. Section 4

presents the experimental results. Finally, we conclude

in Section 5 and discuss future studies.

2 RELATED WORK
IN recent years, there have been numerous related

studies applying machine learning methods in the

Android malware-detection field.

In the static analysis method, Cho, Kim, Shim,

Ryu, and Im (2016) proposed a malware family

classification framework using a sequence alignment

method, which was widely used in the bioinformatics

field. Yerima, Sezer, McWilliams, and Muttik (2013)

used static analysis methods to detect unknown

Android malware by means of training Bayesian

classifiers. The study was based on a great number of

actual malware samples, extracting applications

permissions as features. It could filter out the benign

applications to decrease the workload of virus analysis

experts and overcome the limitations of the traditional

signature-based detection methods. Chan and Song

(2014) proposed a static Android malware detection

method that extracted the permissions and API calls

characteristics of each app as the feature-vector set for

classifier training. Peng et al. (2012) used probabilistic

generative models to calculate the risk level and risk

scores according to app request permissions. Drebin

(Arp, Spreitzenbarth, Hubner, Gascon, & Rieck, 2014)

conducted a static analysis of the Android package

(APK) file. They not only extracted the permissions of

the application request from the manifest file, but also

analyzed the application of the sensitive API calls and

a number of network addresses from the Dalvik

executable (Dex) file. Drebin transformed the feature

information obtained from static analysis into feature

vectors, and then detected malware by using support

vector machine algorithms. Wu, D., Mao, Wei, Lee,

and Wu, K. (2012) proposed a method of malicious

behavior analysis based on static behavior

characteristics. This method could characterize the

malicious behavior by extracting static information

from the APK, including requests permissions,

components, intents, and API calls. In order to detect

different types of malicious behaviors, this study

compared the results of different algorithms in the

detection of different feature sets and recognition

accuracy. According to the experimental results, the

greatest recognition rate of this method was when the

application is first clustered using the k-means

algorithm and then classified using the k-nearest

neighbor algorithm.

In the dynamic analysis method, Amos, Turner,

and White (2013) proposed STREAM, a feature

vector collection framework, that accelerated the

large-scale verification of machine learning

classification of Android malware. It was a distributed

mobile malware detection framework that could

automatically train and evaluate malware classifiers.

In addition, STREAM was designed to be

configurable, allowing future researchers to modify

and configure the framework according to their own

needs. Dash et al. (2016) proposed DroidScribe, a

method of automatic classification of Android

malware based on dynamic runtime behavior analysis,

that used dynamic analysis to observe the runtime

behavior of system calls, and provided an Android

malware detection method different from the static

method. Burguera, Zurutuza, and Nadjm-Tehrani

(2011) proposed Crowdroid, a method of using

dynamic methods to analyze application behavior to

detect Android malware by collecting the system call

traces of apps that were running on different Android

platforms as feature sets and using clustering

algorithms to detect malware. Sahs and Khan (2012)

proposed a detection system based on machine

learning, extracting great numbers of features and

using off-line methods to train a one-class support

vector machine. Rieck, Trinius, and Willems (2011)

proposed a framework for automatically analyzing the

malware behavior using machine learning methods

that performed a behavioral analysis in an incremental

manner, avoiding the run-time and memory overhead

of previous methods.

3 PROPOSED DETECTION METHOD
IN using machine learning to detect Android

malware, the bulk of current studies are based on

either static or dynamic analysis to extract the features

of Android apps. We proposed an approach that

combines the advantages of static and dynamic

analysis. Using the hybrid-analysis method, we select

three characteristic attributes that can reflect the

behavior of Android apps in nature as feature vectors:

the request permissions, API calls information, and

dynamic runtime behaviors of Android apps. The

three extracted features are then formed into a hybrid

feature vector, that is used to train the machine

learning classification algorithm. Finally, the unknown

samples are detected and identified according to the

classification model that has been trained.

640 XU, RAO, and SHI

Figure 1. Architecture of proposed detection method.

3.1 Architecture of The Proposed Approach
An overview of the proposed method is shown in

Figure 1. The method of using machine learning to

detect malware is divided primarily into the following

parts: data collection, feature extraction, feature data

preprocessing, classifier model training, and

classification results. The complete malware detection

process can be divided into two phases: the training

phase, and the testing phase. In the training phase we

first extract feature vectors from benign software and

malicious software. The feature vectors are then

selected to remove the features that have no effect on

the classification results, and the optimized feature

vectors are obtained. Finally, a hybrid features vector

is formed as an input for the classifier model.

Different classifier models are then selected to train,

and the classifier models are obtained through

continuous training. In the testing phase, the unknown

samples are detected by the obtained classifier model.

