
Intelligent Automation & Soft Computing, 2017
http://dx.doi.org/10.1080/10798587.2016.1267238

A Complex Networked Method of Sorting Negotiation Demand Based on Answer
Set Programs

Hui Wang, Liang Li, Long-yun Gao and Wu Chen

College of Computer and Information Science, Southwest University, Chongqing, China

ABSTRACT
With the development of big data science, handling intensive knowledge in the complex network
becomes more and more important. Knowledge representation of multi-agent negotiation in the
complex network plays an important role in big data science. As a modern approach to declarative
programming, answer set programming is widely applied in representing the multi-agent negotiation
knowledge in recent years. But almost all the relevant negotiation models are based on complete
rational agents, which make the negotiation process complex and low efficient. Sorting negotiation
demands is the most key step in creating an efficient negotiation model to improve the negotiation
ability of agents. Traditional sorting method is not suitable for the negotiation in the complex network.
In this paper, we propose a complex networked negotiation, which can show the relationships
among demands, and then a sorting method of negotiation demands is proposed based on demand
relationships. What’s more, we use the betweenness of literals and the boundary co-efficient of rules to
evaluate the importance of demands and rules.

1.  Introduction

With the development of big data science, lots of intensive
knowledge in complex networks needs to be represented.
Handling common sense in the complex network becomes
more and more popular. Negotiation plays an important role
in multi-agent system to solve conflict, realize coordination
and cooperation. In real society, negotiation in the complex
network is really common among multiple agents and it is a
multi-round process. Agents will make some deals in each
negotiation round, and the negotiation will not end until the
final agreement is reached or negotiation fails. Negotiation
is one of the issues, which has been studied for a long time,
and various formalized methods have been proposed (Chen,
Zhang, & Wu, 2009, 2013; Meyer, Foo, Kwok, & Zhang, 2004;
Son, Pontelli, Nguyen, & Sakama, 2014), such as a sequential
model for reasoning about bargaining in logic programs. In
recent years, a formalized method based on belief revision has
been proposed (Wu, Zhang, & Zhang, 2011; Zhang, Foo, Meyer,
& Kwok, 2004). Its basic idea is that when two agents negoti-
ate, both sides put forward some demands and use a formula
set of logic language to represent these demands. Each agent
makes decisions depending on, which demands are acceptable
by guessing counterpart’s demands. In some cases, each agent
can give up part of its demands, which have been proposed at
the beginning and accept some of counterpart’s demands in
order to make a deal. These demands are called beliefs of agent
and they are the basis of the rational mechanisms of giving up
and receiving demands. Results of each round of negotiations
are the results of belief revision among agents. As an important
method of knowledge representation, answer set program (ASP

for short) plays a significant role in AI (Baral, 2003; Gelfond
& Lifschitz, 1991). In recent years, some researchers began to
apply ASP to multi-agent negotiation, which opened a new way
for multi-agent theory. Answer set programming is a form of
declarative programming oriented towards difficult (primar-
ily NP-hard) search problems. It is based on the stable model
(answer set) semantics of logic programming. All the agents
in researches of negotiation based on ASP are rational agents,
which have a common limitation of making the negotiation
process inefficient. In their researches, they have not put the
relations and importance among negotiation demands into
consideration.

To solve the problems above, we put forward a method
of demand sorting based on relationships of negotiation
demands. Each agent is modeled as an ASP, and all the answer
sets of the ASP are the whole demands of corresponding agent.
In each round of negotiation, each agent selects one answer
set from its own sets as current demand and then changes its
program by accepting part of counterpart’s literals or by giving
up some of its own literals. Both sides get into next round of
negotiation with modified programs and the negotiation will
end with making a deal or failure. In order to solve the ine-
quality of negotiation results, we propose a rational sorting
method of demands. Based on graph theory (West, 2000) and
the researches about vulnerability of complex networks (Albert
& Barabasi, 2002; Boccaletti et al., 2007; Crucitti, Latora, &
Marchior, 2004, Jiang, Wu, Xu, & Yuan, 2013; Marrone et al.,
2013; Mishkovski, Biey, & Kocarev, 2011), we translate an ASP
into a relation network of demands, and compute the degree
of the importance of each negation demand by analyzing each
node’s position in the whole negotiation network, and predict

