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1 INTRODUCTION  
WITH Internet-centric mobile applications and 

mobile intelligent devices becoming increasingly 

popular, mobile applications are playing increasingly 

critical roles in helping users fulfil a number of types 

of functions, including shopping, map navigation, and 

online work. According to statistics from Gartner 

(2018), in 2017, smartphone sales to end-users totaled 

over 1.5 billion units, an increase of 2.7 percent over 

2016, among which Android systems accounted for 

85.9 %, iOS 14.0 %, and other operating systems 0.1 

%. Data from AppBrain (AppBrain, 2018) indicated 

that, as of April 25, 2018, the number of applications 

available from the Google Play Store, the official 

Android application (app) market, is approximately 

3.8 million. Nowadays, hackers and malware 

developers are more inclined to select Android 

operating systems as the preferred attack target (Felt, 

Finifter, Chin, Hanna, & Wagner, 2011; Park, Seo, & 

Yi, 2016). The reasons for this are attributed to the 

open-source nature and openness of the Android 

system, and the fact that numerous Android third-

party application markets do not have a rigorous app 

review mechanism. The increase in the number of 

malicious Android apps is significant. A report from 

Symantec (2018) indicates that threats in the mobile 

space continue to increase annually. The number of 

new mobile malware variants increased by 54 % in 

2017, as compared to 2016. And in the year of 2017, 
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there were on average 24,000 malicious mobile 

applications blocked each day. As is well known, 

malicious software is a significant threat to the 

Android system. And the speed of malware spreading 

is also amazing (Xiao, Gong, & Yu, 2011). The 

common malicious behaviors of malicious apps 

include malicious fee deductions, information theft, 

and SMS hijacking, that could lead to serious 

disclosure of user privacy information, and possibly 

result in loss of life or property. As the usage of 

Android smartphones is increasing significantly, 

malicious software is also becoming more prevalent. 

Privacy data of mobile phone users has become a 

primary target of malicious software. In order to 

effectively prevent the spreading of Android malware, 

it is necessary to develop a safe and efficient detection 

method to identify and prevent the disclosure of 

privacy information.  

Besides the threat to user privacy, malware could 

significantly threaten the underlying infrastructure as 

it could open a gate to the legal access if the core 

network is vulnerable in (for example) fog/edge 

computing or mobile edge computing. Mobile-edge 

computing provides IT and cloud-computing 

capabilities within the radio access network (RAN) in 

close proximity to mobile subscribers, that are 

primarily mobile phones for users. Mobile-edge 

computing allows content, services, and apps to be 

accelerated, increasing responsiveness from the edge. 

The experience of mobile subscribers can be enriched 

through efficient network and service operations, 

based on insight into the radio and network conditions. 

Although computing platforms can provide secure 

facilities, the potential threat from malware in mobile 

phones still exists. 

In recent years, numerous Android malware 

detection methods have been proposed. The traditional 

Android malware detection methods can be divided 

into signature-based methods (Grace, Zhou, Zhang, 

Zou, & Jiang, 2012) and behavior-based methods 

(Zolkipli & Jantan, 2010). Signature-based detection 

methods (Grace et al., 2012) are employed to extract 

the signatures of malicious software samples and store 

them in a database. When scanning the app to be 

tested, the stored signatures can be compared to the 

scanned one to determine whether it is a known 

malware. This method has the advantages of fast 

detection speed and high accuracy. However, the 

disadvantage lies in that it cannot detect unknown 

malware, and the virus signature database has to be 

continually updated. Behavior-based detection 

methods (Zolkipli & Jantan, 2010) are employed to 

monitor the behavior features of an app when it is 

running, and then match it to the known malicious 

behavior features to determine whether the target file 

contains malicious feature code. Although this method 

has a significant false-positive rate, it can detect 

unknown malicious codes or viruses. 

As malicious software constantly uses new 

technologies and methods, the typical analysis 

methods based on signature and behavior analysis 

have lost their timeliness. As a result, people are 

continually attempting to apply new algorithms and 

methods to Android malicious software detection 

(Liang, Wu, Xu, & Ma, 2015; Sufatrio, Tan, Chua, & 

Thing, 2015). With the maturing of large-data-related 

technologies in recent years, a number of researchers 

have begun to introduce data mining and machine 

learning methods into Android malware detection 

(Arslan, Gunduz, & Sagiroglu, 2016).  