As the classifier models are obtained by means of

training the hybrid feature vectors, the classifier

models will output the detection results when the

unknown samples are inputted into the classifier

models in the detection.

3.2 Feature Extraction
This section introduces the extraction of hybrid

feature vector sets. The acquisition of hybrid feature

vectors is a highly critical step. First, the static

analysis method is used to analyze the Android APK

files, that can extract the permissions features and

sensitive API calls features of each app. Second, the

dynamic analysis method can be used to extract the

runtime behavior features of each app in the running

process. Finally, after obtaining the hybrid feature

vector sets, the feature selection algorithm is used to

optimize the acquired feature information and

eliminate the features that have no influence on the

classification.

3.2.1 Static analysis and static features
Currently, the bulk of the static analysis methods

are extracted and analyzed from, amongst others,

AndroidManifest.xml file, Lib library files (.so files),

and Java source files. In this study, we analyze

primarily the classes.dex and AndroidManifest.xml

files in the APK file, and then invoke the reverse

analysis tool to parse the above two files and extract

the feature vectors. The AndroidManifest.xml file is

one of the most important files in an Android app. It is

an important permission request and definition profile

for the Android system, and programmers must

predefine and apply for permissions required by the

app in the AndroidManifest.xml file when developing

the app. Therefore, we parse this file to extract the

permissions characteristics of the app. The Dex file is

an executable bytecode file on Android that is

compiled by the Java Virtual Machine (JVM) and then

compiled by the Android virtual machine Dalvik. The

classes.dex is an essential file for each app, and

contains the primary execution code for Android apps.

To facilitate the reverse analysis, we use related tools

to obtain readable Java sources through decompiled

DEX files.

Permission Extraction: The primary aim of the

Android system setup permission mechanism is to

restrict apps accessing sensitive resources. However,

the "all-or-nothing" feature of the permission

mechanism is a security weakness. When developing

an app, the developer must first apply for all the

required permission information in the

AndroidManifest.xml file. Zhou and Jiang (2012)

reported that, from statistics of the frequency of use of

the number of permissions in benign and malicious

apps, a number of the SMS-related permissions, as

well as boot-strap self-starting permissions were

typically extensively used in malicious apps. A

number of malicious apps must request appropriate

sensitive permissions. The differences in information

in these permissions provide the theoretical feasibility

of the permissions as a feature of Android malware

detection. The process of acquiring Android app

permissions is to decompile the APK file using the

decompile tool, obtain the AndroidManifest.xml file,

and then read the file and obtain the permissions

information declared in the file.

In this study, we use the open source tool

Androguard (2018) to extract the permission features

from the APK package. The Androguard tool

(Androguard, 2018) is a powerful Android malware

analytics tool that provides a set of toolkits to assist

analysts in quickly identifying and analyzing the APK

files, making it simpler to get the information required

for the static analysis. We use the androlyze.py tools

in the Androguard open source project to extract

sensitive permission features from normal samples

and malicious samples. By analyzing the results

extracted from a great number of app samples, the

apps that exhibit malicious behavior frequently require

INTELLIGENT AUTOMATION AND SOFT COMPUTING 641

numerous sensitive permissions, such as malicious

fee-absorbing applications that typically apply for

SMS-related permissions, where SEND_SMS

permissions allow applications to send text messages,

READ_SMS permissions allow applications to read

SMS content. Of these, the

ACCESS_NETWORK_STATE, READ_P-

HONE_STATE, WRITE_EXTERNAL_STORAGE,

and INTERNET appear most frequently in normal and

malicious samples. We counted the number of times a

permission appears in samples and sorted the results in

descending order. Due to the length of the paper, we

only list the top 10 permissions here. Permissions and

their functional descriptions are presented in Table 1.

After obtaining the permission list, we selected the top

45 relevant permissions to form the feature vector

through optimization and analysis. Each app can be

represented by a 45-dimensional vector  
1 45

Per


, and

each dimension corresponds to a permission. If the

AndroidManifest.xml file of an app contains this

permission, the value is 1, otherwise it is 0.

Table 1. Permissions and their functions.

