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1 INTRODUCTION 
MANY optimization problems in science and 

engineering disciplines can be expressed as Constraint 

optimization problems (COPs).Without loss of 

generality, the nonlinear programming (NLP) problem 

can be formulated as follows: 
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where S denotes the search space, which defined as an 

n -dimensional rectangle in
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the feasible region S is form by a set of  linear or 

nonlinear constraints as follows: 
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where q is the number of inequalities, and p is the 

number of equalities. Usually in COPs, equalities can 

be replaced by inequalities and thus the problem is 

composed of inequality constraints only. Accordingly, 

the non-linear constrained optimization problem can 

be written as: 
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To solve the COPs problem, many researchers 

were developed some deterministic methods for 

solving constraint problems, such as feasible direction 

approach and generalized gradient descent method. 

However, due to its limited application and the 

complexity of constraints, most of the problems like 

structural optimization problems, economic 

optimization, and engineering design problems, which 

inherently involve many difficult and complex 

requirements to satisfy. These optimization problems 

can be difficult to solve with traditional mathematical 

methods. In order to overcome these shortcomings, 

researchers have proposed many optimization methods 

to solve these constrained optimization problems, and 

the meta-heuristic optimization algorithm receives the 

most concerned. Meta-heuristic optimization 

algorithm are independent of problems and models 

when used, and are very efficient and flexible 

(Baykasoğlu, 2015). 
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As a more effective method than traditional 

mathematical methods, meta-heuristic optimization 

techniques can accurately explore and discover 

promising areas in the search space, these methods are 

well suited for global search. Some of meta-heuristic 

algorithms developed in recent years which is mainly 

inspires by natural phenomena and biological 

behavior, include genetic algorithms, particle swarm 

optimization (Wang and Yang, 2016), differential 

evolution (Yu, 2018), artificial bee algorithm (You, et 

al., 2017), firefly algorithm, grey wolf optimization 

algorithm, ant colony optimization (Xu, et al., 2016), 

cuckoo search algorithm, and they have been 

successful in solve various optimization problems. As 

for instance, Altalhi (2016) and Coello(2000) using 

genetic algorithms in engineering design optimization 

and verify the optimized “best”. Yu (2018) presents 

differential evolution algorithms for constrained multi-

objective optimization problems. Xu et. al. (2018) 

using differential evolution and its various strategies 

applied for constrained optimization problems. Kim 

(2010) and Ngo (2017) proposed an efficient PSO 

algorithm for engineering optimization problems. Liu 

(2018) proposed a parallel boundary search particle 

swarm optimization approach for COPs, perform 

simulation in engineering design problems and 

indicate the results efficiency. Ouyang (2017) 

proposed improved PSO for global optimization 

problems. Ariyasingha and Fernando (2017) used a 

modified Pareto strength ant colony optimization 

algorithm to solved multi-objective optimization 

problems. Tian and Dong (2017) proposed PSO-

FWAC algorithm to solve numerical optimization 

problems. Xie, et al. (2016) proposed a job scheduling 

algorithm (SFLA) based on particle swarm 

optimization (PSO) and shuffled frog leaping 

algorithm. Sun (2013) used an improved ABC 

algorithm to identify structural systems. Liu, etal. 

(2018). proposed an ABC algorithm for constrained 

optimization problems. Wang, et al. (2018) proposed 

ABC algorithm with multi-search strategy cooperative 

evolutionary. Kanagaraj, et al. (2014) employed 

hybrid CS and GA to sloved constrained engineering 

design optimization. Baykasoğlu (2015) proposed an 

adaptive (search mechanism and parameter settings) 

firefly algorithm to solve mechanical design 

optimization problems.  Kohli (2017) introduces the 

chaotic grey wolf optimization algorithm accelerating 

global convergence speed and application to 

constrained optimization problems. In addition to 

these approaches, Garg (2016) present a hybrid PSO-

GA approach for solving the constrained optimization 

problems. Hsieh (2012) hybridized of PSO and ABC 

algorithm to predict trends in financial distress. Tsai 

(2014) combines ABC and bee algorithm to solve the 

constrained optimization problem. Kanagaraj, et al. 

