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ABSTRACT
This paper proposes a dimension root distance and its similarity measure of single-valued neutrosophic 
sets (SVNSs), and then develops the fault diagnosis method of hydraulic turbine by using the dimension 
root similarity measure of SVNSs. By the similarity measures between the fault diagnosis patterns 
and a testing sample with single-valued neutrosophic information and the relation indices, we can 
determine the main fault type and the ranking order of various vibration faults for predicting some 
possible fault trend. Then, the comparison of the fault diagnoses of hydraulic turbine based of the 
proposed dimension root similarity measure and the existing cotangent similarity measure of SVNSs 
is provided to demonstrate the effectiveness and rationality of the proposed fault diagnosis method. 
The fault diagnosis results of hydraulic turbine show that the proposed fault diagnosis method not 
only gives the main fault types of hydraulic turbine, but also provides useful information for multi-
fault analyses and future possible fault trends. The developed fault diagnosis method is effective and 
reasonable in the fault diagnosis of hydraulic turbine under single-valued neutrosophic environment.

1.  Introduction

Due to the complex structure of turbine-generator sets, if there 
is a fault of the equipment, it will produce a chain reaction 
and cause the fault of other parts or equipment, and then will 
seriously impact the reliability of power generation. Therefore, 
one is convinced of the importance of fault diagnoses. Various 
diagnosis methods have been developed and applied in hydrau-
lic turbine-generator sets. For example, the vibration fault diag-
nosis of hydraulic turbine generating unit was presented based 
on the wavelet packet analysis and support vector machine 
(Peng & Luo, 2006; Zhang, Chen, & Zhang, 2013). The neural 
network was applied to the vibration fault diagnosis of hydrau-
lic turbine by the particle swarm optimization (Jia et al., 2009). 
The fault diagnosis expert system was built by the fuzzy syn-
thesized evaluation combined with the practical experience 
of experts (Xiong, Zhang, & Zhang, 2009). The data stream 
mining method of the associative rule classification was applied 
to the fault diagnosis of hydraulic turbine generator unit (Su, 
Nan, Yu, et al., 2012). Furthermore, fault diagnosis methods 
were investigated in wind turbines (Dey, Pisu, & Ayalew, 2015; 
Liu et al., 2015). The fault diagnosis of steam turbine genera-
tor unit was introduced based on the support vector machine 
(Sang & Zhang, 2013).

However, the above mentioned diagnosis methods imply 
some disadvantages. For instance, the fault diagnoses based on 
the neural network and the support vector machine are only 
suitable for unique fault diagnosis and require learning process 
for updating fault knowledge. Then, the fault diagnosis expert 
systems indicate the diagnosis complexity and need the practi-
cal experience of experts. Therefore, the above motioned diag-
nosis methods are difficult to handle multiple fault diagnoses 
and fault prediction. In many real situations, the diagnosis data 