Permission Functional description

INTERNET Allow accessing to network
connections

READ_PHONE_STATE Allow reading only access to
phone state

ACCESS_NETWORK_ST-
ATE

Allow accessing to network
information

WRITE_EXTERNAL_STO-
RAGE

Allow writing to external storage

READ_SMS Allow reading of SMS messages
RECEIVE_BOOT_COMP-

LETED
Allow applications to boot up

RECEIVE_SMS Allow to receive SMS messages
SEND_SMS Allow to send SMS messages

CHANGE_WIFI_STATE Allow to change Wi-Fi
connectivity state

READ_CONTACTS Allow accessing user contact
information

API Calls Extraction: The APIs investigated in

this study refer to the function provided by the

Android system itself. By invoking these functions,

the app can access and obtain an amount of sensitive

data in the mobile phone, including contacts,

geographic location, photos, and accounts. It could

also trigger high-risk behaviors such as secretly

connecting the network and sending malicious SMS

messages for deducting expenses. These APIs, that are

related to sensitive data and high-risk behaviors, are

referred to as sensitive APIs in this study. As with the

permissions information, there are significant

differences in the use of these sensitive APIs because

of the difference between benign software and

malicious software. The malicious application of the

number of calls to sensitive APIs is significantly

greater than the benign application, that can reflect the

actual behavior characteristics of an app to some

extent, and therefore can be used as a feature of the

app to identify malicious behavior. We use the open

source tools Baksmali (2018) and Androguard to

reverse the analysis of classes.dex files, from which to

extract the relevant sensitive APIs. In this step, we

extracted the API calls features from a great number

of sample sets, and then used the filter feature

selection algorithm Relief (Kira and Rendell 1992) to

optimize them. We then totaled the number of times

each API is called as the initial value of the relevant

statistic vector component. After the feature selection

process, we obtained an optimal set of features with

22 API calls, each of which can be represented by a

22-dimensional vector  
1 22

API


, with each dimension

corresponding to an API. Table 2 presents the 22

selected API calls.

Table 2. Sensitive API calls.

API calls

getDeviceID() sendTextMessage()

getCellLocation() sendDataMessage()

getLineNumber() getConnectionInfo()

getNetworkOperator() getWifiState()

getSimSerialNumber() setWifiEnabled()

getOutputStream() getSubscriberId()

getInputStream() addCompletedDownload()

getNetworkInfo() AudioRecord.read()

startService() AudioRecord.getRecordingState()

getLatitude() MediaRecorder.setCamera()

getLongitude() MediaRecorder.setOutputFile()

3.2.2 Dynamic analysis and dynamic features
In the dynamic analysis phase, the primary work is

the collection of the runtime behavior features of each

app. Android apps comprise a variety of components

that can trigger a series of interface calls. In order to

optimally collect the runtime behavior features of the

unknown sample in the behavioral detection of the

app, when the app installed in the simulator is running,

we use the automated test tool Monkey (2018) to

simulate the event flow to run all components of the

app. The Monkey can generate pseudo-random event

streams, that can send a series of event streams to the

app and can obtain the behavior characteristics when

the app receives various events. Automatic test

technology uses programs instead of humans to

simulate the daily operation of a user. It can

automatically test unknown samples and trigger the

relevant malicious code, so that the monitoring

program can record its malicious behavior.

We used the open source tools DroidBox (2018) to

monitor the runtime behavior of apps. This is an

Android dynamic analysis tool that allows rapid

collection and visually displays the behavior of the

app. Its primary functions are monitoring the

information that includes the network communication

642 XU, RAO, and SHI

data, file read and write operations, information

leakage in SMS, and broadcast receiver component

information. By using the log mechanism of the

Android systems and DroidBox, the app behavior

information in the framework layer and native layer,

that can accurately reflect the behavioral

characteristics of the app, can be obtained. We

installed and ran each app on DroidBox, and then used

automated test techniques to monitor whether each

app exhibited malicious behavior, including automatic

connection to the network, sending malicious SMS

messages, and obtaining privacy information. In this

step, we count the number of occurrences of each

runtime behavior feature as the initial value of the

relevant statistic vector component. After the feature

selection process, we collect a total of 20 features (i.e.,

runtime behavior features) for each monitored app

from a significant number of aspects such as the

battery, binder, network, and user activity. Of these

aspects, behavior_sentSMS represents the behavior of

sending SMS messages, behavior_out-goingCalls

represents the behavior of making a call,

behavior_openingKeyboard is the behavior that opens

keyboard input, behavior_packetsWiFi represents the

behavior of sending packets over a WiFi, and

behavior-r_openingCamera represents the behavior of

opening the camera. As a result, we obtained a set of

features containing 20 runtime behaviors. Each app

can be represented by a 20-dimensional vector

 
1 20

Runbehavior


, and each dimension corresponds to

a runtime behavior.

3.2.3 The integrated feature
After the feature extraction of the above two

sections, three feature vectors of three types of

features are formed Each app can obtain a set of

permission feature vectors  
1 45

Per


, a set of API calls

feature vectors  
1 22

API


, and a set of runtime

behaviors feature vectors  
1 20

Runbehavior


.