© 2017 TSI® Press

KEYWORDS
Complex network; Big data;
Multi-agent negotiation;
Answer set program;
Demand sorting

CONTACT  Wu Chen  chenwu@swu.edu.cn

mailto: chenwu@swu.edu.cn
http://www.tandfonline.com
http://crossmark.crossref.org/dialog/?doi=10.1080/10798587.2016.1267238&domain=pdf

2   ﻿ H. WANG ET AL.

the result of negotiation through initial demands. Complex
network has many valuable applications in different fields such
as economy, society and population, and classification of data
mining is an important measurement to study problems in
these fields. Meanwhile, community detection of the complex
network is the same as classification and clustering in essence.
Thus, to some extent, we provide with a new research way from
Answer Set Program to data mining using the method we pro-
posed in the paper.

2.  Preliminaries

In this section, we recapitulate the basic concepts of ASP in
order to describe our negotiation model. The notations we use
follow the convention in the literatures (Gelfond & Lifschitz,
1991).

Assume that L is a propositional language with a finite num-
ber of propositional symbols (atoms). A literal can be either
a positive atom, say a, or a negative atom, say¬a.a and ¬a are
called complementary literals. A rule is a formula

where each Li(0 ≤ i ≤ n) is a literal, not is negation as failure. Its
head, positive body and negative body is written as, Head(r) =
{L0},Pos(r) = {L1, …, Lm} and Neg(r) = {Lm+1, … Ln} respectively.
r is called a fact if Pos(r) = ∅ and Neg(r) = ∅.r is a constraint
if Head(r) = ⊥. An ASP is a finite set of rules. Given an ASP
∏, we wrote Head(∏) = ∪ r∊∏Head(r), Pos(∏) = ∪ r∊∏Pos(r),
Neg(∏) = ∪ r∊∏Neg(r).

An ASP ∏ is called a basic program if Neg(∏) = ∅. For a
basic program, let Lit be the set of all literals in the underlying
language of ∏. A set of literals is the answer set of a basic pro-
gram∏ if it is the smallest subset Sof Lit such that:

(1) � � For any r ∊ ∏, if Pos(r) ⊆ S, then Head(r) ⊆ S;
(2) � � If S contains a pair of complementary literals, then

S = Lit.

The answer set of a basic program ∏ is designated as Cn(∏).
Now let ∏ be a logic program. Lit again denotes the set of

all literals in the language of ∏. For any set S ⊂ Lit, let ∏ S be
the basic program obtained from ∏ by removing

(1) � � Each r ∊ ∏ if Neg(r) ∩ S ≠ ∅;
(2) � � All formulas of the form notL in the remaining

rules.

Which is called Gelfond-Lifschitz reduction (Gelfond & Lifschitz,
1991). S is an answer set of ∏ if and only if S = Cn(∏ S). S is
a consistent answer set of an ASP ∏ if S is an answer set and
consistent, i.e., the answer set does not contain complementary
literals. ASP (∏) is used to denote the set of all the consistent
answer sets of an ASP ∏.

3.  The Sorting Method of Demands

In the negotiation model among agents, the most important step
is how to accept and give up demands. In this section, we propose
a new sorting method according to the priority of demands.

3.1  How to Build the Sort over Demands

We regard all literals as negotiation demands and then divide
them into two parts; basic demands and extended demands

L0 ← L1,… , Lm, notLm+1,… , notLn(0 ≤ m ≤ n)

according to their importance. Basic demands are the bases
of negotiation. Each agent has to satisfy counterpart’s basic
demands. Extended demands are the demands that need to be
negotiated. The process of negotiation of extended demands is
dynamic. In order to make a deal, agent can give up some of
own extended demands and accept some of counterpart’s. Here
accepting is selective. Agent wants to gain maximum benefit
through a good strategy. The division of basic and extended
demands is as follows:

Basic demands: BD = {li|li ← ∊ ∏}
Extended demands: ED = {li|li ∊ L/BD}
L represents all the literals in an ASP. Basic demands have

the highest priority. For extended demands, we choose the
method introduced below to accept selectively.