cannot provide deterministic values, because the fault testing 
data obtained by experts are usually imprecise or uncertain due 
to a lack of data, time pressure, or experts’ limited attention and 
knowledge. Therefore, for expressing imprecise and incomplete 
information in real problems, Zadeh firstly proposed fuzzy sets 
(Zadeh, 1965). Then, fuzzy sets have been extended to intui-
tionistic fuzzy sets (IFSs) (Atanassov, 1986), vague sets (Gau 
& Buehrer, 1993), and interval-valued intuitionistic fuzzy sets 
(IVIFSs) (Atanassov & Gargov, 1989) and so on. Therefore, 
the intelligent fault diagnosis frameworks have been devel-
oped based on the fuzzy integral (Karaköse, Aydın, & Akın, 
2010). Some researchers have developed the fault diagnosis 
methods of steam turbine based on the similarity measures of 
vague sets (Lu & Ye, 2013; Shi & Ye, 2013; Ye, Qiao, Wei, & Li, 
2005) and the cross entropy of vague sets (Ye, 2009). However, 
existing diagnosis methods cannot deal with fault diagnosis 
problems with incomplete, indeterminate, and inconsistent 
information comprehensively, which exists in real world. 
Then, a neutrosophic set proposed by Smarandache (1998) is 
a powerful tool to deal with incomplete, indeterminate, and 
inconsistent information in the real world and extends the 
theory of fuzzy sets, vague sets, IFSs, and IVIFSs. The neutro-
sophic set is characterized by a truth-membership degree, an 
indeterminacy-membership degree, and a falsity-membership 
degree independently, which lie within the real standard or 
nonstandard unit interval ]−0, 1+[. Specially, the indeterminacy 
presented in the neutrosophic set is independent on the truth 
and falsity values and can include inconsistent information; 
while vague sets, IFSs, and IVIFSs are only characterized by 
a truth-membership degree and a falsity-membership degree, 
and then they can include the incomplete and uncertain infor-
mation (hesitant degree), which is dependent on the truth and 
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falsity values, but not include indeterminate and inconsistent 
information. Hence, the neutrosophic set is more suitable 
for expressing incomplete, indeterminate, and inconsistent 
information comprehensively. However, the neutrosophic set 
is difficult to apply directly in engineering fields, because the 
range of the truth-membership, indeterminacy-membership 
and falsity-membership degrees is within the nonstandard 
unit interval ]−0, 1+[. Therefore, their range can be restrained 
within the real standard unit interval [0, 1] to apply easily in 
engineering problems. For this purpose, the concepts of a 
single-valued neutrosophic set (SVNS) and an interval neutr-
osophic set (INS) were introduced as the subclasses of the neu-
trosophic set (Wang, Smarandache, Zhang, & Sunderraman, 
2005, 2010). In a fault diagnosis problem, various symptoms 
usually imply a lot of incomplete, uncertainty, and inconsistent 
information for a fault, which characterizes a relation between 
symptoms and a fault. Thus, we work with the uncertainties 
and inconsistencies to lead us to some proper fault diagnosis. 
Since SVNSs are the generalization of IFSs (vague sets) and 
fuzzy sets, SVNSs can express the indeterminate and incon-
sistent information, which the intuitionistic fuzzy sets (vague 
sets) and the fuzzy sets cannot represent. Therefore, SVNSs 
have been applied to decision-making (Biswas, Pramanik, & 
Giri, 2016; Liu & Wang, 2014; Şahin & Küçük, 2015; Ye, 2014), 
clustering analysis (Ye, 2016), and medical diagnosis (Ye & Fu, 
2016). As for fault diagnosis problems with single-valued neu-
trosophic information, Ye (2015) proposed cotangent similar-
ity measures between SVNSs based on the cotangent function 
and successfully applied them to the fault diagnosis of steam 
turbine under single-valued neutrosophic environment. Then, 
Wang, Wei, and Ye (2016) presented a misfire fault diagnosis 
method of gasoline engines based on the cosine measure of 
SVNSs. Till now neutrosophic theory has not been applied 
to the fault diagnoses of hydraulic turbine. However, existing 
fault diagnosis methods for hydraulic turbine cannot handle 
the fault diagnosis problems with neutrosophic information. 
To extend existing fault diagnosis methods with neutrosophic 
information to hydraulic turbine in single-valued neutrosophic 
setting, the main purposes of this paper are to propose a new 
similarity measure based on a dimension root distance of 
SVNSs and its fault diagnosis method for the vibration fault 
diagnosis of hydraulic turbine with single-valued neutrosophic 
information.

The remainder of this paper is organized as follows:  
Section 2 briefly describes some basic concepts of SVNSs. 
Section 3 presents a dimension root distance of SVNSs and 
its similarity measure of SVNSs (called the dimension root 
similarity measure of SVNSs) and investigates the properties. 
Based on the dimension root similarity measure of SVNSs, we 
establish a fault diagnosis method for the vibration fault diag-
nosis of hydraulic turbine under single-valued neutrosophic 
environment, and then its diagnosis results demonstrate the 
effectiveness and nationality of the developed fault diagnosis 
method in Section 4. Section 5 gives conclusions and future 
research.

2.  Some Basic Concepts of SVNSs

Smarandache (1998) firstly introduced the concept of the neu-
trosophic set from philosophical point of view. As mentioned 
above, it is difficult to apply the neutrosophic set to real prob-
lems. Therefore, Wang et al. (2010) introduced the concept of 
SVNS, which is a subclass of the neutrosophic set, and gave 
the following definition.

Definition 1. (Wang et al., 2010). Let X be a universal set. A 
SVNS N in X is characterized by a truth-membership func-
tion TN(x), an indeterminacy-membership function IN(x) and 
a falsity-membership function FN(x). Then, a SVNS N can be 
denoted by the following form:

where TN(x), IN(x), FN(x) ∈ [0, 1] for each point x in X. 
Obviously, the sum of TN(x), IN(x) and FN(x) satisfies the 
condition 0 ≤ TN(x) + IN(x) + FN(x) ≤ 3.