Combining these three feature vectors sets, each app

can be represented by an 87-dimensional hybrid

feature vector  
1 87

, ,Per API Runbehavior


. Each

feature in the hybrid feature vector is binary,

indicating that if an app contains this feature, the value

of the feature is 1, and if not, the value is 0. The

combination of the hybrid feature vectors can better

represent the characteristics of the application to

distinguish between malware and benign software, and

further improve the detection accuracy.

3.3 Feature Selection
Feature selection is an important process of data

preprocessing. We extracted a significant number of

features. However, in order to improve the efficiency

and accuracy of the classifier, it is necessary to

remove the features that have no effect on the

classification. At the same time, there are excessive

irrelevant features that have an influence on the effect

of the classification. The greater the number of

features used in training the classification model, the

longer it takes to train the classification model.

Therefore, the feature selection is critical to the

training of the model. This study assumes that the

initial feature set contains all the important

information. The process of feature selection is to

select a subset of the features that contain all the

important information from the initial set of features.

In this study, we use the filter feature selection

algorithm to first select the data sets, and then train the

classifier. The feature selection process is independent

of the subsequent classifier. Kira and Rendell (1992)

proposed Relief, that is a highly efficient filter feature

selection algorithm. It uses "relevant statistic vectors"

to measure the importance of features. The algorithm

is primarily aimed at solving two classification

problems. The basis of Relief is how to determine the

value of the "relevant statistic vector". Assume that

the training set D is       1 1 2 2, , , ,..., ,n nx y x y x y , for

each sample ix , its feature j corresponds to the

relevant statistic vector is as follows:

2 2

, ,(,) (,)j j j j j

i i nh i i nm
i

diff x x diff x x    (1)

where
j

ax represents the value of sample ax on the

feature j , ,i nhx is labeled a "near-hit", that represents

the closest neighbor of sample ix in its same

category, and ,i nmx is labeled "near-miss", that

represents the nearest neighbor of sample ix in a

different category. As the features of the malicious

samples and benign samples extracted in this study are

discrete, if
j j

a bx x , then (,) 0j j

a bdiff x x  ; otherwise

(,) 1j j

a bdiff x x  . As can be seen from the above

equation, if the distance between ix and its near-hit

,i nhx on feature j is less than ix and its near-miss

,i nmx , then it is indicated that feature j is

advantageous to distinguish between the malicious

samples and benign samples; otherwise, it is

disadvantageous. Therefore, the greater the value of

equation (1), the stronger the classification ability of

the feature is. From equation (1), the evaluation value

of each feature is obtained, and the relevant statistic

vector component of the feature is obtained by

averaging the evaluation value of all the samples to

the same feature, and the greater the vector component

value, the stronger the classification ability.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 643

3.4 Machine Learning Classifier
The malware detection based on machine learning

is a new application field of machine learning, and its

essence is to classify benign software and malicious

software using classification algorithms. Android

malware detection belongs to two-classification

problems, and we choose different classifier

algorithms to detect malicious software. The classifier

algorithms we used include SVM (Cristianini &

Shawe-Taylor, 2000; Gu & Sheng, 2017; Gu, Sheng,

& Wang, 2015), k-nearest neighbor (Liao & Vemuri,

2002), naive Bayes (Domingos & Pazzani, 1997),

decision tree (J48) (Quinlan, 1986), and random forest

(Ho, 1998). Of these, the J48 decision tree algorithm

we used in our experiment is the implementation of

the C4.5 algorithm (Quinlan, 1993) in WEKA (Hall,

Frank, & Holmes, 2009). Different classifier

algorithms have different detection capabilities,

therefore, it is essential to select the appropriate

classifier algorithm. Typically, the performance of a

classifier algorithm is evaluated by using three

performance measures: true positive rate (TPR), false

positive rate (FPR), and accuracy. The comparison

and analysis of different classifier algorithms is a

critical point in this study. In the experimental

verification phase, we will make a comparative

analysis of these algorithms to determine which has

the best capabilities for Android malware detection.

4 EXPERIMENTS AND RESULT
IN this section, we use the machine learning tool

WEKA (Hall et al., 2009) to train the classification

model for the features obtained from the experimental

samples. Based on the Java environment, WEKA is

free open source machine learning software, that

integrates a great number of machine learning

algorithms and has the characteristics of significant

efficiency and accuracy. All experiments were

performed on a computer with a 3.20GHz Intel (R)

Core (TM) i5 CPU, with 8GB of memory.