In this paper, we realize the negotiation process by simpli-
fying the rules in ASP and by adding and deleting nodes and
edges. Basic demands will not be given up in the updating
of program, so we mainly talk about how to sort extended
demands in order to accept selectively. Before introducing
four sorting methods, we introduce some knowledge of the
graph.

A graph is an ordered pair G = (V, E), where V repre-
sents the set of nodes and E represents the set of edges. In
negotiation, V stands for the demands (literals) of negotia-
tion and E represents the relation of inference among liter-
als. V = {v1, v2, v3, …, vn}(Where n is the number of nodes),
E = {e1, e2, e3, …, em}(where m is number of edges), e = (vi, vj)
(1 ≤ i ≤ n, 1 ≤ j ≤ n).

These methods are based on the relation of inference in
negotiation, so we need to create a relation network based on
literals in ASP that we call negotiation network in this paper.
Here are some examples to introduce how to create negotia-
tion network and further analyze the feature of negotiation
network. We first introduce the method of representation of
facts through Example 1:

Example 1. Consider the following ASP ∏1:

∏ 1 is represented as Figure 1.
We take the following Example 2 to illustrate that an ASP

∏ 2 contains positive literal only:
Example 2.
∏ 2:

∏ 2 is captured as Figure 2.
We introduce not into negotiation model as follows:
Example 3. Consider the following ASP ∏ 3:

∏ 3 is represented as Figure 3.

a ←

b ← .

a ←

b ←

c ← b

d ← c

f ← e.

a ←

b ←

c ← b

d ← not c

f ← not e.

INTELLIGENT AUTOMATION & SOFT COMPUTING﻿    3

We introduce classical negation symbol ¬ in an ASP ∏ 4:
Example 4.
∏ 4:

∏ 4 is represented as Figure 4.
Now we introduce the representation of a more complex

ASP ∏ 5 in Example 5.
Example 5.
∏ 5:

∏ 5 is represented as Figure 5.
In Figure 5, for any rule r, a red circle stands for one pro-

cess. Each process connects two literals in Body(r), or a literal
inBody(r) with another previous process of r. And further it
will point to the head literal of r. We design an algorithm to
create such graph to represent the model of negotiation net-
work as follows:

a ←

b ←

c ← ¬b

d ← not c.

a ←

b ←

c ← ¬b

d ← b, not c

e ← d, c, not a.

d ← not f .

g ← not e.

Algorithm 1: Generalized Graph Creation Algorithm Based
On ASP

According to Algorithm 1, we can easily create a graph
based on ASP. For instance, in Example 5, we can obtain rules
set from ASP Π5, and for each r ∊ R, the first element is a ←,
nodesize = 0 and r.Body.literal = ∅, r.Head.literal = {a}, so at
the end of the first round we can get a graph Gr1 = (Vr1, Er1), V
r1 = {a}, Er1 = ∅. For rule d ← b, notc, its nodesize = 2 and we
can also find r.Body.literal = {b, notc}, r.Head.literal = {d}, it
needs to enter the second loop, create a virtual process Vp(1),
and then add link between Vp(1) and node[0], and link
between Vp(1) and node[1], Vp(1)isn’t a node, but we treat
them as a transitional state while calculating, then, we get graph
Gr4 = (Vr4,Er4),Vr4 = {b, notc, d}Er4 = {b → Vp(1), not c →
Vp(1), Vp(1) → d}. Finally, the result of Π5is
G = Gr1 ∪ Gr2 ∪ Gr3 ∪ Gr4 ∪ Gr5 ∪ Gr6 ∪ Gr7 = (V, E), where
V = {a, b, c, d, e, g ,¬b, not f },E = {c → Vp(1),Vp(1) → b,
Vp(1) → d, f → d,¬b → c, d → Vp(2), a → Vp(2),
Vp(2) → Vp(3), Vp(3) → e, e → g}.