Let N =
{⟨

x,TN (x), IN (x), FN (x)
⟩|x ∈ X

}
 and 

M =
{⟨

x,TM(x), IM(x), FM(x)
⟩|x ∈ X

}
 be two SVNSs. Then 

there are the following relations (Wang et al., 2010):

(1) � �   Complement: Nc =
{⟨

x, FN (x), 1 − IN (x),TN (x)
⟩|x ∈ X

}
;

(2) � �  Inclusion: N ⊆ M if and only if TN(x) ≤ TM(x), IN(x) 
≥ IM(x), and FN(x) ≥ FM(x) for any x in X;

(3) � �   Equality: N = M if and only if N ⊆ M and M ⊆ N.

3.  Dimension Root Distance and its Similarity 
Measure of SVNSs

In this section, we propose a dimension root distance and its 
similarity measure between SVNSs.
Definition 2. Let   two   SVNSs   N   and   M   in 
the universe of discourse X = {x1, x2, …, xn} be 

N =
{⟨

xj,TN (xj), IN (xj), FN (xj)
⟩
|xj ∈ X

}
 and 

M =
{⟨

xj,TM(xj), IM(xj), FM(xj)
⟩
|xj ∈ X

}
. Then, a dimen-

sion root distance between SVNSs N and M is defined as
 

Proposition 1. The dimension root distance measure DR(N, 
M) satisfies the following properties (D1)-(D4):

(D1) 0 ≤ DR(N, M) ≤1;
(D2) DR(N, M) = 0 if and only if N = M;
(D3) DR(N, M) = DR(M, N)
(D4) If P is a SVNS in X and N ⊆ M ⊆ P, then DR(N, P) ≥ 

DR(N, M) and DR(N, P) ≥ DR(M, P).
Proof:

It is obvious that DR(N, M) satisfies the properties (D1)-(D3). 
Hence, we only prove the property (D4). Since N ⊆ M ⊆ P, this 
implies TN (xj) ≤ TM(xj) ≤ TP(xj), IN (xj) ≥ IM(xj) ≥ IP(xj), and 
FN (xj) ≥ FM(xj) ≥ FP(xj) for j = 1, 2, …, n and xj ∈ X. Then, we 
have the following inequalities:

N =
{⟨

x,TN (x), IN (x), FN (x)
⟩|x ∈ X

}
,

(1)

DR(N ,M) =
1

n

n∑
j=1

{
1

3

(|||TN (xj) − TM(xj)
|||
2

+
|||IN (xj) − IM(xj)

|||
2

+
|||FN (xj) − FM(xj)

|||
2
)}1∕3

,

|||TN (xj) − TM(xj)
||| ≤

|||TN (xj) − TP(xj)
|||,|||TM(xj) − TP(xj)

||| ≤
|||TN (xj) − TP(xj)

|||,|||IN (xj) − IM(xj)
||| ≤

|||IN (xj) − IP(xj)
|||,|||IM(xj) − IP(xj)

||| ≤
|||IN (xj) − IP(xj)

|||,|||FN (xj) − FM(xj)
||| ≤

|||FN (xj) − FP(xj)
|||, and|||FM(xj) − FP(xj)

||| ≤
|||FN (xj) − FP(xj)

|||
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Hence, there are |||TN (xj) − TM(xj)
|||
2

 + |||IN (xj) − IM(xj)
|||
2

 + 
|||FN (xj) − FM(xj)

|||
2

 ≤ |||TN (xj) − TP(xj)
|||
2

 + |||IN (xj) − IP(xj)
|||
2

 + 
|||FN (xj) − FP(xj)

|||
2

 and |||TM(xj) − TP(xj)
|||
2

 + |||IM(xj) − IP(xj)
|||
2

 
+ |||FM(xj) − FP(xj)

|||
2

 ≤ |||TN (xj) − TP(xj)
|||
2

 + |||IN (xj) − IP(xj)
|||
2

 + 
|||FN (xj) − FP(xj)

|||
2

.
Combining the above inequalities with the defined distance 

formula (1), we can obtain that DR(N, P) ≥ DR(N, M) and DR(N, 
P) ≥ DR(M, P).