Machine learning-based detection methods train 

the machine learning classification algorithm (Gu, 

Sun, & Sheng, 2017) by using the feature vector set 

extracted from the sample set, that can automatically 

predict the classification of unknown malware. The 

method of extracting features for each Android app is 

divided into static analysis and dynamic analysis. The 

static analysis method (Shabtai, Moskovitch, & 

Elovici, 2009) primarily utilizes the decompile 

technology to extract the application programming 

interface (API) call sequence, program instruction 

sequence, and other static features from an app, while 

it is not necessary to run the app. This method has the 

advantages of rapid detection and high efficiency. 

Static analysis methods are typically based on a 

number of rules to retrieve, match, and compare the 

known features, and then obtain the relevant results. 

However, in a number of cases, the static analysis 

method could yield false positives, that reduces the 

overall accuracy of static detection. In addition, 

utilizing code obfuscation techniques (You & Yim, 

2010; Yin et al., 2016, 2017) can bypass detection by 

the static analysis method. Therefore, it can be 

combined with dynamic analysis to improve the 

accuracy rate. The dynamic analysis method (Tam, 

Fattori, Khan, & Cavallaro, 2015) uses "sandbox or 

virtual machine" to simulate the running of apps and 

analyzes the run-time behavior characteristics of the 

application through interception and monitoring 

technologies. To some extent, this method can bypass 

code obfuscation and other code protection 

mechanisms, however, the detection speed is 

relatively slow. 

In order to overcome the shortcomings of the 

existing research methods, we propose a hybrid 

features analysis method to detect Android malware, 

that combines the advantages of static and dynamic 

analysis methods. In this study, the hybrid features 

vectors are extracted using a hybrid feature analysis 

method. In order to determine the most efficient 

detection method to deal with Android malware 

threats, we train the five different machine learning 

classifiers with the vectors, including the support 

vector machine (SVM), decision tree (J48), random 

forest, naive Bayes, and k-nearest neighbor. 

Experimental results indicate that, compared to using 

only the static analysis method, the feature set 
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extracted by the hybrid analysis method is more 

efficient in training classifiers. 

The rest of this study is organized as follows. 

Related work is discussed in Section 2. Section 3 

briefly describes the Android malware detection 

model, analyzes the various feature extraction 

methods, and optimizes the extracted feature sets 

using the feature selection algorithm. Section 4 

presents the experimental results. Finally, we conclude 

in Section 5 and discuss future studies. 

2 RELATED WORK 
IN recent years, there have been numerous related 

studies applying machine learning methods in the 

Android malware-detection field. 

In the static analysis method, Cho, Kim, Shim, 

Ryu, and Im (2016) proposed a malware family 

classification framework using a sequence alignment 

method, which was widely used in the bioinformatics 

field. Yerima, Sezer, McWilliams, and Muttik (2013) 

used static analysis methods to detect unknown 

Android malware by means of training Bayesian 

classifiers. The study was based on a great number of 

actual malware samples, extracting applications 

permissions as features. It could filter out the benign 

applications to decrease the workload of virus analysis 

experts and overcome the limitations of the traditional 

signature-based detection methods. Chan and Song 

(2014) proposed a static Android malware detection 

method that extracted the permissions and API calls 

characteristics of each app as the feature-vector set for 

classifier training. Peng et al. (2012) used probabilistic 

generative models to calculate the risk level and risk 

scores according to app request permissions. Drebin 

(Arp, Spreitzenbarth, Hubner, Gascon, & Rieck, 2014) 

conducted a static analysis of the Android package 

(APK) file. They not only extracted the permissions of 

the application request from the manifest file, but also 

analyzed the application of the sensitive API calls and 

a number of network addresses from the Dalvik 

executable (Dex) file. Drebin transformed the feature 

information obtained from static analysis into feature 

vectors, and then detected malware by using support 

vector machine algorithms. Wu, D., Mao, Wei, Lee, 

and Wu, K. (2012) proposed a method of malicious 

behavior analysis based on static behavior 

characteristics. This method could characterize the 

malicious behavior by extracting static information 

from the APK, including requests permissions, 

components, intents, and API calls. In order to detect 

different types of malicious behaviors, this study 

compared the results of different algorithms in the 

detection of different feature sets and recognition 

accuracy. According to the experimental results, the 

greatest recognition rate of this method was when the 

application is first clustered using the k-means 

algorithm and then classified using the k-nearest 

neighbor algorithm. 