(2014) presents an effective hybrid CS and GA for 

solving engineering design optimization problems. 

Kıran, et al. (2012) design a novel hybrid algorithm 

based on PSO and ACO to finding optimal minimum. 

Lynn and Suganthan (2017) proposed a 

comprehensive review of population topologies 

developed for PSO and DE. 

As demonstrated in the above literature, the 

existing research approaches have been successfully 

applied to various constrained optimization problems. 

Therefore, in this study, genetic algorithm and global-

best-guided artificial bee colony algorithm are 

combined to solve nonlinear design optimization 

problems, and a hybrid algorithm named GABC-GA 

is proposed. In this method, ABC runs in the direction 

of improving vectors, and genetic operators have used 

genetic algorithms to modify decision vectors (Garg, 

2016). The rest of the main content of this article is 

described below. Section 2 briefly introduces the 

algorithm that will be used (GA and ABC) in this 

paper. Section 3 introduces our designed hybrid 

algorithm and constraint processing method. In 

Section 4 we present the design optimization problems 

to be dealt with, the experimental results and 

comparison results. The specific conclusions are given 

in section 5. 

2 OVERVIEW OF THE RELATED ALGORITHM 

2.1 Brief introduction to Genetic algorithm 
GENETIC algorithm is a adaptive stochastic search 

algorithm invented by Holland (1975) and based on 

the survival evolutionary genetics and natural 

selection. GAs has been widely applied in engineering 

optimization fields. In most GAs, the model begins 

with the solution space represented by the initial 

chromosome population, and the fitness value 

determines the solution to be good or bad, while using 

the mutation, crossover and selection methods to 

obtain a new generation of chromosomes. As the 

generation increases, all the quality of the 

chromosomes will increase, and the best generation of 

the last generation will be recorded as the final 

solution. The pseudo-code of GA is described in 

Algorithm 1: 

2.2 The Basic artificial bee colony algorithm 
Basic artificial bee colony algorithm is a nature 

inspired swarm intelligence algorithm that simulates 

the forging behaviors of honey bee swarms. In ABC 

algorithm, the search process is divided into employed 

bee stage, onlooker bee stage and scout bee stage. The 

detailed steps of the basic ABC algorithm are as 

follows. 

Step 1. Set parameter. 

The main parameters setting as: the maximum 

number of iterations ( iterM ), the size of population     

( SN )(the sum of numbers of employed and onlooker 

bees) , the total number of bees ( N ), D  is the 

problem dimension, the limit parameter ( Limit )         

(determine whether the solution needs to be replaced). 
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Step 2.Initialization  

Initial solution population is randomly generated 

using equation (3), and the fitness value is calculated. 

 min max min( )ij j ij j jx x x x  
 (3) 

where 1,2, ,i SN , 1,2, ,j D , min jx and max jx  

present the bonds of the -thj dimension, and ij is a 

random number. 

Step 3.Employed bee stage 

Employed bees generate new candidate solutions 

by searching for neighbors of food sources. Then 

calculate fitness value and update the current solution 

apply greedy selection strategy. The candidate 

solution can be generated by the follow formula:  

 ( )ij ij ij ij kjx x x x     (4) 

where 1,2, , ( )k SN k i  , is a randomly number 

from SN and ij is a random number between [-1,1] . 

The parameter set to boundaries by 

 

min min

max max

=
j ij j

ij

j ij j

x if x x
x

x f x x




  (5) 

Step 4. Onlooker bee stage 

The solution is chosen probabilistically based on 

its fitness value. 

Onlooker bees use equation (4) to search their 

neighborhood to improve the current solution and the 

solution is chosen probabilistically according to its 

fitness value. 

 1

i

i SN

jj

fitness
p

fitness





  (6) 

Greedy selection mechanism is applied to update 

the current solution after a new solution is generated. 

Step 5. Scout bee stage 

If the food source is not updated after a certain 

cycle, it is replaced by the new solution randomly 

generated by Equation (7). 

 min max min( )newj j newj j jx x x x     (7) 

Step 6. Repeat the search process 

If the termination condition is not met, repeat 

above steps, otherwise the algorithm terminates and 

outputs the result. 