4.1 Data Collection
In order to ensure the reliability and wide coverage

of the experiment, we collected a total of 359

malicious apps and 500 benign apps as experimental

samples. Of these, 228 malicious samples were

derived from the third-party sample collection

platform VirusShare (https://virusshare.com), and 131

malicious samples from the set of malware samples

provided by Contagiomobie

(http://contagiominidump.blogspot.co-m). These two

platforms systematically collected a wide range of

families of Android malicious samples, including their

various derivative versions, and provided powerful

data support for our malware detection study. The

benign samples used in this study were primarily

downloaded from the Google Play Store. We assumed

that all of the apps from the Google Play Store were

benign applications. In this experiment, we randomly

selected 150 malicious apps and 150 benign apps from

the experimental samples, and then combined them as

a training set. We similarly obtained a test set. The

features were then extracted from each app according

to the method described in Section 3. By integrating

the static feature vectors and the dynamic feature

vectors, hybrid feature vectors for classification were

formed. The following experiments were performed

on these two data sets.

4.2 Performance Evaluation
The following introduces a number of appropriate

performance metrics that evaluate the performance of

a classification algorithm. The four basic metrics are

true positive (TP), false positive (FP), true negative

(TN), and false negative (FN). where TP is the number

of malicious applications classified correctly, FP is the

number of benign applications incorrectly classified,

TN is the number of benign applications correctly

classified, and FN is the number of malicious

applications incorrectly classified. As can be seen in

Table 3, these four metrics can form a confusion

matrix.

Table 3. Confusion matrix.

Prediction Malicious Benign

Malicious TP FN

Benign FP TN

The following five performance measures are

derived from the confusion matrix for calculating and

evaluating the performance of the classifier:

 ()
TP

True positive rate TPR Recall
TP FN

 


 (2)

 ()
FP

False positive rate FPR
TN FP




 (3)

TP TN

Accuracy
TP TN FP FN




  
 (4)

TP

Precision
TP FP




 (5)

()()()()

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


   
 (6)

Where TPR, or the recall rate, is the proportion of

malware being correctly predicted by the classifier,

and FPR, or false alarm rate, is the proportion of

malware being incorrectly predicted by the classifier

as benign software. Accuracy is the proportion of all

samples being correctly classified to the total number

of samples, and is used to measure system errors, and

the greater the value, the smaller the system error.

Precision is the number of samples correctly classified

as malicious among those classified as malicious. The

644 XU, RAO, and SHI

Matthews correlation coefficient (MCC) is used to

evaluate the quality of binary classifications in

machine learning. The value range is [-1,1], where 1

represents the perfect prediction, 0 represents the same

effect as the random classifier, and -1 represents the

predicted result being completely different from the

actual result. The greater the values of accuracy and

TPR, the smaller the value of FPR, and the better the

classification effect.

4.3 Experiment Results
There are two primary aims of our study: to verify

whether the combination of static analysis and

dynamic analysis can improve the accuracy of

malware detection, and to determine which

classification algorithm is the best for Android

malicious software detection.

In Table 4, we present the classification results for

five different classifiers when using only static

methods to extract features (i.e., permission, API

calls). The results indicate that the accuracy rate of the

five classifier algorithms is greater than 84 %. The

table also indicates that the random forest algorithm

has the greatest accuracy rate of 92.07 %, and its

classification effect is the best. By contrast, Table 5

presents the classification results for the five different

classifier algorithms, SVM, k-nearest neighbor, naive

Bayes, decision tree (J48), and random forest, when

the feature extraction uses the hybrid analysis method

(i.e., permission, API calls, and runtime behavior). As

can be seen from Table 5, the performance of the

random forest algorithm remains the best with an

accuracy rate of 94.89 %, that is 2.82 % greater than

when only using static methods. The classification

accuracy of the SVM algorithm improved by

approximately 2.4 % to 93.66 %. Compared to Table

4, we find that the performance metrics of the

experimental results are improved after using the

hybrid analysis method, and it is clear that the hybrid

analysis method improves the detection accuracy.

Table 4. Classification results from static methods.

Classifier
Model

Measure Metrics (%)

TPR FPR Accuracy Precision MCC

SVM 92.47 9.74 91.27 90.47 0.83

J48 91.97 14.72 88.19 86.20 0.77

Naive
Bayes

93.49 19.77 85.74 82.54 0.74

KNN 90.01 19.41 84.56 82.26 0.71

Random
Forest

92.57 8.55 92.07 91.54 0.84

Table 5. Classification results from hybrid methods.