In the dynamic analysis method, Amos, Turner, 

and White (2013) proposed STREAM, a feature 

vector collection framework, that accelerated the 

large-scale verification of machine learning 

classification of Android malware. It was a distributed 

mobile malware detection framework that could 

automatically train and evaluate malware classifiers. 

In addition, STREAM was designed to be 

configurable, allowing future researchers to modify 

and configure the framework according to their own 

needs. Dash et al. (2016) proposed DroidScribe, a 

method of automatic classification of Android 

malware based on dynamic runtime behavior analysis, 

that used dynamic analysis to observe the runtime 

behavior of system calls, and provided an Android 

malware detection method different from the static 

method. Burguera, Zurutuza, and Nadjm-Tehrani 

(2011) proposed Crowdroid, a method of using 

dynamic methods to analyze application behavior to 

detect Android malware by collecting the system call 

traces of apps that were running on different Android 

platforms as feature sets and using clustering 

algorithms to detect malware. Sahs and Khan (2012) 

proposed a detection system based on machine 

learning, extracting great numbers of features and 

using off-line methods to train a one-class support 

vector machine. Rieck, Trinius, and Willems (2011) 

proposed a framework for automatically analyzing the 

malware behavior using machine learning methods 

that performed a behavioral analysis in an incremental 

manner, avoiding the run-time and memory overhead 

of previous methods. 

3 PROPOSED DETECTION METHOD 
IN using machine learning to detect Android 

malware, the bulk of current studies are based on 

either static or dynamic analysis to extract the features 

of Android apps. We proposed an approach that 

combines the advantages of static and dynamic 

analysis. Using the hybrid-analysis method, we select 

three characteristic attributes that can reflect the 

behavior of Android apps in nature as feature vectors: 

the request permissions, API calls information, and 

dynamic runtime behaviors of Android apps. The 

three extracted features are then formed into a hybrid 

feature vector, that is used to train the machine 

learning classification algorithm. Finally, the unknown 

samples are detected and identified according to the 

classification model that has been trained. 
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Figure 1.  Architecture of proposed detection method. 

3.1 Architecture of The Proposed Approach 
An overview of the proposed method is shown in 

Figure 1. The method of using machine learning to 

detect malware is divided primarily into the following 

parts: data collection, feature extraction, feature data 

preprocessing, classifier model training, and 

classification results. The complete malware detection 

process can be divided into two phases: the training 

phase, and the testing phase. In the training phase we 

first extract feature vectors from benign software and 

malicious software. The feature vectors are then 

selected to remove the features that have no effect on 

the classification results, and the optimized feature 

vectors are obtained. Finally, a hybrid features vector 

is formed as an input for the classifier model. 

Different classifier models are then selected to train, 

and the classifier models are obtained through 

continuous training. In the testing phase, the unknown 

samples are detected by the obtained classifier model. 

As the classifier models are obtained by means of 

training the hybrid feature vectors, the classifier 

models will output the detection results when the 

unknown samples are inputted into the classifier 

models in the detection. 

3.2 Feature Extraction 
This section introduces the extraction of hybrid 

feature vector sets. The acquisition of hybrid feature 

vectors is a highly critical step. First, the static 

analysis method is used to analyze the Android APK 

files, that can extract the permissions features and 

sensitive API calls features of each app. Second, the 

dynamic analysis method can be used to extract the 

runtime behavior features of each app in the running 

process. Finally, after obtaining the hybrid feature 

vector sets, the feature selection algorithm is used to 

optimize the acquired feature information and 

eliminate the features that have no influence on the 

classification. 