2.3 Improved global-best-guided artificial bee 
colony algorithms 

ABC algorithm has good exploration capabilities 

but weak exploitation capabilities, many literatures 

have made corresponding research and proposed some 

modified ABC algorithms. Hsieh (2012) combined 

together the ABC and PSO to improve the search 

ability. Ouyang (2017) added a global -best-guided 

term to search equation to enhance the exploitation 

performance.  Zhong (2016) inspired by the methods 

of the global-best-guided term proposed a modified 

ABC algorithm strategy; experiments show that the 

algorithm has good performance. 

Learning from the above algorithms, a modified 

ABC algorithm based on improved global-best-guided 

is used in our approach, called GABC. For the reason 

that, the equation of candidate solution in employed 

bee stage is modified as following (Zhong, 2016): 

 
( ) ( )ij ij iter ij j ij iter ij ij kjx x g x x x       

 (8) 
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where [0, ]ij L  , L is a non-negative number,

[ 1,1]ij   , iter and iter are nonlinear adjusting 

factors and decrease with iteration increases, iter

denotes the current iteration, iterM is the maximum 

number of iterations, 1 and 2 are positive number 

and less than or equal to maximum number of 

iterations. 
 

Algorithm 1 Pseudo code of the GA algorithm. 

1: Initialize population chromosomes randomly 

2: Objective function:  

3: Evaluate fitness value for all chromosomes 

4: Initial probabilities of crossover and mutation 

5: do 

6: Update chromosomes by crossover and mutation operations 

7: If cp rand , crossover operation; end if  

8: If mp rand , mutation operation; end if 

9: Accept the new chromosomes if its fitness increases 

10: Select the best found chromosomes for the next generation 

11: While maximum iterations or minimum error criteria is not met 
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From equation (8) we can see that when =0L , 

=1iter , the equation becomes the initial one (4). L
control the exploitation ability in the search process, it 

cannot be set too large, otherwise the best solution 

will be missed. iter can adaptively adjusting to 

balance the ability of exploration and exploitation.

iter ij  ensures the self-regulation of randomly 

generated solutions. 

3 THE PROPOSED APPRAACH 

3.1 Hybrid GABC-GA algorithm 
THE hybrid GABC-GA approach is a improve 

algorithm, which can find global optimal solutions by 

repeatedly iterations just like ABC and GA. Therefore, 

the proposed algorithm begins with an initialization 

phase in which the initial solutions of the population 

are randomly generated in the search space using 

equation (3) and evaluate fitness value of each 

solution. In employed bee stage, use (8) to generate a 

new candidate solution and use (5) to limit it to the 

search space. Through greedy selection method, better 

solution is chosen, and use (6) to calculate the 

probability that this solution will be selected by the 

onlooker bee. In the onlooker bee phase, onlooker 

chooses one to follow and use equation (8) to search 

its neighborhood to improve the current solution, 

calculate the adaptability of the new candidate 

solution, and retain a solution with higher fitness. 

During the scout bee phase, if the qualities of the 

current solution do not improved, it is replaced by a 

new solution generated arbitrarily by (7). After 

running the GABC algorithm to generate a new 

generation, and then GA is applied to each one at this 

time. Because of this large population size, how to 

determine the number of solutions in an GABC 

renewal generation? With regards to this, Harish Garg 

(2016) uses a evolution method in hybrid PSO-GA 

algorithms, i.e. in the total population size, the 

evolution number selected in each PSO generation is 

effected by GA. Here, we applied its idea to deal with 

our approach, evolved in each GABC generation the 

number of GA is defined by NGA and defined as 

follow. 

 
( ) ( )i

N MaxN MaxN MinN

MaxI

GABC
GA GA GA GA

GABC
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 (11) 

After choosing the best solution from the 

population, we applied the selection, crossover, and 

mutation operators to update the solutions. Population 

size and maximum iteration numbers of GA changes 

with the iteration of GABC are set by Garg (2016) as 

follow equation. 