Thus, we complete the proof of the properties. 
Considering the importance of elements in the universe of 

discourse X = {x1, x2, …, xn}, one needs to give the weight wj of 
the element xj (j = 1, 2,…, n) with wj ∈ [0, 1] and 

∑n

j=1 wj = 1. 
Then, the weighted dimension root distance measure between 
SVNSs N and M can be defined as:

 

Especially, when wj  =  1/n (j  =  1, 2,…, n), Equation (2) 
reduces to Equation (1). Obviously, the weighted dimen-
sion root distance measure also satisfies the above properties 
(D1)-(D4).

Based on the complementary relationship between the 
distance measure and the similarity measure, we can define 
the similarity measure based on the weighted dimension root 
distance.
Definition 3. Let  two  SVNSs  N  and  M in the universe of discourse 
X = {x1, x2, …, xn} be N =

{⟨
xj,TN (xj), IN (xj), FN (xj)

⟩
|xj ∈ X

}
 

and M =
{⟨

xj,TM(xj), IM(xj), FM(xj)
⟩
|xj ∈ X

}
. Then, the sim-

ilarity measure based on the weighted dimension root distance 
between SVNSs N and M is defined as follows:

 

which is called the dimension root similarity measure of 
SVNSs.
Proposition 2. The dimension root similarity measure  
SR(N, M) satisfies the following properties (S1)–(S4):

(S1) 0 ≤ SR(N, M) ≤ 1
(S2) SR(N, M) = 1 if and only if N = M;
(S3) SR(N, M) = SR(M, N)
(S4) If P is a SVNS in X and N ⊆ M ⊆ P, then SR(N, P) ≤ 

SR(N, M) and SR(N, P) ≤ SR(M, P).
According to the above distance properties and the comple-

mentary relationship between the distance and the similarity 
measure, we can easily prove that the dimension root similarity 
measure should satisfy the above properties (S1)-(S4).

4.  Fault Diagnosis Method of Hydraulic Turbine 
based on the Dimension Root Similarity Measure

For a volume of fault feature information obtained from modem 
measurement technologies, the fault information may contain 

(2)

WR(N ,M) =

n∑
j=1

wj

{
1

3

(|||TN (xj) − TM(xj)
|||
2

+
|||IN (xj) − IM(xj)

|||
2

+
|||FN (xj) − FM(xj)

|||
2
)}1∕3

,

(3)

SR(N ,M) = 1 −

n∑
j=1

wj

{
1

3

(|||TN (xj) − TM(xj)
|||
2

+
|||IN (xj) − IM(xj)

|||
2

+
|||FN (xj) − FM(xj)

|||
2
)}1∕3

,

a lot of incomplete, uncertain, and inconsistent information. In 
some practical situations, some fault features may include truth 
and falsity information and indeterminacy information, which 
are expressed by SVNSs. Hence, the dimension root similarity 
measure of SVNSs is a suitable tool to deal with fault diagnosis 
problems with single-valued neutrosophic information. This 
section proposes a fault diagnosis method for hydraulic turbine 
by using the proposed similarity measure of SVNSs.

4.1.  Fault Diagnosis Method

For a fault diagnosis problem of hydraulic turbine, the fault 
diagnosis of hydraulic turbine realized by the frequency fea-
tures extracted from the vibration signals of hydraulic turbine 
is a simple and effective method (Su et al., 2012; Zhang et al., 
2013). The spectrum analysis of the vibration signals meas-
ured by the sensors is carried out, and the different frequency 
components in the spectrum are composed of different fault 
characteristic frequencies, which reflect the different fault 
reasons. The frequency components in the spectrum of the 
fault vibration data are used as the fault feature vectors. The 
type of faults can be determined by these fault feature vectors 
(Su et al., 2012; Zhang et al., 2013).

Assume that a set of m fault diagnosis patterns (fault diag-
nosis knowledge) is D = {D1, D2, …, Dm} and a set of n fre-
quency features is S = {s1, s2, …, sn}. Then, the information of 
a fault diagnosis pattern Dk (k = 1, 2, …, m) with respect to a 
frequency feature si (i = 1, 2, …, n) is represented by a SVNS 
Dk (k = 1, 2, …, m):

Then, the information of testing samples is represented by 
a SVNS Rt (t = 1, 2, …, q):

The measure value δk (k = 1, 2, …, m) can be obtained by 
the following similarity measure between DK and Rt:
 

For easy fault diagnosis analyses, the measure values of δk 
(k  =  1, 2, …, m) are normalized into the values of relation 
indices by the following formula:
 

where ρk lies within the interval [–1, 1], �min = min
1≤k≤m

{�k} and 
�max = max

1≤k≤m
{�k}.