3.2.1 Static analysis and static features 
Currently, the bulk of the static analysis methods 

are extracted and analyzed from, amongst others, 

AndroidManifest.xml file, Lib library files (.so files), 

and Java source files. In this study, we analyze 

primarily the classes.dex and AndroidManifest.xml 

files in the APK file, and then invoke the reverse 

analysis tool to parse the above two files and extract 

the feature vectors. The AndroidManifest.xml file is 

one of the most important files in an Android app. It is 

an important permission request and definition profile 

for the Android system, and programmers must 

predefine and apply for permissions required by the 

app in the AndroidManifest.xml file when developing 

the app. Therefore, we parse this file to extract the 

permissions characteristics of the app. The Dex file is 

an executable bytecode file on Android that is 

compiled by the Java Virtual Machine (JVM) and then 

compiled by the Android virtual machine Dalvik. The 

classes.dex is an essential file for each app, and 

contains the primary execution code for Android apps. 

To facilitate the reverse analysis, we use related tools 

to obtain readable Java sources through decompiled 

DEX files. 

Permission Extraction: The primary aim of the 

Android system setup permission mechanism is to 

restrict apps accessing sensitive resources. However, 

the "all-or-nothing" feature of the permission 

mechanism is a security weakness. When developing 

an app, the developer must first apply for all the 

required permission information in the 

AndroidManifest.xml file. Zhou and Jiang (2012) 

reported that, from statistics of the frequency of use of 

the number of permissions in benign and malicious 

apps, a number of the SMS-related permissions, as 

well as boot-strap self-starting permissions were 

typically extensively used in malicious apps. A 

number of malicious apps must request appropriate 

sensitive permissions. The differences in information 

in these permissions provide the theoretical feasibility 

of the permissions as a feature of Android malware 

detection. The process of acquiring Android app 

permissions is to decompile the APK file using the 

decompile tool, obtain the AndroidManifest.xml file, 

and then read the file and obtain the permissions 

information declared in the file. 

In this study, we use the open source tool 

Androguard (2018) to extract the permission features 

from the APK package. The Androguard tool 

(Androguard, 2018) is a powerful Android malware 

analytics tool that provides a set of toolkits to assist 

analysts in quickly identifying and analyzing the APK 

files, making it simpler to get the information required 

for the static analysis. We use the androlyze.py tools 

in the Androguard open source project to extract 

sensitive permission features from normal samples 

and malicious samples. By analyzing the results 

extracted from a great number of app samples, the 

apps that exhibit malicious behavior frequently require 
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numerous sensitive permissions, such as malicious 

fee-absorbing applications that typically apply for 

SMS-related permissions, where SEND_SMS 

permissions allow applications to send text messages, 

READ_SMS permissions allow applications to read 

SMS content. Of these, the 

ACCESS_NETWORK_STATE, READ_P-

HONE_STATE, WRITE_EXTERNAL_STORAGE, 

and INTERNET appear most frequently in normal and 

malicious samples. We counted the number of times a 

permission appears in samples and sorted the results in 

descending order. Due to the length of the paper, we 

only list the top 10 permissions here. Permissions and 

their functional descriptions are presented in Table 1. 

After obtaining the permission list, we selected the top 

45 relevant permissions to form the feature vector 

through optimization and analysis. Each app can be 

represented by a 45-dimensional vector  
1 45

Per


, and 

each dimension corresponds to a permission. If the 

AndroidManifest.xml file of an app contains this 

permission, the value is 1, otherwise it is 0. 

Table 1.  Permissions and their functions. 