 
( ) ( )i

PopS MinPopS MaxPopS MinPopS

MaxI

GABC
GA GA GA GA
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where NGA is the current number of individuals, 

PopSGA is the population size, MinNGA and MaxNGA is 

the minimum and maximum number of solutions, 

MinPopSGA and ManPopSGA is the first and last population 

size, MimIGA and MimIGA  is the minimum and 

maximum number of iteration, iGABC  is the current 

iteration number in GABC , MaxIGABC  is the 

maximum number of iteration in GABC , represents 

the decreasing rate of GA individuals,   is the 

increasing rate of maximum iteration. In Figure 1, we 

have given the flow chart of the proposed hybrid 

algorithms. 

3.2 Constraint handing approach of COPs 
Constraint handing mechanism is usually required 

in constrained non-linear mathematical programming 

models, therefore, many different ways have been 

proposed to handing constraints, of which the most 

popular one is the penalty function. However, the 

penalty function has a main drawback is when there 

are too many parameters to adjust; it is very difficult 

to find the right combination. To overcome this 

limitation, the effective method was introduced by 

Kim et al. (2010) is applied for this study. The 

function proposed by Kim and used by Baykasoglu 

(2015) is expressed as: 

 

max max
ˆ( ) ( ) ( ) 0

min ( )
ˆ ( ) tan[ ( )]

2
x s

g x g x if g x

L x
f x f x otherwise




  


 
 



，

，
 (14) 

where
max 1 2

( )
( ) max[ ( ), ( ), , ( )]

j

q
g x

g x h x h x h x
 and 

tan[ ]  denotes the inverse tangent. When
ˆ( ) 0f x 

for any x , and thus 
ˆ ˆ( ) ( )f x h x is guaranteed 

(Baykasoglu, 2015). 
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Figure 1 The flow chart of GABC-GA 

4 TEST PROBLEMS AND COMPUTATIONAL 
RESULTS 

4.1 Experimental setup 
IN order to evaluate the effectiveness and 

efficiency of the proposed algorithm, we test its 

performance by selected three mechanical design 

optimization problems. The tests are conducted with 

two tests section, Test 1: the results of GABC-GA are 

compared with basic ABC and GA. The aim of this 

comparison is to show whether the hybrid approach 

has improved the overall performance of the method; 

Test 2: the results of GABC-GA are compared with 

other algorithms mentioned in the reference. The 

purpose of doing so is to show the comparison results 

of the proposed method and other effective methods. 

For fair comparisons, 50 independent runs are made 

and solutions are obtained in maximum number of 

iterations (1000) or relative error is -610 . All other 

parameters of algorithm are setting as =20D ; =1.5L ;

- 0.8crossover rate  ; - 0.03mutation rate  ;

=10MinPopSGA ; =1MinNGA ; =20MinIGA ; =10 ; =15 . 

4.2 Mechanical design optimization problems 

4.2.1 Test problems 1: pressure vessel design  

 

Figure 1 Pressure vessel design problem 

The pressure vessel design problem is introduced 

by Kannan et.al. (1994), as shown in Figure 2. 

Thickness of shell 1( )sT x , thickness of head 2( )hT x , 

inner radius 3( )R x and length of the cylindrical section 

of the vessel 4( )L x  four design variables to be 

consider. sT and hT are integer multiples of  0.0625, 

which are the available thickness of the rolled steel 

plates; R and L  are continuous variables. The 

mathematical model is described as below. 
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( ) 1296000 0
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     

  

   
 

The results of the proposed algorithm and with 

other authors have given existing algorithms are 

presented in Tables 1 and 2, respectively. From Table 

1, we can see that the best solution of pressure vessel 

problem using the design method is 1=0.81501271,x

2 =0.42856436,x 3 =42.19546977,x

4 =176.63728721x , function value is equal to

6059.71389215 and the standard deviation of the 

results in 50 independent runs is 0.001783205 . 

