Intelligent Automation And Soft Computing, 2019
Copyright © 2019, TSI® Press

Vol. 25, no. 4, 815-825
https://doi.org/10.31209/2019.100000085

A Hybrid GABC-GA Algorithm for Mechanical Design Optimization

Problems

Hui Zhi'?, Sanyang Liu®

School of Mathematics and Statistics, Xidian University, 710126, Xian, China
2School of Huaging and Xi-an University of Architecture and Technology, 710055, Xian, China

ABSTRACT

In this paper, we proposed a hybrid algorithm, which is embedding the genetic
operators in the global-best-guided artificial bee colony algorithms called GABC-
GA to solve the nonlinear design optimization problems. The genetic algorithm
has no memory function and good at find global optimization with large
probability, but the artificial bee colony algorithm not have selection, crossover
and mutation operator and most significant at local search. The hybrid
algorithm balances the exploration and exploitation ability further by combining
the advantages of both. The experimental results of five engineering
optimization and comparisons with existing approaches show that the proposed
approach is outperforms to those typical approaches in terms of the quality of

the results solutions in most cases.

KEYWORD: artificial bee colony algorithm; genetic algorithm; global best guided; crossover and mutation

operation; mechanical design optimization;

1 INTRODUCTION

MANY optimization problems in science and
engineering disciplines can be expressed as Constraint
optimization problems (COPs).Without loss of
generality, the nonlinear programming (NLP) problem
can be formulated as follows:

min f(x) x=(x,,%,,0,X,) €S <R" )

where S denotes the search space, which defined as an
n -dimensional rectangle in R™ . This rectangle R"
has domains size such that:

1)) <x <u(i) 1<i<n

the feasible region S is form by a set of linear or
nonlinear constraints as follows:

9,(X)<0 g;:R" >R j=12,--q

hj(x)zolhj :R" —>le=1,2,...p

1

where q is the number of inequalities, and p is the

number of equalities. Usually in COPs, equalities can
be replaced by inequalities and thus the problem is
composed of inequality constraints only. Accordingly,
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the non-linear constrained optimization problem can
be written as:

min f(x), xeScR"
st 9;(x)<0, j=120g+p
Ii)<x <u(i), 1<i<n

@)

To solve the COPs problem, many researchers
were developed some deterministic methods for
solving constraint problems, such as feasible direction
approach and generalized gradient descent method.
However, due to its limited application and the
complexity of constraints, most of the problems like
structural optimization problems,  economic
optimization, and engineering design problems, which
inherently involve many difficult and complex
requirements to satisfy. These optimization problems
can be difficult to solve with traditional mathematical
methods. In order to overcome these shortcomings,
researchers have proposed many optimization methods
to solve these constrained optimization problems, and
the meta-heuristic optimization algorithm receives the
most  concerned.  Meta-heuristic ~ optimization
algorithm are independent of problems and models
when used, and are very efficient and flexible
(Baykasoglu, 2015).
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As a more effective method than traditional
mathematical methods, meta-heuristic optimization
techniques can accurately explore and discover
promising areas in the search space, these methods are
well suited for global search. Some of meta-heuristic
algorithms developed in recent years which is mainly
inspires by natural phenomena and biological
behavior, include genetic algorithms, particle swarm
optimization (Wang and Yang, 2016), differential
evolution (Yu, 2018), artificial bee algorithm (You, et
al., 2017), firefly algorithm, grey wolf optimization
algorithm, ant colony optimization (Xu, et al., 2016),
cuckoo search algorithm, and they have been
successful in solve various optimization problems. As
for instance, Altalhi (2016) and Coello(2000) using
genetic algorithms in engineering design optimization
and verify the optimized “best”. Yu (2018) presents
differential evolution algorithms for constrained multi-
objective optimization problems. Xu et. al. (2018)
using differential evolution and its various strategies
applied for constrained optimization problems. Kim
(2010) and Ngo (2017) proposed an efficient PSO
algorithm for engineering optimization problems. Liu
(2018) proposed a parallel boundary search particle
swarm optimization approach for COPs, perform
simulation in engineering design problems and
indicate the results efficiency. Ouyang (2017)
proposed improved PSO for global optimization
problems. Ariyasingha and Fernando (2017) used a
modified Pareto strength ant colony optimization
algorithm to solved multi-objective optimization
problems. Tian and Dong (2017) proposed PSO-
FWAC algorithm to solve numerical optimization
problems. Xie, et al. (2016) proposed a job scheduling
algorithm (SFLA) based on particle swarm
optimization (PSO) and shuffled frog leaping
algorithm. Sun (2013) used an improved ABC
algorithm to identify structural systems. Liu, etal.
(2018). proposed an ABC algorithm for constrained
optimization problems. Wang, et al. (2018) proposed
ABC algorithm with multi-search strategy cooperative
evolutionary. Kanagaraj, et al. (2014) employed
hybrid CS and GA to sloved constrained engineering
design optimization. Baykasoglu (2015) proposed an
adaptive (search mechanism and parameter settings)
firefly algorithm to solve mechanical design
optimization problems. Kohli (2017) introduces the
chaotic grey wolf optimization algorithm accelerating
global convergence speed and application to
constrained optimization problems. In addition to
these approaches, Garg (2016) present a hybrid PSO-
GA approach for solving the constrained optimization
problems. Hsieh (2012) hybridized of PSO and ABC
algorithm to predict trends in financial distress. Tsali
(2014) combines ABC and bee algorithm to solve the
constrained optimization problem. Kanagaraj, et al.
(2014) presents an effective hybrid CS and GA for
solving engineering design optimization problems.
Kiran, et al. (2012) design a novel hybrid algorithm