Permission Functional description 

INTERNET Allow accessing to network 
connections 

READ_PHONE_STATE Allow reading only access to 
phone state 

ACCESS_NETWORK_ST-
ATE 

Allow accessing to network 
information 

WRITE_EXTERNAL_STO-
RAGE 

Allow writing to external storage 

READ_SMS Allow reading of SMS messages 
RECEIVE_BOOT_COMP-

LETED 
Allow applications to boot up 

RECEIVE_SMS Allow to receive SMS messages 
SEND_SMS Allow to send SMS messages 

CHANGE_WIFI_STATE Allow to change Wi-Fi 
connectivity state 

READ_CONTACTS Allow accessing user contact 
information 

API Calls Extraction: The APIs investigated in 

this study refer to the function provided by the 

Android system itself. By invoking these functions, 

the app can access and obtain an amount of sensitive 

data in the mobile phone, including contacts, 

geographic location, photos, and accounts. It could 

also trigger high-risk behaviors such as secretly 

connecting the network and sending malicious SMS 

messages for deducting expenses. These APIs, that are 

related to sensitive data and high-risk behaviors, are 

referred to as sensitive APIs in this study. As with the 

permissions information, there are significant 

differences in the use of these sensitive APIs because 

of the difference between benign software and 

malicious software. The malicious application of the 

number of calls to sensitive APIs is significantly 

greater than the benign application, that can reflect the 

actual behavior characteristics of an app to some 

extent, and therefore can be used as a feature of the 

app to identify malicious behavior. We use the open 

source tools Baksmali (2018) and Androguard to 

reverse the analysis of classes.dex files, from which to 

extract the relevant sensitive APIs. In this step, we 

extracted the API calls features from a great number 

of sample sets, and then used the filter feature 

selection algorithm Relief (Kira and Rendell 1992) to 

optimize them. We then totaled the number of times 

each API is called as the initial value of the relevant 

statistic vector component. After the feature selection 

process, we obtained an optimal set of features with 

22 API calls, each of which can be represented by a 

22-dimensional vector  
1 22

API


, with each dimension 

corresponding to an API. Table 2 presents the 22 

selected API calls. 

Table 2.  Sensitive API calls. 

API calls 

getDeviceID() sendTextMessage() 

getCellLocation() sendDataMessage() 

getLineNumber() getConnectionInfo() 

getNetworkOperator() getWifiState() 

getSimSerialNumber() setWifiEnabled() 

getOutputStream() getSubscriberId() 

getInputStream() addCompletedDownload() 

getNetworkInfo() AudioRecord.read() 

startService() AudioRecord.getRecordingState() 

getLatitude() MediaRecorder.setCamera() 

getLongitude() MediaRecorder.setOutputFile() 

3.2.2 Dynamic analysis and dynamic features 
In the dynamic analysis phase, the primary work is 

the collection of the runtime behavior features of each 

app. Android apps comprise a variety of components 

that can trigger a series of interface calls. In order to 

optimally collect the runtime behavior features of the 

unknown sample in the behavioral detection of the 

app, when the app installed in the simulator is running, 

we use the automated test tool Monkey (2018) to 

simulate the event flow to run all components of the 

app. The Monkey can generate pseudo-random event 

streams, that can send a series of event streams to the 

app and can obtain the behavior characteristics when 

the app receives various events. Automatic test 

technology uses programs instead of humans to 

simulate the daily operation of a user. It can 

automatically test unknown samples and trigger the 

relevant malicious code, so that the monitoring 

program can record its malicious behavior. 

We used the open source tools DroidBox (2018) to 

monitor the runtime behavior of apps. This is an 

Android dynamic analysis tool that allows rapid 

collection and visually displays the behavior of the 

app. Its primary functions are monitoring the 

information that includes the network communication 
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data, file read and write operations, information 

leakage in SMS, and broadcast receiver component 

information. By using the log mechanism of the 

Android systems and DroidBox, the app behavior 

information in the framework layer and native layer, 

that can accurately reflect the behavioral 

characteristics of the app, can be obtained. We 

installed and ran each app on DroidBox, and then used 

automated test techniques to monitor whether each 

app exhibited malicious behavior, including automatic 

connection to the network, sending malicious SMS 

messages, and obtaining privacy information. In this 

step, we count the number of occurrences of each 

runtime behavior feature as the initial value of the 

relevant statistic vector component. After the feature 

selection process, we collect a total of 20 features (i.e., 

runtime behavior features) for each monitored app 

from a significant number of aspects such as the 

battery, binder, network, and user activity. Of these 

aspects, behavior_sentSMS represents the behavior of 

sending SMS messages, behavior_out-goingCalls 

represents the behavior of making a call, 

behavior_openingKeyboard is the behavior that opens 

keyboard input, behavior_packetsWiFi represents the 

behavior of sending packets over a WiFi, and 

behavior-r_openingCamera represents the behavior of 

opening the camera. As a result, we obtained a set of 

features containing 20 runtime behaviors. Each app 

can be represented by a 20-dimensional vector

 
1 20

Runbehavior


, and each dimension corresponds to 

a runtime behavior. 