Compared with the results obtained by ABC and GA, 

it can be seen that GABC-GA is significantly better 

than the other two methods. Table 2 presents the best 

solution obtained by different methods published in 

the literature. The compare results showed that the 

GABC-GA outperforms most of other state-of-art 

algorithms. 
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4.2.2 Test problems 2: tension/compression 
spring design 

 

Figure 2 Tension/compression spring design problem 

Tension/compression spring design problem was 

first described by Belegundu, as shown in Figure 3. 

The design variables are the wire diameter
1( )d x , the 

mean coil diameter
2( )D x and the number of active 

coils
3( )N x . The mathematical model is described as 

below. 
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In this experiment, the GABC-GA algorithm is 

used to solve Tension/compression spring problem. 

The results of the proposed algorithm and with other 

authors existing algorithms are presented in Tables 3 

and 4, respectively. Table 3 showed the best solution 

is obtained by the proposed approach is
1=0.0516789124,x

2 =0.3567321179,x 3 =11.2872132513x with 

corresponding function value is equal to

0.0126654528 and the standard deviation of the 

results in 50 independent runs is 1.23167 e 06 . 

Compared with the results obtained by ABC and GA, 

it can be seen that the present approach is significantly 

better than the other two methods. Moreover, Table 4 

presents the best solution obtained by different 

methods published in the literature. The compare 

results showed that the GABC-GA outperforms most 

of other algorithms so far. 

4.2.3 Test problems 3: welded beam design 

 

Figure 3 Welded beam design problem 

Welded beam design problem introduced the 

optimization of welded beam which is a minimize cost 

design of the fabrication shown in Figure 4. The 

design variables to be consider are the thickness of the 

weld
1( )h x , the length of the welded joint

2( )l x , the 

width of the beam
3( )t x  and the thickness of the beam

4( )b x .The mathematical programming problem is 

given as below. 
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In this experiment, the results of the proposed 

algorithm and with other authors existing algorithms 

are presented in Tables 5 and 6, respectively. From 

Table 5, we can see that the best solution is obtained 

by the proposed approach for Welded beam design 

problem is 1=0.2057298,x 2 =3.4704891,x

3 =9.0366240x ， 4 =0.2057303x ，and function value is 

equal to1.7248537 and the standard deviation of the 
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Table 1.  The best solution obtained by ABC, GA and GABC-GA for pressure vessel design problem. 

 

 

 
Table 2.  The best solution obtained by different methods for pressure vessel design problem. 

 

 

 
Table 3.  The best solution obtained by ABC, GA and GABC-GA for tension/compression spring design problem. 

 

 

 
Table 4.  The best solution obtained by different methods for tension/compression spring design problem. 

 

 
Table 5.  The best solution obtained by ABC, GA and GABC-GA for welded beam design problem 
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Table 6.  The best solution obtained by different methods for welded beam design problem 

 

 

results in 50 independent runs is 2.65e 09 . 

Compared with the results obtained by ABC and GA, 

it can be seen that GABC-GA is significantly better 

than the other two methods. Table 6 presents the best 

solution obtained by different methods published in 

the literature. The compare results showed that the 

GABC-GA outperforms the reported results in the 

most of other literature, which demonstrated the 

proposed algorithm is more reliable than the other 

published approach. 

5 CONCLUSION 
IN this work, we present a new hybrid approach to 

solve nonlinear design optimization problems. In the 

proposed approach, it is mainly to combine the 

advantages of the genetic algorithm and the global 

optimal guided artificial bee colony algorithm named 

GABC-GA. Here, the ABC algorithm is responsible 

for the local search of the problem, while the GA 

algorithm performs a global search through selection, 

crossover, and mutation operations; thereby balance 

the exploration and exploitation ability of the 

algorithm. From the results of the engineering design 

constrained optimization problem, the GABC-GA 

algorithm has superior performance to the ABC and 

GA algorithms since the proposed algorithm uses 

different selection operators together: greedy choice, 

probability selection and random selection, and 

genetic operation methods. Comparison with other 

state-of-art approaches, in most cases, the proposed 

GABC-GA algorithm proves to be effective for 

constrained optimization problems. The simulation 

results also show the statistics results for each 

problem. It can be seen that our approach is 

recommended for solving constrained optimization 

problems. 
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