based on PSO and ACO to finding optimal minimum.
Lynn and Suganthan  (2017) proposed a
comprehensive review of population topologies
developed for PSO and DE.

As demonstrated in the above literature, the
existing research approaches have been successfully
applied to various constrained optimization problems.
Therefore, in this study, genetic algorithm and global-
best-guided artificial bee colony algorithm are
combined to solve nonlinear design optimization
problems, and a hybrid algorithm named GABC-GA
is proposed. In this method, ABC runs in the direction
of improving vectors, and genetic operators have used
genetic algorithms to modify decision vectors (Garg,
2016). The rest of the main content of this article is
described below. Section 2 briefly introduces the
algorithm that will be used (GA and ABC) in this
paper. Section 3 introduces our designed hybrid
algorithm and constraint processing method. In
Section 4 we present the design optimization problems
to be dealt with, the experimental results and
comparison results. The specific conclusions are given
in section 5.

2  OVERVIEW OF THE RELATED ALGORITHM

2.1  Brief introduction to Genetic algorithm

GENETIC algorithm is a adaptive stochastic search
algorithm invented by Holland (1975) and based on
the survival evolutionary genetics and natural
selection. GAs has been widely applied in engineering
optimization fields. In most GAs, the model begins
with the solution space represented by the initial
chromosome population, and the fitness value
determines the solution to be good or bad, while using
the mutation, crossover and selection methods to
obtain a new generation of chromosomes. As the
generation increases, all the quality of the
chromosomes will increase, and the best generation of
the last generation will be recorded as the final
solution. The pseudo-code of GA is described in
Algorithm 1:

2.2  The Basic artificial bee colony algorithm

Basic artificial bee colony algorithm is a nature
inspired swarm intelligence algorithm that simulates
the forging behaviors of honey bee swarms. In ABC
algorithm, the search process is divided into employed
bee stage, onlooker bee stage and scout bee stage. The
detailed steps of the basic ABC algorithm are as
follows.

Step 1. Set parameter.

The main parameters setting as: the maximum

number of iterations (M. ), the size of population
(SN )(the sum of numbers of employed and onlooker
bees) , the total number of bees ( N ), D is the
problem dimension, the limit parameter ( Limit )
(determine whether the solution needs to be replaced).



Step 2.Initialization
Initial solution population is randomly generated
using equation (3), and the fitness value is calculated.

X = Xminj + Vi X j — Xmin ) 3

where |:112|15N , j=1121”'!D , Xminj and Xmaxj

present the bonds of the J-th dimension, and ¥ is a
random number.