3.2.3 The integrated feature 
After the feature extraction of the above two 

sections, three feature vectors of three types of 

features are formed Each app can obtain a set of 

permission feature vectors  
1 45

Per


, a set of API calls 

feature vectors  
1 22

API


, and a set of runtime 

behaviors feature vectors  
1 20

Runbehavior


. 

Combining these three feature vectors sets, each app 

can be represented by an 87-dimensional hybrid 

feature vector  
1 87

, ,Per API Runbehavior


. Each 

feature in the hybrid feature vector is binary, 

indicating that if an app contains this feature, the value 

of the feature is 1, and if not, the value is 0. The 

combination of the hybrid feature vectors can better 

represent the characteristics of the application to 

distinguish between malware and benign software, and 

further improve the detection accuracy. 

3.3 Feature Selection 
Feature selection is an important process of data 

preprocessing. We extracted a significant number of 

features. However, in order to improve the efficiency 

and accuracy of the classifier, it is necessary to 

remove the features that have no effect on the 

classification. At the same time, there are excessive 

irrelevant features that have an influence on the effect 

of the classification. The greater the number of 

features used in training the classification model, the 

longer it takes to train the classification model. 

Therefore, the feature selection is critical to the 

training of the model. This study assumes that the 

initial feature set contains all the important 

information. The process of feature selection is to 

select a subset of the features that contain all the 

important information from the initial set of features. 

In this study, we use the filter feature selection 

algorithm to first select the data sets, and then train the 

classifier. The feature selection process is independent 

of the subsequent classifier. Kira and Rendell (1992) 

proposed Relief, that is a highly efficient filter feature 

selection algorithm. It uses "relevant statistic vectors" 

to measure the importance of features. The algorithm 

is primarily aimed at solving two classification 

problems. The basis of Relief is how to determine the 

value of the "relevant statistic vector". Assume that 

the training set D  is       1 1 2 2, , , ,..., ,n nx y x y x y , for 

each sample ix , its feature j  corresponds to the 

relevant statistic vector is as follows: 

 
2 2

, ,( , ) ( , )j j j j j

i i nh i i nm
i

diff x x diff x x      (1) 

where 
j

ax  represents the value of sample ax  on the 

feature j , ,i nhx  is labeled a "near-hit", that represents 

the closest neighbor of sample ix  in its same 

category, and ,i nmx is labeled "near-miss", that 

represents the nearest neighbor of sample ix  in a 

different category. As the features of the malicious 

samples and benign samples extracted in this study are 

discrete, if 
j j

a bx x , then ( , ) 0j j

a bdiff x x  ; otherwise 

( , ) 1j j

a bdiff x x  . As can be seen from the above 

equation, if the distance between ix  and its near-hit 

,i nhx  on feature j  is less than ix  and its near-miss 

,i nmx , then it is indicated that feature j  is 

advantageous to distinguish between the malicious 

samples and benign samples; otherwise, it is 

disadvantageous. Therefore, the greater the value of 

equation (1), the stronger the classification ability of 

the feature is. From equation (1), the evaluation value 

of each feature is obtained, and the relevant statistic 

vector component of the feature is obtained by 

averaging the evaluation value of all the samples to 

the same feature, and the greater the vector component 

value, the stronger the classification ability.  
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3.4 Machine Learning Classifier 
The malware detection based on machine learning 

is a new application field of machine learning, and its 

essence is to classify benign software and malicious 

software using classification algorithms. Android 

malware detection belongs to two-classification 

problems, and we choose different classifier 

algorithms to detect malicious software. The classifier 

algorithms we used include SVM (Cristianini & 

Shawe-Taylor, 2000; Gu & Sheng, 2017; Gu, Sheng, 

& Wang, 2015), k-nearest neighbor (Liao & Vemuri, 

2002), naive Bayes (Domingos & Pazzani, 1997), 

decision tree (J48) (Quinlan, 1986), and random forest 

(Ho, 1998). Of these, the J48 decision tree algorithm 

we used in our experiment is the implementation of 

the C4.5 algorithm (Quinlan, 1993) in WEKA (Hall, 

Frank, & Holmes, 2009). Different classifier 

algorithms have different detection capabilities, 

therefore, it is essential to select the appropriate 

classifier algorithm. Typically, the performance of a 

classifier algorithm is evaluated by using three 

performance measures: true positive rate (TPR), false 

positive rate (FPR), and accuracy. The comparison 

and analysis of different classifier algorithms is a 

critical point in this study. In the experimental 

verification phase, we will make a comparative 

analysis of these algorithms to determine which has 

the best capabilities for Android malware detection. 