Classifier
Model

Measure Metrics (%)

TPR FPR Accuracy Precision MCC

SVM 95.17 7.74 93.66 92.48 0.87

J48 93.38 14.02 89.34 86.95 0.80

Naive
Bayes

89.39 19.05 84.52 82.43 0.71

KNN 92.31 17.65 86.71 83.95 0.75

Random
Forest

95.3 5.3 94.89 94.73 0.90

Figure 2 shows more visual and intuitive

classification effects of the different classifier

algorithms in Android malware detection. It can be

clearly seen that the random forest algorithm has the

best classification effect, followed by the SVM

algorithm, while the naive Bayes algorithm has the

smallest detection accuracy. To summarize, the

experimental results indicate that the feature

extraction method of hybrid analysis can improve the

accuracy of classification results in Android malware

detection. In addition, by comparison of the

performance of five different classifiers, we

determined that the random forest algorithm has the

best detection effect.

Figure 2. Accuracy analysis: Using different classifiers.

5 CONCLUSIONS AND FUTURE WORKS
IN this study, we proposed a multi-dimensional

hybrid-features extraction and analysis method for the

detection of Android malwares by extracting

permissions, API calls, and runtime behaviors as

feature sets. Combining the three into a set of hybrid-

feature vectors, we used the different machine

learning classification algorithms to train the

classification detection model after the feature

selection algorithm was used to optimize it. We

validated the proposed method simulation

experiments. The experimental results indicated that

this method could effectively detect and classify

Android malware and obtain greater detection rates.

INTELLIGENT AUTOMATION AND SOFT COMPUTING 645

Typically, because of the diversity of malicious

behavior in malicious apps, the features extracted by

the hybrid analysis method can more comprehensively

and effectively show the characteristics of Android

apps. We demonstrated that the multi-dimensional

hybrid analysis method can improve the accuracy of

Android malware detection compared to single static

feature extraction methods. In addition, after reducing

the dimension of the extracted hybrid feature vectors,

a number of extraneous features were removed, that

increased the classification accuracy and achieved

better detection effects. Finally, we chose different

classification algorithms to compare the classification

effects, and through analysis it was found that the

random forest and SVM algorithms exhibited the

greatest accuracy rates.

For future studies, we will consider the approach of

semantics learning into feature extraction to analyze

the behavior of malware. In this way, we can further

mine the association rules between features and select

better feature selection algorithms to reduce the

redundancy of features, and further improve

classification efficiency.

6 ACKNOWLEDGEMENT
THIS work is partially sponsored by the State Key

Development Program of China (No. 2017YFE-

0111900, No. 2017YFB1401201), National Science

Foundation of China (No. 61572355, U1736115).

7 DISCLOSURE STATEMENT
NO potential conflict of interest was reported by

the authors.

8 REFERENCES
Amos, B., Turner, H., & White, J. (2013) Applying

machine learning classifiers to dynamic Android

malware detection at scale. 2013 9th

International Wireless Communications and

Mobile Computing Conference (IWCMC) (pp.

1666-1671). Sardinia, Italy: IEEE.

Androguard (2018). Retrieved from https://code.goo-

gle.com/archive/p/androguard.

AppBrain (2018). Android Operating System

Statistics, Google Play Stats. Retrieved from

https://www.a-ppbrain.com/stats/number-of-

android-apps.

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H.,

& Rieck, K. (2014). DREBIN: Effective and

Explainable Detection of Android Malware in

Your Pocket. In NDSS Symposium 2014. DOI:

10.14722/ndss.2014.23247.

Arslan, B., Gunduz, S., & Sagiroglu, S. (2016). A

review on mobile threats and machine learning

based detection approaches. 2016 4th

International Symposium on Digital Forensic and

Security (ISDFS) (pp. 7-13). Little Rock: IEEE.

Baksmali (2018). Retrieved from https://github.com/J-

esusFreke/smali.

Burguera, I., Zurutuza, U., & Nadjm-Tehrani, S.

(2011) Crowdroid: behavior-based malware

detection system for Android. In Proceedings of

the 1st ACM workshop on Security and privacy in

smartphones and mobile devices (SPSM '11) (pp.

15-26). New York, USA: ACM.

Chan, P. P., & Song, W. K. (2014). Static detection of

Android malware by using permissions and API

calls. 2014 International Conference on Machine

Learning and Cybernetics (pp. 82-87). Lanzhou,

China: IEEE.

Cho, I. K., Kim, T. G., Shim, Y. J., Ryu, M., & Im, E.

G. (2016). Malware Analysis and Classification

Using Sequence Alignments. Intelligent

Automation & Soft Computing, 22(3), 371-377.

Cristianini, N., & Shawe-Taylor, J. (2000). An

Introduction to Support Vector Machines and

Other Kernel-Based Learning Methods.

Cambridge: Cambridge University Press.

Dash, S. K., Suarez-Tangil, G., Khan, S., Tam, K.,

Ahmadi, M., Kinder, J., & Cavallaro, L. (2016).