Step 3.Employed bee stage

Employed bees generate new candidate solutions
by searching for neighbors of food sources. Then
calculate fitness value and update the current solution
apply greedy selection strategy. The candidate
solution can be generated by the follow formula:

Xy =X 5 (% = %) 4)
where k €1,2,--,SN(k = 1),

from SN and 4; is a random number between [-11] .
The parameter set to boundaries by

_ _{Xminj it X5 < Xpinj
Xmaxj f Xij > Xmaxj (5)

Step 4. Onlooker bee stage

The solution is chosen probabilistically based on
its fitness value.

Onlooker bees use equation (4) to search their
neighborhood to improve the current solution and the
solution is chosen probabilistically according to its
fitness value.

is a randomly number

fitness,
P = ZSN
= (6)

Greedy selection mechanism is applied to update
the current solution after a new solution is generated.

Step 5. Scout bee stage

If the food source is not updated after a certain
cycle, it is replaced by the new solution randomly
generated by Equation (7).

fitness i
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X

newj mm j lr//neWJ( max j

_Xminj) (7)
Step 6. Repeat the search process
If the termination condition is not met, repeat
above steps, otherwise the algorithm terminates and
outputs the result.

2.3  Improved global-best-guided artificial bee
colony algorithms

ABC algorithm has good exploration capabilities
but weak exploitation capabilities, many literatures
have made corresponding research and proposed some
modified ABC algorithms. Hsieh (2012) combined
together the ABC and PSO to improve the search
ability. Ouyang (2017) added a global -best-guided
term to search equation to enhance the exploitation
performance. Zhong (2016) inspired by the methods
of the global-best-guided term proposed a modified
ABC algorithm strategy; experiments show that the
algorithm has good performance.

Learning from the above algorithms, a modified
ABC algorithm based on improved global-best-guided
is used in our approach, called GABC. For the reason
that, the equation of candidate solution in employed
bee stage is modified as following (Zhong, 2016):

Xij = Xij + Xirer @i (gj _Xij)"'}‘iter% (Xij _ij) ®)

iter
KXiter =1- (—)
M + & 9)
iter
Aer =1 = (——)
Mo +&, (10)

where @ €[0.L] | is a non-negative number,
¢ e[-11]

factors and decrease with iteration increases, t€r

Xier and Aier are nonlinear adjusting

denotes the current iteration, Mg is the maximum

number of iterations, €: and €, are positive number
and less than or equal to maximum number of
iterations.

Algorlthm 1 Pseudo code of the GA algorithm.

Initialize population chromosomes randomly
Objective function:

Evaluate fitness value for all chromosomes
Initial probabilities of crossover and mutation
do

If p, >rand , crossover operation; end if
If p,, > rand , mutation operation; end if

N RONM R

=
= Q

Update chromosomes by crossover and mutation operations

Accept the new chromosomes if its fitness increases
Select the best found chromosomes for the next generation
While maximum iterations or minimum error criteria is not met
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From equation (8) we can see that when L=0,

Awer =1, the equation becomes the initial one (4). L
control the exploitation ability in the search process, it
cannot be set too large, otherwise the best solution

will be missed. Xier can adaptively adjusting to
balance the ability of exploration and exploitation.

Aier®i ensures  the self-requlation of randomly
generated solutions.

3  THE PROPOSED APPRAACH

3.1 Hybrid GABC-GA algorithm

THE hybrid GABC-GA approach is a improve
algorithm, which can find global optimal solutions by
repeatedly iterations just like ABC and GA. Therefore,
the proposed algorithm begins with an initialization
phase in which the initial solutions of the population
are randomly generated in the search space using
equation (3) and evaluate fitness value of each
solution. In employed bee stage, use (8) to generate a
new candidate solution and use (5) to limit it to the
search space. Through greedy selection method, better
solution is chosen, and use (6) to calculate the
probability that this solution will be selected by the
onlooker bee. In the onlooker bee phase, onlooker
chooses one to follow and use equation (8) to search
its neighborhood to improve the current solution,
calculate the adaptability of the new candidate
solution, and retain a solution with higher fitness.
During the scout bee phase, if the qualities of the
current solution do not improved, it is replaced by a
new solution generated arbitrarily by (7). After
running the GABC algorithm to generate a new
generation, and then GA is applied to each one at this
time. Because of this large population size, how to
determine the number of solutions in an GABC
renewal generation? With regards to this, Harish Garg
(2016) uses a evolution method in hybrid PSO-GA
algorithms, i.e. in the total population size, the
evolution number selected in each PSO generation is
effected by GA. Here, we applied its idea to deal with
our approach, evolved in each GABC generation the

number of GA is defined by GAy and defined as
follow.