4 EXPERIMENTS AND RESULT 
IN this section, we use the machine learning tool 

WEKA (Hall et al., 2009) to train the classification 

model for the features obtained from the experimental 

samples. Based on the Java environment, WEKA is 

free open source machine learning software, that 

integrates a great number of machine learning 

algorithms and has the characteristics of significant 

efficiency and accuracy. All experiments were 

performed on a computer with a 3.20GHz Intel (R) 

Core (TM) i5 CPU, with 8GB of memory. 

4.1 Data Collection 
In order to ensure the reliability and wide coverage 

of the experiment, we collected a total of 359 

malicious apps and 500 benign apps as experimental 

samples. Of these, 228 malicious samples were 

derived from the third-party sample collection 

platform VirusShare (https://virusshare.com), and 131 

malicious samples from the set of malware samples 

provided by Contagiomobie 

(http://contagiominidump.blogspot.co-m). These two 

platforms systematically collected a wide range of 

families of Android malicious samples, including their 

various derivative versions, and provided powerful 

data support for our malware detection study. The 

benign samples used in this study were primarily 

downloaded from the Google Play Store. We assumed 

that all of the apps from the Google Play Store were 

benign applications. In this experiment, we randomly 

selected 150 malicious apps and 150 benign apps from 

the experimental samples, and then combined them as 

a training set. We similarly obtained a test set. The 

features were then extracted from each app according 

to the method described in Section 3. By integrating 

the static feature vectors and the dynamic feature 

vectors, hybrid feature vectors for classification were 

formed. The following experiments were performed 

on these two data sets. 

4.2 Performance Evaluation 
The following introduces a number of appropriate 

performance metrics that evaluate the performance of 

a classification algorithm. The four basic metrics are 

true positive (TP), false positive (FP), true negative 

(TN), and false negative (FN). where TP is the number 

of malicious applications classified correctly, FP is the 

number of benign applications incorrectly classified, 

TN is the number of benign applications correctly 

classified, and FN is the number of malicious 

applications incorrectly classified. As can be seen in 

Table 3, these four metrics can form a confusion 

matrix. 

Table 3.  Confusion matrix. 

Prediction Malicious Benign 

Malicious TP FN 

Benign FP TN 

The following five performance measures are 

derived from the confusion matrix for calculating and 

evaluating the performance of the classifier: 

   ( )
TP

True positive rate TPR Recall
TP FN

 


  (2) 

   ( )
FP

False positive rate FPR
TN FP




  (3) 

 
TP TN

Accuracy
TP TN FP FN




  
   (4) 

 
TP

Precision
TP FP




     (5) 

( )( )( )( )

TP TN FP FN
MCC

TP FP TP FN TN FP TN FN

  


   
 (6) 

Where TPR, or the recall rate, is the proportion of 

malware being correctly predicted by the classifier, 

and FPR, or false alarm rate, is the proportion of 

malware being incorrectly predicted by the classifier 

as benign software. Accuracy is the proportion of all 

samples being correctly classified to the total number 

of samples, and is used to measure system errors, and 

the greater the value, the smaller the system error. 

Precision is the number of samples correctly classified 

as malicious among those classified as malicious. The 
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Matthews correlation coefficient (MCC) is used to 

evaluate the quality of binary classifications in 

machine learning. The value range is [-1,1], where 1 

represents the perfect prediction, 0 represents the same 

effect as the random classifier, and -1 represents the 

predicted result being completely different from the 

actual result. The greater the values of accuracy and 

TPR, the smaller the value of FPR, and the better the 

classification effect. 

4.3 Experiment Results 
There are two primary aims of our study: to verify 

whether the combination of static analysis and 

dynamic analysis can improve the accuracy of 

malware detection, and to determine which 

classification algorithm is the best for Android 

malicious software detection. 