DroidScribe: Classifying Android Malware Based

on Runtime Behavior. 2016 IEEE Security and

Privacy Workshops (SPW) (pp. 252-261). San

Jose, CA, USA: IEEE.

Domingos, P., & Pazzani, M. (1997). On the

optimality of the simple Bayesian classifier under

zero-one loss. Machine learning, 29(2), 103-130.

DroidBox (2018). An Android Application Sandbox

for Dynamic Analysis. Retrieved from

http://code.google.com/p/droidbox.

Felt, A.P., Finifter, M., Chin, E., Hanna S., & Wagner,

D. (2011). A survey of mobile malware in the

wild. Proceedings of the 1st ACM workshop on

Security and privacy in smartphones and mobile

devices (pp. 3-14). New York, USA: ACM.

Gartner (2018). Gartner Says Worldwide Sales of

Smartphones Grew 9 Percent in First Quarter of

2017. Retrieved from

https://www.gartner.com/newsroom/id/3725117.

Grace, M., Zhou, Y., Zhang, Q., Zou, S. H., & Jiang,

X. X. (2012). Riskranker: scalable and accurate

zero-day android malware detection. Proceedings

of the 10th international conference on Mobile

systems, applications, and services (pp. 281-294).

New York, USA: ACM.

Gu, B., & Sheng, V.S. (2017). A robust regularization

path algorithm for v-support vector classification.

In IEEE Transactions on Neural Networks and

Learning Systems, 28(5), 1241-1248.

Gu, B., Sheng, V.S., & Wang, Z. (2015). Incremental

learning for v-support vector regression. Neural

Networks, 67, 140-150.

Gu, B., Sun, X., & Sheng, V. S. (2017). Structural

Minimax Probability Machine. IEEE

Transactions on Neural Networks and Learning

Systems, 28(7), 1646-1656.

https://www.gartner.com/newsroom/id/3725117

646 XU, RAO, and SHI

Hall, M., Frank, E., & Holmes, G. (2009). The WEKA

data mining software: an update. ACM SIGKDD

explorations newsletter, 11(1), 10-18.

Ho, T.K. (1998). The random subspace method for

constructing decision forests. IEEE transactions

on pattern analysis and machine intelligence,

20(8), 832-844.

Kira, K., & Rendell, L.A. (1992). The feature

selection problem: Traditional methods and a new

algorithm. Proceedings Tenth National

Conference on Artificial Intelligence (pp. 129-

134). San Jose, CA: AAAI.

Liang, H., Wu, D., Xu, J., & Ma, H. (2015). Survey on

privacy protection of android devices. 2015 IEEE

2nd International Conference on Cyber Security

and Cloud Computing (pp. 241-246). New York,

USA: IEEE.

Liao, Y., & Vemuri, V.R. (2002). Use of k-nearest

neighbor classifier for intrusion detection.

Computers & security, 21(5), 439-448.

Monkey (2018). Retrieved from

https://developer.android.com/studio/test/monkey

.html.

Park, S., Seo, C., & Yi, J. H. (2016). Cyber threats to

mobile messenger apps from identity

cloning. Intelligent Automation & Soft

Computing, 22(3), 379-387.

Peng, H., Gates, C., Sarma, B., Li, N. H., Qi, Y.,

Potharaju, R., … Molloy, I. (2012). Using

probabilistic generative models for ranking risks

of android apps. Proceedings of the 2012 ACM

conference on Computer and communications

security (pp. 241-252). New York, USA: ACM.

Quinlan, J. R. (1986). Induction of decision trees.

Machine learning, 1(1), 81-106.

Quinlan, J. R. (1993). C4.5: Programs for machine

learning. San Francisco: Morgan Kaufmann.

Rieck, K., Trinius, P., & Willems, C. (2011).

Automatic analysis of malware behavior using

machine learning. Journal of Computer Security,

19(4), 639-668.

Sahs, J., & Khan, L. (2012). A Machine Learning

Approach to Android Malware Detection. 2012

European Intelligence and Security Informatics

Conference (pp. 141-147). Odense, Denmark:

IEEE.

Shabtai, A., Moskovitch, R., & Elovici, Y. (2009).

Detection of Malicious Code by Applying

Machine Learning Classifiers on Static Features:

A state-of-the-art Survey. Information security

technical report, 14(1), 16-29.

Sufatrio, Tan, D. J., Chua, T. W., & Thing, V. L.

(2015) Securing android: a survey, taxonomy,

and challenges. ACM Computing Surveys

(CSUR), 47(4), 58.

Symantec (2018). Internet Security Threat Report

2018. Retrieved from

https://www.symantec.com/security-center/threat-

report.