According to the relation indices, we can rank faults and 
determine the main fault type or predict possible fault trend 
for the tested equipment.

In this fault diagnosis process, if the maximum value of the 
relation indices is �max = max

1≤k≤m
{�k} = 1 in the kth relation 

Dk =
{⟨

sj,TDk
(sj), IDk

(sj), FDk
(sj)

⟩
|sj ∈ S

}
.

Rt =
{⟨

sj,TRt
(sj), IRt

(sj), FRt
(sj)

⟩
|sj ∈ S

}
.

(4)

�k = SR(Dk,Rt)

= 1 −

n∑
j=1

wj

{
1

3

(|||TDk
(sj) − TRt

(sj)
|||
2

+
|||IDk

(sj) − IRt
(sj)

|||
2

+
|||FDk

(sj) − FRt
(sj)

|||
2
)}1∕3

.

(5)�k =
2�k − �

min
− �

max

�
max

− �
min

, k = 1, 2, … ,m,
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For the vibration fault diagnosis of hydraulic turbine, eight 
real-testing samples are given as actual examples, which are 
expressed by the following SVNSs:

D
2
=

{
< s

1
, 0.01, 0.08, 0.91 >, < s

2
, 0.69, 0.02, 0.29 >,

< s
3
, 0.88, 0.1, 0.02 >, < s

4
, 0.65, 0.1, 0. 25 >,

< s
5
, 0.1, 0.11, 0.79 >

}
,

D
3
=

{
< s

1
, 0.04, 0.03, 0.93 >, < s

2
, 0.13, 0.03, 0.84 >,

< s
3
, 0.08, 0.07, 0.85 >, < s

4
, 0.02, 0.04, 0. 94 >,

< s
5
, 0.93, 0.06, 0.01 >

}
,

D
4
=

{
< s

1
, 0.88, 0.04, 0.08 >, < s

2
, 0.2, 0.01, 0.79 >,

< s
3
, 0.03, 0.09, 0.88 >, < s

4
, 0.02, 0.21, 0. 77 >,

< s
5
, 0.1, 0.18, 0.72 >

}
,

R
1
=

{
< s

1
, 0.03, 0, 0.97 >, < s

2
, 0.95, 0, 0.05 >,

< s
3
, 0.1, 0, 0.9 >, < s

4
, 0.04, 0, 0. 96 >,

< s
5
, 0.2, 0, 0.8 >

}
,

R
2
=

{
< s

1
, 0.07, 0, 0.93 >, < s

2
, 0.4, 0, 0.6 >,

< s
3
, 0.12, 0, 0.88 >, < s

4
, 0.03, 0, 0. 97 >,

< s
5
, 0.96, 0, 0.04 >

}
,

R
3
=

{
< s

1
, 0.04, 0, 0.96 >, < s

2
, 0.16, 0, 0.84 >,

< s
3
, 0.08, 0, 0.92 >, < s

4
, 0.06, 0, 0. 94 >,

< s
5
, 0.93, 0, 0.07 >

}
,

R
4
=

{
< s

1
, 0.01, 0, 0.99 >, < s

2
, 0.85, 0, 0.15 >,

< s
3
, 0.98, 0, 0.02 >, < s

4
, 0.71, 0, 0. 29 >,

< s
5
, 0.07, 0, 0.93 >

}
,

R
5
=

{
< s

1
, 0.9, 0, 0.1 >, < s

2
, 0.2, 0, 0.8 >,

< s
3
, 0.05, 0, 0.95 >, < s

4
, 0.02, 0, 0. 98 >,

< s
5
, 0.18, 0, 0.82 >

}
,

index, then we can determine that the testing sample Rt should 
belong to the main fault diagnosis pattern Dk. Then, we can also 
predict possible fault trend according to the ranking order of 
the relation indices ρk (k = 1, 2, …, m). Thus, the overall block 
diagram of the fault diagnosis approach of hydraulic turbine 
based on the dimension root similarity measure of SVNSs is 
shown in Figure 1.

4.2.  Vibration Fault Diagnosis of Hydraulic Turbine

In this subsection, the proposed fault diagnosis method is 
applied to the vibration fault diagnosis of hydraulic turbine to 
illustrate its effectiveness.