GABC, .,
=) % (CAvan ~GAyiny

GA = CAven ~(Ga8c,,., “CAwn) gy

After choosing the best solution from the
population, we applied the selection, crossover, and
mutation operators to update the solutions. Population
size and maximum iteration numbers of GA changes
with the iteration of GABC are set by Garg (2016) as
follow equation.

GABC,
GAPopS = GAﬂmPupS _(

GATCMax')a X (GAvIaxPupS _GA\NHPUpS)

(12)

O« (B ~G)

GA/Iaxl = GA\AimI - (GABCMHX‘ (13)

where GA\ is the current number of individuals,
GAeoss is the population size, GAvi and CAvaa is
the minimum and maximum number of solutions,
GAvinpops and CAvianeops is the first and last population

GAMimI and GA\/Iiml
maximum number of iteration, GABC; is the current

iteration number in GABC , GABC,.,, is the
maximum number of iteration in GABC , « represents

the decreasing rate of GA individuals, B is the
increasing rate of maximum iteration. In Figure 1, we
have given the flow chart of the proposed hybrid
algorithms.

size, is the minimum and

3.2  Constraint handing approach of COPs
Constraint handing mechanism is usually required
in constrained non-linear mathematical programming
models, therefore, many different ways have been
proposed to handing constraints, of which the most
popular one is the penalty function. However, the
penalty function has a main drawback is when there
are too many parameters to adjust; it is very difficult
to find the right combination. To overcome this
limitation, the effective method was introduced by
Kim et al. (2010) is applied for this study. The
function proposed by Kim and used by Baykasoglu
(2015) is expressed as:
@(X):gmax(x)’ If gmax(x)>0
minL(x)=y , I ]
es f(x):atan[f(x)]—? otherwise

Upmax (X) = maxh, (x), h, (x), -+, 1y, (X)]
where 9; (9 and
atan[] denotes the inverse tangent. When f(x) <0

for any x , and thus T(X)<h(X) is guaranteed
(Baykasoglu, 2015).
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Update the candidate solutions with the
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)
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each individual

Update GA,,, < «GAy+ GA,,,
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Figure 1 The flow chart of GABC-GA

4  TEST PROBLEMS AND COMPUTATIONAL
RESULTS

4.1  Experimental setup

IN order to evaluate the effectiveness and
efficiency of the proposed algorithm, we test its
performance by selected three mechanical design
optimization problems. The tests are conducted with
two tests section, Test 1: the results of GABC-GA are
compared with basic ABC and GA. The aim of this
comparison is to show whether the hybrid approach
has improved the overall performance of the method;
Test 2: the results of GABC-GA are compared with
other algorithms mentioned in the reference. The
purpose of doing so is to show the comparison results
of the proposed method and other effective methods.

For fair comparisons, 50 independent runs are made
and solutions are obtained in maximum number of
iterations (1000) or relative error is10° . All other
parameters of algorithm are setting as D=20; L=1.5;
crossover-rate=0.8 ; mutation-rate=0.03 ;

GA‘/””POPS =10 ; G'AY\/IinN =1 ; G'%\/Iinl =20 ; a=10 ; ﬂ=15 .
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4.2  Mechanical design optimization problems

4.2.1  Test problems 1: pressure vessel design

Figure 1 Pressure vessel design problem

The pressure vessel design problem is introduced
by Kannan etal. (1994), as shown in Figure 2.

Thickness of shell T;(%,) , thickness of head Tn(X,) ,
inner radius R(X;) and length of the cylindrical section
of the vessel L(X,) four design variables to be
consider. T, and Ty are integer multiples of 0.0625,
which are the available thickness of the rolled steel

plates; R and L are continuous variables. The
mathematical model is described as below.