Tam, K., Fattori, A., Khan, S., & Cavallaro, L. (2015).

CopperDroid: Automatic Reconstruction of

Android Malware Behaviors. In NDSS

Symposium 2015. DOI:

10.14722/ndss.2015.23145.

Wu, D. J., Mao, C. H., Wei, T. E., Lee, H. M., & Wu,

K. P. (2012). DroidMat: Android Malware

Detection through Manifest and API Calls

Tracing. 2012 Seventh Asia Joint Conference on

Information Security (pp. 62-69). Tokyo, Japan:

IEEE.

Xiao, R., Gong, X., & Yu, T. (2011). A Simulation

Approach To The Control Mechanism Of

Individual And Web Site In Malware

Spread. Intelligent Automation & Soft

Computing, 17(6), 781-792.

Yin, Y., Aihua, S., Min, G., Yueshen, X., & Shuoping,

W. (2016). QoS prediction for web service

recommendation with network location-aware

neighbor selection. International Journal of

Software Engineering and Knowledge

Engineering, 26(04), 611-632.

Yerima, S. Y., Sezer, S., McWilliams, G. & Muttik, I.

(2013). A New Android Malware Detection

Approach Using Bayesian Classification. 2013

IEEE 27th International Conference on Advanced

Information Networking and Applications (AINA)

(pp. 121-128). Barcelona, Spain: IEEE.

Yin, Y., Xu, Y., Xu, W., Gao, M., Yu, L., & Pei, Y.

(2017). Collaborative service selection via

ensemble learning in mixed mobile network

environments. Entropy, 19(7), 358.

You, I., & Yim, K. (2010). Malware Obfuscation

Techniques: A Brief Survey. 2010 International

Conference on Broadband, Wireless Computing,

Communication and Applications (pp. 297-300).

Fukuoka, Japan: IEEE.

Yin, Y., Yu, F., Xu, Y., Yu, L., & Mu, J. (2017).

Network location-aware service recommendation

with random walk in cyber-physical

systems. Sensors, 17(9), 2059.

Zhou, Y., & Jiang, X. (2012). Dissecting Android

Malware: Characterization and Evolution. 2012

IEEE Symposium on Security and Privacy (pp.

95-109). San Francisco, CA, USA: IEEE.

Zolkipli, M. F., & Jantan, A. (2010). Malware

behavior analysis: Learning and understanding

current malware threats. 2010 Second

International Conference on Network

Applications, Protocols and Services (pp. 218-

221). Kedah, MYS: IEEE.

9 NOTES ON CONTRIBUTORS
Yue Li is currently an undergraduate

student at College of Computer

Science and Technology, Qingdao

University, China. Her research

interests include information

security, IoT security.

https://developer.android.com/studio/test/monkey.html
https://developer.android.com/studio/test/monkey.html
https://www.symantec.com/security-center/threat-report
https://www.symantec.com/security-center/threat-report

INTELLIGENT AUTOMATION AND SOFT COMPUTING 647

Guangquan Xu is a Ph.D. and full

professor at the Tianjin Key

Laboratory of Advanced

Networking (TANK), College of

Intelligence and Computing,

Tianjin University, China. He

received his Ph.D. degree from

Tianjin University in March 2008.

He is a member of the CCF and IEEE. His research

interests include cyber security and trust management.

He is the director of Network Security Joint Lab and

the Network Attack & Defense Joint Lab. He has

published 70+ papers in reputable international

journals and conferences, including IEEE IoT J,

FGCS, IEEE access, PUC, JPDC, IEEE multimedia,

and so on. He served as a TPC member for IEEE UIC

2018, SPNCE2019, IEEE UIC2015, IEEE ICECCS

2014 and reviewers for journals such as IEEE access,

ACM TIST, JPDC, IEEE TITS, soft computing,

FGCS, and Computational Intelligence, and so on.

Hequn Xian received Ph.D degree

in the Institute of Software,

Chinese Academy of Sciences in

2009. He was a visiting scholar

with college of information science

and technology, the Pennsylvania

State University. His research

interests include cryptography,

cloud computing security, and network security.

Longlong Rao is currently a master

student at the Tianjin Key

Laboratory of Advanced

Networking (TANK), School of

Computer Science and Technology,

Tianjin University, China. He

received a bachelor degree from the

Xizang Minzu University in July

2013. His interests include network attack and PT.

Jiangang Shi is CEO of Shanghai

Shang Da Hai Run Information

System Co., Ltd, leading multiple

information systems projects

development in the field of

Campus Information Service. His

research interests include software

engineering, deep learning, data

mining.

	Blank Page