In hydraulic turbine-generator sets, interaction effects in the  
factors such as the unbalance and offset center of rotor, the 
bearing clearance show the vibration of the turbine-generator 
sets. In the vibration fault diagnosis of hydraulic turbine, the 
relation between the cause and the fault symptoms of the 
hydraulic turbine has been established by means of the analyses 
of frequency features in the fault frequency spectrum (Su  
et al., 2012; Zhang et al., 2013). Now, we investigate the vibration 
fault diagnosis of hydraulic turbine by use of the proposed 
similarity measure of SVNSs to demonstrate the effectiveness 
and rationality of the fault diagnosis method in this study.

Let us consider a set of four fault diagnosis patterns D = 
{D1(unbalance of rotor), D2(offset center of rotor), D3(bigger 
bearing clearance), D4(vortex band of tail water pipe)} as the 
fault diagnosis knowledge and a set of five frequency features 
in the fault frequency spectrum S = {s1(0.5f), s2(f), s3(2f), s4(3f), 
s5(>3f)} under operating frequency f as a frequency feature set 
(Su et al., 2012; Zhang et al., 2013). Then, the information of 
the fault diagnosis pattern Dk (k = 1, 2, 3, 4) with respect to the 
frequency feature si (i = 1, 2, 3, 4, 5) can be expressed by the 
form of SVNSs, as shown in Table 1. Assume that the weight 
of each feature sj is wj = 1/5 for j = 1, 2, 3, 4, 5.

From Table 1, the fault diagnosis patterns can be expressed 
as the form of SVNSs:

D
1
=

{
< s

1
, 0.01, 0.04, 0.95 >, < s

2
, 0.9, 0.1, 0 >,

< s
3
, 0.08, 0.03, 0.89 >, < s

4
, 0.02, 0.03, 0. 95 >,

< s
5
, 0.15, 0.06, 0.79 >

}
,

Fault diagnosis patterns Dk

(k = 1, 2, …, m)
Each real-testing sample Rt

Calculate the similarity measure values of δk (k = 1, 2, …, m) by Eq. (4) 

Calculate the relation indices of ρk (k = 1, 2, …, m) by Eq. (5)

Obtain the maximum relation index by
max

1
max{ }kk m

ρ ρ
≤ ≤

=

Determine the main fault type by ρmax and predict possible fault trend 

according to the ranking order of the relation indices ρk (k = 1, 2, …, m) 

Figure 1. Overall Block Diagram of the Fault Diagnosis Approach of Hydraulic Turbine.
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Eqs. (4) and (5), then the calculating results are shown in 
Table 2 and Figure 2.

To show the diagnosis process in detail, we give the fault 
diagnosis analyses of the two testing samples R1 and R2 as the 
illustration.

As for No. 1 (the real-testing sample R1) in Table 2 and 
Figure 2, we can see that the fault type of the hydraulic turbine 
is D1 (unbalance of rotor) according to the maximum relation 
index (1.0000), which is in agreement with the actual fault. 
Obviously, the fault types of D2, D3, D4 have very low possibility 
due to the negative relation indices. Therefore, the unbalance 
of rotor causes the violent vibration of the hydraulic turbine. 
Hereby, the ranking order of all faults is D1→D2→D3→D4.

As for No. 2 (the real-testing sample R2) in Table 2 and 
Figure 2, we can see that the fault type of the hydraulic tur-
bine is D3 (bigger bearing clearance) according to the max-
imum relation index (1.0000), which is in agreement with 
the actual fault. Then, the unbalance of rotor (D1) may exit 

For the fault diagnosis of each real-testing sample Rt for 
t  =  1, 2, …, 8, the similarity measures and relation indices 
between Dk(k = 1, 2, 3, 4) and Rt (t = 1, 2, …, 8) are calculated by  

R
6
=

{
< s

1
, 0.02, 0, 0.98 >, < s

2
, 1, 0, 0 >,

< s
3
, 0.08, 0, 0.92 >, < s

4
, 0.03, 0, 0. 97 >,

< s
5
, 0.18, 0, 0.82 >

}
,

R
7
=

{
< s

1
, 0.09, 0, 0.91 >, < s

2
, 0.71, 0, 0.29 >,

< s
3
, 0.88, 0, 0.12 >, < s

4
, 0.65, 0, 0. 35 >,

< s
5
, 0.1, 0, 0.9 >

}
,

R
8
=

{
< s

1
, 0.88, 0, 0.12 >, < s

2
, 0.21, 0, 0.79 >,

< s
3
, 0.12, 0, 0.88 >, < s

4
, 0.04, 0, 0. 96 >,

< s
5
, 0.1, 0, 0.9 >

}
.