min () =0.6224x XX, +1.7781x,% +3.1661x’x, +19.84x’x,
st g,(x)=-x+0.0193x, <0
0,(x) =-x, +0.0095x, <0

g, (%) =-mx, —%nxi +1296000< 0

0,(x)=x,-240<0
0<X,% <99 10<x,x, <200

The results of the proposed algorithm and with
other authors have given existing algorithms are
presented in Tables 1 and 2, respectively. From Table
1, we can see that the best solution of pressure vessel

problem using the design method is ¥=0.81501271,
x,=0.42856436, X, =42.19546977,

X,=176.63728721 | function value is equal to
6059.71389215 and the standard deviation of the
results in 50 independent runs is 0.001783205 .
Compared with the results obtained by ABC and GA,
it can be seen that GABC-GA is significantly better
than the other two methods. Table 2 presents the best
solution obtained by different methods published in
the literature. The compare results showed that the
GABC-GA outperforms most of other state-of-art
algorithms.
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4.2.2  Test problems 2: tension/compression
spring design
pe —P|D

Figure 2 Tension/compression spring design problem

Tension/compression spring design problem was
first described by Belegundu, as shown in Figure 3.
The design variables are the wire diameter d(x,) , the

mean coil diameter D(x,) and the number of active
coils N(x,) - The mathematical model is described as
below.

min - f(x) = (X, +2)x,%’
XX
s.t =1-—232 <
%(X) 71785x;
4%2 - x,X, 1
X) = + -
%0 12566(x,x’ — %)  5108x’
0.00 = 1_140;45x1 0
2X3

15
005<x <2, 025<x,<13, 2<x<15

In this experiment, the GABC-GA algorithm is
used to solve Tension/compression spring problem.
The results of the proposed algorithm and with other
authors existing algorithms are presented in Tables 3
and 4, respectively. Table 3 showed the best solution
is obtained by the proposed approach is x =0.0516789124,

X,=0.3567321179, X,=112872132513  with

corresponding  function value is equal to
0.0126654528 and the standard deviation of the
results in 50 independent runs is 123167 e—06 .
Compared with the results obtained by ABC and GA,
it can be seen that the present approach is significantly
better than the other two methods. Moreover, Table 4
presents the best solution obtained by different
methods published in the literature. The compare
results showed that the GABC-GA outperforms most
of other algorithms so far.

4.2.3  Test problems 3: welded beam design

Figure 3 Welded beam design problem

Welded beam design problem introduced the
optimization of welded beam which is a minimize cost
design of the fabrication shown in Figure 4. The
design variables to be consider are the thickness of the
weld h(x) the length of the welded jointl(xz), the

width of the beamt(x,) and the thickness of the beam
b(x,) -The mathematical programming problem is
given as below.

min (%) =1.1047x’x, +0.04811x,x, (14.0+ x,)
st g,(x)=7(x)-7,, <0

0,00 =0(x) -0, <0

g5(x) =% -%, <0
0,(%) =0.10471x’ +0.04811x,x, (14.0+%,)-5.0<0

)=
0s(x)=0.125-x <0
05 (X) = 3(%) = 6,5 <0
g,(X)=P-P,(X)<0
01<x <10 (i=1234)
where 7(x) = \/(T) + (") iRXZ
f/=ﬁzxz r”=$ M=P(L+%)

R=\/(T')2+(Z'”)2+(X1+X3)z

3 = 2{2x [ 2 +(X1 5y
6PL 4PB
= S(X) =
(X) 4 3 (X) EXAX??
2,6
P () = 4.0135,/2x3x4/36 X fi)
L 2L 4G

In this experiment, the results of the proposed
algorithm and with other authors existing algorithms
are presented in Tables 5 and 6, respectively. From
Table 5, we can see that the best solution is obtained
by the proposed approach for Welded beam design

problem s %=020572%8,  x,=3.4704891,

X,=9.0366240, x,=0.2057303, and function value is
equal 1017248537 and the standard deviation of the
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Table 1. The best solution obtained by ABC, GA and GABC-GA for pressure vessel design problem.

x(T)

Algo. 5(T,) % (R) x,(L) [ (best) fworsr) Sflavg) fstd)
ABC(Akay and Karaboga) ~ 0.812500 0.4375 42.098446 176.636596 6059.714736 - 6245308144 2.05e+02
GA(Coello) 0.8125 0.4375 40.097398 176.654047 6059.946341 - - -
GABC-GA 0.81501271  0.42856436  42.19546977  176.63728721  6059.71389215  6059.72345316  6059.71389457  0.001783205

Table 2. The best solution obtained by different methods for pressure vessel design problem.