In Table 4, we present the classification results for 

five different classifiers when using only static 

methods to extract features (i.e., permission, API 

calls). The results indicate that the accuracy rate of the 

five classifier algorithms is greater than 84 %. The 

table also indicates that the random forest algorithm 

has the greatest accuracy rate of 92.07 %, and its 

classification effect is the best. By contrast, Table 5 

presents the classification results for the five different 

classifier algorithms, SVM, k-nearest neighbor, naive 

Bayes, decision tree (J48), and random forest, when 

the feature extraction uses the hybrid analysis method 

(i.e., permission, API calls, and runtime behavior). As 

can be seen from Table 5, the performance of the 

random forest algorithm remains the best with an 

accuracy rate of 94.89 %, that is 2.82 % greater than 

when only using static methods. The classification 

accuracy of the SVM algorithm improved by 

approximately 2.4 % to 93.66 %. Compared to Table 

4, we find that the performance metrics of the 

experimental results are improved after using the 

hybrid analysis method, and it is clear that the hybrid 

analysis method improves the detection accuracy. 

Table 4.  Classification results from static methods. 

Classifier 
Model 

Measure Metrics (%) 

TPR  FPR  Accuracy Precision MCC 

SVM 92.47 9.74 91.27 90.47 0.83 

J48 91.97 14.72 88.19 86.20 0.77 

Naive 
Bayes 

93.49 19.77 85.74 82.54 0.74 

KNN 90.01 19.41 84.56 82.26 0.71 

Random 
Forest 

92.57 8.55 92.07 91.54 0.84 

Table 5.  Classification results from hybrid methods. 

Classifier 
Model 

Measure Metrics (%) 

TPR  FPR Accuracy  Precision MCC 

SVM 95.17 7.74 93.66 92.48 0.87 

J48 93.38 14.02 89.34 86.95 0.80 

Naive 
Bayes 

89.39 19.05 84.52 82.43 0.71 

KNN 92.31 17.65 86.71 83.95 0.75 

Random 
Forest 

95.3 5.3 94.89 94.73 0.90 

Figure 2 shows more visual and intuitive 

classification effects of the different classifier 

algorithms in Android malware detection. It can be 

clearly seen that the random forest algorithm has the 

best classification effect, followed by the SVM 

algorithm, while the naive Bayes algorithm has the 

smallest detection accuracy. To summarize, the 

experimental results indicate that the feature 

extraction method of hybrid analysis can improve the 

accuracy of classification results in Android malware 

detection. In addition, by comparison of the 

performance of five different classifiers, we 

determined that the random forest algorithm has the 

best detection effect. 

 

Figure 2.  Accuracy analysis: Using different classifiers. 

5 CONCLUSIONS AND FUTURE WORKS 
IN this study, we proposed a multi-dimensional 

hybrid-features extraction and analysis method for the 

detection of Android malwares by extracting 

permissions, API calls, and runtime behaviors as 

feature sets. Combining the three into a set of hybrid-

feature vectors, we used the different machine 

learning classification algorithms to train the 

classification detection model after the feature 

selection algorithm was used to optimize it. We 

validated the proposed method simulation 

experiments. The experimental results indicated that 

this method could effectively detect and classify 

Android malware and obtain greater detection rates. 
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Typically, because of the diversity of malicious 

behavior in malicious apps, the features extracted by 

the hybrid analysis method can more comprehensively 

and effectively show the characteristics of Android 

apps. We demonstrated that the multi-dimensional 

hybrid analysis method can improve the accuracy of 

Android malware detection compared to single static 

feature extraction methods. In addition, after reducing 

the dimension of the extracted hybrid feature vectors, 

a number of extraneous features were removed, that 

increased the classification accuracy and achieved 

better detection effects. Finally, we chose different 

classification algorithms to compare the classification 

effects, and through analysis it was found that the 

random forest and SVM algorithms exhibited the 

greatest accuracy rates. 

For future studies, we will consider the approach of 

semantics learning into feature extraction to analyze 

the behavior of malware. In this way, we can further 

mine the association rules between features and select 

better feature selection algorithms to reduce the 

redundancy of features, and further improve 

classification efficiency. 
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