Table 1. Vibration Fault Diagnosis Knowledge.

Fault diagnosis pattern

Frequency feature

S1(0.5f) S2(f) S3(2f) S4(3f) S5(>3f)
D1 (Unbalance of rotor) [0.01, 0.05] [0.9, 1] [0.08, 0.11] [0.02, 0.05] [0.15, 0.21]
D2 (Offset center of rotor) [0.01, 0.09] [0.69, 0.71] [0.88, 0.98] [0.65, 0.75] [0.1, 0.21]
D3 (Bigger bearing 

clearance)
[0.04, 0.07] [0.13, 0.16] [0.08, 0.15] [0.02, 0.06] [0.93, 0.99]

D4 (Vortex band of tail 
water pipe)

[0.88, 0.92] [0.2, 0.21] [0.03, 0.12] [0.02, 0.23] [0.1, 0.28]

Table 2. Results of the Relation Indices and Fault Diagnoses Based on the Dimension Root Similarity Measure.

No. Rt

Relation indices (ρk)

Fault diagnosis results Actual faultsD1 D2 D3 D4

1 R1 1.0000 −0.7579 −0.7824 −1.0000 D1 (Unbalance of rotor) D1
2 R2 0.0529 −1.0000 1.0000 −0.4695 D3 (Bigger bearing clearance) D3
3 R3 –0.1641 –1.0000 1.0000 –0.3188 D3 (Bigger bearing clearance) D3
4 R4 0.0050 1.0000 –1.0000 –0.9600 D2 (Offset center of rotor) D2
5 R5 –0.1633 –1.0000 –0.1676 1.0000 D4 (Vortex band of tail water pipe) D4
6 R6 1.0000 –0.7430 –0.8233 –1.0000 D1 (Unbalance of rotor) D1
7 R7 –0.0425 1.0000 –1.0000 –0.8805 D2 (Offset center of rotor) D2
8 R8 –0.2255 –1.0000 –0.3712 1.0000 D4 (Vortex band of tail water pipe) D4
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Figure 2. Fault Diagnosis Results Based on the Dimension Root Similarity Measure of SVNSs.
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In fact, the fault diagnosis method of steam turbine proposed 
by Ye (2015) is similar to the one of hydraulic turbine except 
the difference of their similarity measures of SVNSs in the flow 
diagram of the fault diagnoses. Because a similarity measure 
is a key mathematical tool in the fault diagnosis, we use the 
cotangent similarity measure of SVNSs proposed by Ye (2015) 
for the comparison of the fault diagnosis problem of hydraulic 
turbine to demonstrate the effectiveness of the fault diagnosis 
method of hydraulic turbine based on the proposed dimension 
root similarity measure.

To realize the comparison of the fault diagnosis problem of 
hydraulic turbine, the dimension root similarity measure of 
Equation (4) can be replaced by the cotangent similarity meas-
ure of SVNSs proposed in (Ye, 2015) as the following form:

 

Then by using Eqs. (6) and (5), we can calculate the cotan-
gent similarity measures and relation indices between Dk (k = 1, 
2, 3, 4) and Rt (t = 1, 2, …, 8) respectively, and then the results 
are shown in Table 3 and Figure 3.

(6)

�k = Cw(Dk,Rt) =

n�
j=1

wj cot

⎡
⎢⎢⎢⎢⎣

�

4
+

�

12

⎛
⎜⎜⎜⎜⎝

���TDk
(sj) − TRt

(sj)
���+���IDk

(sj) − IRt
(sj)

���+���FDk
(sj) − FRt

(sj)
���

⎞⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦
.

low possibility, because its relation index is 0.0529, while 
the fault types D2 and D4 have very low possibility due to 
the negative relation indices. Therefore, the bigger bearing 
clearance is the main cause of producing the violent vibra-
tion of the hydraulic turbine. Hereby, the ranking order of 
all faults is D3→D1→D4→D2.