Ref x(T,) x(T,) x,(R) x,(L) f(best) fworst) flavg) fstd) Fes
mﬂ al (Z007) 0.812 0.43 42098446 176.636396 605971433 - 6071.013366 JERLY] 350,000
Akay and Karaboga(2012) 0812500 04375 42008446 176636506 6059 714736 - 6245308144 2.05e+02 30,000
Baykasoglu (2012) 0.8125 0.4375 42.09754674  176.64838674  6059.83905683  6823.60245024  6149.72760669  210.77 20,000
Baykasoglu (2015) 0.8125 0.4375 42.09344611  176.63658942  6059.71427196  6090.52614259  6064.33605261 1128785324 50,000
Brajevic and Tuba (2013) 08125 04375 42008446 176636506 6039 714335 - 6192116211 204 15,000
Cagnina (2008) 0.8125 0.4375 42.098445 176.690000 6059.714335 - 6092.0498 12.1725 24,000
Chun(2013) 0.8125 0.4375 42.09344560  176.63659584  6059.714335  6090.52620169 6060.33057699  4.35745530 300,000
Coello(2000) 0812500 04375 403239 200.0000 6288 7445 - - - 900,000
Coello and Montes(2001) 0.8125 0.4375 40.097398 176.654047 6059.946341 - - - 80,000
Gandomi et al. (2013) 0.8125 0.4375 420934456 176.6365958  6059.7143348  6318.95 6179.13 137.223 20,000
Gandomi et al (2013) 08125 04375 420084456 1766365958 6039 714 6495 347 6447 736 502 693 15,000
(2016 0.7781686  0.3846491  40.3196187  200,0000 5885332773 5885436467  5885.382053  0.049080 20,000
Heet al. (2004) 0.8125 0.4375 42.0934456  176.63659584  6059.714355 - - - 30,000
He and Wang(2007) 08125 04375 42001266 176746500 60610777 6363 8041 61471332 86 4545 200,000
Kanan and Kramer (1994) 1123000 0.625000  58.291000  43.690000 71980428 - - - 20,000
Kaveh and Talatahan (2013)  0.8125 0.4375 42098353 176.637751  6059.7258 6150.1289 6081.7812 67.2418 -
Kim et al. (2010) 0.8125 0.4375 42.0984456 176.63659584  6059.714355 6060.074434 6059.727721 0.065870503 100,000
Liu ef al. (2010) - - - - 6059714335 6059.714335  6059.714335  1.0e-10 42,100
Maruta et al. (2009) 0.8125 0.4375 420984456 176.63650584  6039.714355  7332.841508  6358.156992 37271 40,000
Mezura and Coello (2005) 0.8125 0.4375 42.098446 176.636596 6059.7143 - 6379.938037 210 30,000
Montes and Coello (2008)  0.8125 0.4375 42098087 176.640518  6059.7456 7332.8798 6850.0049 426.0000 30,000
Parsopoulos ef al. (2005) - - - - 6154.7 9387.77 8016.37 745.869 5000
Tomassetti (2010) 0.8125 0.4375 42.098446 176.636596 6059.714337 - - - 200,000
Xuetal. (2013) 0.8125 0.4375 42.09844560  176.6365058  6039.714335  6059.7183 6059.7145 0.0007 30,000
Yildiz (2009) 0.8125 0.4375 42.09844559  176.6366 6059.7144 6156.5700 6097.4460 35.7810 30,000
Present study 0.81501271  0.42856436  42.19546977 176.63728721 6059.71389215 6059.72345316  6059.71389457  0.001783205  20.000
Table 3. The best solution obtained by ABC, GA and GABC-GA for tension/compression spring design problem.
Algo. x,(d) x,(D) x,(N) [ (besr) S (worst) flave) Sflstd.)
ABC(Akay and Karaboga)  0.051749 0.358179 11.203763 0.01665 - 0.012709 0.012813
GA(Coello) 0.051480 0.351661 11.632201 0.0127047834  0.01282208  0.01276920 3.04e05
GABC-GA 0.0516789124  0.3567321179 11.2872132513  0.0126654528 0.012665231  0.0126652119  1.23167 06