As for the rest of the real-testing samples (R3-R8), by the 
similar diagnosis analyses we can give the main faults and the 
ranking orders of all faults according to the relation indices. 
Obviously, we can see from Table 2 that all diagnosis results 
based on the dimension root similarity measure are in agree-
ment with the actual faults of the hydraulic turbine.

The fault diagnosis results of the hydraulic turbine show that 
the diagnosis method proposed in this study not only indicates 
the main fault type of the hydraulic turbine, but also provides 
useful information for multi-fault analyses and future possible 
fault trend. Therefore, the fault diagnosis method developed 
in this paper is effective and reasonable in the vibration fault 
diagnoses of hydraulic turbine.

4.3.  Comparative Analyses of Related Fault Diagnosis 
Methods

In existing literature, there is not any diagnosis method of 
hydraulic turbine in a neutrosophic environment until now. 

Table 3. Results of the Relation Indices and Fault Diagnoses Based on the Cotangent Similarity Measure.

No. Rt

Relation index (ρk)

Fault diagnosis result Actual faultD1 D2 D3 D4

1 R1 1.0000 –0.9150 –0.5518 –1.0000 D1(Unbalance of rotor) D1
2 R2 0.1093 –1.0000 1.0000 –0.4877 D3(Bigger bearing 

clearance)
D3

3 R3 –0.0391 –1.0000 1.0000 –0.2987 D3(Bigger bearing 
clearance)

D3

4 R4 0.0632 1.0000 –0.8881 –1.0000 D2(Offset center of 
rotor)

D2

5 R5 0.0563 –1.0000 0.0083 1.0000 D4(Vortex band of tail 
water pipe)

D4

6 R6 1.0000 –0.9468 –0.5833 –1.0000 D1(Unbalance of rotor) D1
7 R7 –0.1818 1.0000 –0.9308 –1.0000 D2(Offset center of 

rotor)
D2

8 R8 0.0094 –1.0000 –0.0465 1.0000 D4(Vortex band of tail 
water pipe)

D4
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Figure 3. Fault Diagnosis Results Based on the Cotangent Similarity Measure of SVNSs.
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From Tables 2 and 3, Figures 2 and 3 we can see that all the 
main faults given by the dimension root similarity measure 
and the cotangent similarity measure are identical in the fault 
diagnoses of the hydraulic turbine and in agreement with the 
actual faults. Hence, the fault diagnosis method of hydraulic 
turbine based on the proposed dimension root similarity meas-
ure of SVNSs is effective.

Furthermore, the fault diagnosis method of hydraulic turbine 
proposed in this study is simpler and more effective than the 
diagnosis methods of hydraulic turbines based on the neural 
networks (Jia et al., 2009) and support vector machine (Peng 
& Luo, 2006; Zhang et al., 2013), where their diagnostic results 
are within the accurate range of 86.32% and 92.68% (Peng & 
Luo, 2006; Zhang et al., 2013). It is obvious that the fault diag-
nosis method of hydraulic turbine proposed in this study can 
overcome the disadvantages of diagnosis methods based on the 
neural networks and support vector machine, which are only 
suitable for unique fault diagnosis result and require the learning 
process for updating fault knowledge; while the fault diagnosis 
method in this study does not require the learning process for 
updating fault knowledge and can provide multiple fault diag-
nosis information and future possible fault trends. Therefore, the 
proposed diagnosis method in this paper is easily implemented 
by some personal computer software, and then it is superior to 
the existing fault diagnosis methods of hydraulic turbine.

5.  Conclusion

This paper proposed the dimension root distance and its similar-
ity measure between SVNSs. Then, the dimension root similarity 
measure was applied to the vibration fault diagnosis of hydrau-
lic turbine under single-valued neutrosophic environment. The 
fault diagnosis results demonstrated the effectiveness and ration-
ality of the fault diagnosis method proposed in this study, and 
then it can not only indicate the main fault type of hydraulic 
turbine, but also predict future possible fault trend according 
to the relation indices. Furthermore, the proposed fault diag-
nosis method can deal with the fault diagnosis problems with 
incomplete, uncertain, and inconsistent information, which are 
not handled by existing fault diagnosis methods of hydraulic 
turbine. Therefore, the fault diagnosis method proposed in this 
study extends existing fault diagnosis methods and provides a 
new effective and simple way for the multiple fault diagnosis 
and fault predictions in real world applications.

In the future, the fault diagnosis method developed in 
this study will be further extended to fault diagnoses of other 
mechanical equipment, such as aircraft engines and wind 
turbines.
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