Table 4. The best solution obtained by different methods for tension/compression spring design problem.
Ref x,(d) x,(D) x,(N) f(best) flworst) [flave) f(std.) Fes
Aguine e al. (2007) 0.05168908 0.35671831 11.28893200 0.012665 E 0.012665 350.000
Akay and Karaboga (2012)  0.051749 0.358179 11.203763 0.012665 - 0.012709 0.012813 30.000
Baykasoglu (2012) 0.0516929296  0.3568108568  11.2835059488  0.0126652296 0.0140793687  0.0128750789  0.0002966889  20.000
Baykasoglu (2015) 0.0516674837  0.3361976945  11.3195613646  0.0126633049  0.0128058 0.0126770446  0.0127116883 50,000
Brajevic and Tuba (2013)  0.051601 0.356769 11.285988 0.012665 - 0.012683 0.00000331 15,000
Cagnina (2008) 0.051583 0.354190 11.438675 0.012665 - 0.0131 0.00041 24,000
Cocllo(2000) 0.051480 0.351661 11.632201 0.0127047834  0.01282208 0.01276920 3.94¢-05 900,000
Coello and Becerra(2004)  0.050000 0.317395 14.031795 0.0127210 - - - 2500
Gandomi et al. (2013) 0.05169 0.35673 11.2885 001266522 0.0168954 0.01350052 0.001420272 20,000
He et al. (2004) 0.05169040 0.35674999 11.28712599 0.0126652812 - - - 15,000
He and Wang(2007) 0.051728 0.357644 11.244543 0.0126747 0.012024 0.012730 0.000051985 200,000
Hu et al. (2003) 0.051466369 0.35138394 11.60865920 0.0126661409 - 0.012718975  0.008644 10,000
Kim et al. (2010) 0.0516890615  0.3567177493  11.2889651961  0.0126652328  0.01266523 0.01266523 1.05055¢-14 100,000
Liu et al. (2010) - - - 0.012665233  0.012665304  0.012665244  1.2¢08 24,950
Mahdavi <t al. (2007) 0.05115483 0.34987116 12.0764321 0.0126706 - - - 30.000
Maruta et al. (2009) 0.0516885495  0.3567054307  11.2806874780  0.0126652320  0.01461170 0.01275760 0.000269863 40,000
Mezura and Coello(2005)  0.052836 0.384942 9.807720 0.012689 - 0.013165 0.00039 30.000
Ouyang et al. (2017) 0.05167009418  0.3562614538  11.315774166  0.0126652499  0.012665843  0.012665618  9.69175¢06 100,000
Parsopoulos et al. (2005) - - - 0.013120 0.0503651 0.0229478 0.00720571 5000
Ray and Liew(2003) 0.0521602170 6050  10.6484422590 0.01671727  0.01671727 0.01292267 0.0003592 30,000
Tomassetti(2010) 0.051644 11.35304 0.012665 - - - 200,000
Xu et al. (2013) 0.051689061 11.28896667 0.012665233  0.01266524 0.01266523 1.53862-09 30.000
Yildiz(2009) 0.051690402 11.2871200 0.01266527  0.012708 0.012673 6.24¢-06 30.000
Present study 0.0516789124 0.0126654528  0.012665231 _ 0.0126652119 _ 1.23167 e-06 __ 20.000
Table 5. The best solution obtained by ABC, GA and GABC-GA for welded beam design problem
Algo. x,() 5D x(1) x,(D) [fibest) T (worst) flave) Fstd.)
ABC(Akay and Karaboga) 0.205730 3.470489 9.036624 1.724852 - 1.741913 3.1e-02
GA(Coello) 0.202369 3.544214 9.048210 1.728024 1.782143 1.748831 0.012926
GABC-GA 0.2057298  3.4704891 9.0366240 1.7248537 1.7259673  1.7248893  2.65e-09
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Table 6. The best solution obtained by different methods for welded beam design problem

Ref x(h) () x(1) X, (B)

f(best) S (worst) flavg) F(std) Fes
Aguirre et al. (2007) 0.205730 3.470489 9.036624 0.205730 1.724852 - 1.724881 1.2e-05 350.000
Alkay and Karaboga (2012) 0.205730 3.470489 9.036624 0.205730 1.724852 - 1.741913 3.1e-02 30,000
Baykasoglu (2012) 0.205730 3.470488 9.036624 0.205730 1.724852 1.724852 1.724852 0.000000 20.000
Baykasoglu(2015) 0.205730 3.470489 9.036624 0.205730 1.724852 1.724852 1.724852 0.000000 50,000
Brajevic and Tuba (2013) 0.205730 3.470489 9.036624 0.205730 1.724852 - 1.724853 1.7e-06 15,000
Cagnina (2008) 0.205729 3.470488 09.036624 0.205729 1.72 - 2.0574 0.2154 32,000
Coello(2000) 0.202369 9.048210 0.205730 1 1.782143 1.748831 0.012926 900.000
Coello and Becerra(2004) 0.2057 9.0366 0.2057 1 - - - 2500
Coello and Montes(2001) 0.205986 9.020224 0.206480 1 - - - 80,000
Gandomi et al. (2013) 0.2015 9.0414 0.2057 1 2.3455793  1.8786560  0.2677989 20,000
Garg(2016) 0.2057296 9.0366239 0.2057296 1 1.6952471 1.6952471  2.192e-09 20,000
He and Wang(2007) 0.202369 9.048210 0.205723 1 1.782134 1.748831 0.012926 200.000
Hu et al. (2003) 0.20573 9.03662 0.20573 1.724 - 1.72485 0 10.000
Kaveh and Talatahari (2010) 0.205700 9.036683 0.205731 1 1.729752 1.775961 0.009200 -
Kim et al. (2010) 0.205730 3.470489 9.036624 0.205730 1 1.724852 1.724852 0.000000 50,000
Liu et al. (2010) - - - - 1 1.7248811 1.7248579  4.1e-06 33.000
Mahdavi et al. (2007) 0.20573 3.47049 9.03662 0.20573 1 - - - 200.000
Maruta et al. (2009) 0.205730 3.470489 9.036624 0.20573 1 1.813471 1.724871 0.0136371 40.000
Mezura and Coello (2005) 0.205730 3.470489 9.036624 0.205730 1 - 1.7776 0.088 30,000
Montes and Coello(2008) 0.199742 3.612060 9.037500 0.206080 1 1.994851 1.813290 0.70500 80,000
Ouyang et al. (2017) 0.205730 3.470489 9.036624 0.205730 1 1.724852 1.724852 4.76378e-09  120.000
Parsopoulos et al. (2005) 0.2407 6.4851 8.2399 0.2497 2 - - - 5000
Ray and Liew(2003) - - - - 2 6.3996785  3.0025883 0.96 33.095
Tomassetti(2010) 0.205729 3.470489 9.036624 0.205730 1 - - - 200.000
Yildiz(2009) 0.205730 3.470489 9.036624 0.205730 1 1.75322 1.73418 0.00510 20.000
Present study 0.2057298  3.4704891 9.0366240  0.2057303 1 1.7259673  1.7248893  2.65e-09 20.000
results in 50 independent runs is 2.65e—09

Compared with the results obtained by ABC and GA,
it can be seen that GABC-GA is significantly better
than the other two methods. Table 6 presents the best
solution obtained by different methods published in
the literature. The compare results showed that the
GABC-GA outperforms the reported results in the
most of other literature, which demonstrated the
proposed algorithm is more reliable than the other
published approach.

5 CONCLUSION

IN this work, we present a new hybrid approach to
solve nonlinear design optimization problems. In the
proposed approach, it is mainly to combine the
advantages of the genetic algorithm and the global
optimal guided artificial bee colony algorithm named
GABC-GA. Here, the ABC algorithm is responsible
for the local search of the problem, while the GA
algorithm performs a global search through selection,
crossover, and mutation operations; thereby balance
the exploration and exploitation ability of the
algorithm. From the results of the engineering design
constrained optimization problem, the GABC-GA
algorithm has superior performance to the ABC and
GA algorithms since the proposed algorithm uses
different selection operators together: greedy choice,
probability selection and random selection, and
genetic operation methods. Comparison with other
state-of-art approaches, in most cases, the proposed
GABC-GA algorithm proves to be effective for
constrained optimization problems. The simulation
results also show the statistics results for each
problem. It can be seen that our approach is
recommended for solving constrained optimization
problems.
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