In the following section, we introduce four sorting meth-
ods. Two are based on the importance of nodes in negotia-
tion network, and the other two are about the importance
of edges.

(1) � � Sort demands by degree of node.

Each literal has some relations with others in negotiation
model. The degree of node reflects the degree of relationship of
literals in the whole negotiation. Firstly, sort all literals by their
degree. The larger the degree of literal is, the more important
the demand is. Agent chooses the demand whose degree of
node is the largest to negotiate with its counterpart, and gives
up demand whose degree of node is small enough.

Figure 1. The Representation of Facts.

Figure 2. The Representation of an ASP Containing Positive Literal Only.

Figure 3. The Representation of ASP Containing Not. Not is Represented as a
Circle with a Black Dot.

Figure 4. The Representation of an ASP Containing Classical Negation Symbol¬.

Figure 5. The Representation of a Complex ASP Containing Not and ¬.

4   ﻿ H. WANG ET AL.

Let Sij be the set of all shortest paths between node i and node j:

where

We can make the following operation (Albert & Barabasi, 2002;
Marrone, Nardone, & Tedesco, 2013):

And then,

Where L(G) represents the characteristic path length of net-
work, di,j is the degree between node i and node j. See from the
formula, we can know that use b(G) to measure the vulnera-
bility of network can reflect the nature of negotiation network
better than using characteristic path length.

Considering some limitations, the method of measuring
vulnerability of negotiation network from multiple dimensions
is as follows (Boccaletti et al., 2007; Mishkovski et al., 2011):

where k1, k2 are the degrees of nodes connected with edge l,
p > 0. In order to compare these two negotiation networks G1
and G2, give p the value of 1 and calculate the value of b1(G1). If
b1(G1) < b1(G2),G1 is more robust than G2; if b1(G1) > b1(G2),G2
is more robust than G1; if b1(G1) = b1(G2), then choose p > 1
and work out bp(G) until bp(G1) ≠ bp(G2).

We find some nodes have really large degrees from experi-
ments, but these nodes are at the outskirts of network so they
are not important. And the method based on betweenness can
solve this problem efficiently. Also, we find some edges with
large weight are at the outskirts of network and some edges
with small weight are at the center of network. And the method
based on boundary coefficient can solve this problem. So we
use the method based on betweenness to determine the impor-
tance of nodes (literals) and use the method based on boundary
coefficient to determine the importance of edges (rules).

Consider the following ASP ∏:

The answer sets = {a, b, d, f}. D(c) = 3, D(d) = 2, D(e) = 1,
D(f) = 1. The relation of the importance of demands is
{a = b ≻ c ≻ d ≻ f ≻ e}. Here the demands user wants are
{a, b, c, f} and the demand proposed by user are {a, b, f}. So the
sort of demand is {a = b ≻ f}.

(6)nij(l) =
∑
g∈Sij

Cg (l)

Cg (l) =

{
1

0

l ∈ g ;

otherwise

(7)

b(G) =
1

�E�
�
l∈E

1

nij

��
i,j∈V

nij(l)

�
=

1

�E�
�
l∈E

1

nij

⎛
⎜⎜⎝
�
g∈Sij

�
l∈E

Cg (l)
⎞
⎟⎟⎠

(8)b(G) =
1

�E�
�
l∈E

1

nij

⎛⎜⎜⎝
�
g∈Sij

di,j

⎞⎟⎟⎠
=

n(n − 1)

2�E� L(G)

(9)bp(G) =

[
1

|E|
∑
l∈E

(√
k1 ∙ k2bl

)p
]1∕|p|

1:a ← .

2:b ← .

3:c ← ¬b.

4:d ← not c.

5:f ← not e.

(2) � � Sort rules by weight of edge.

Agent will delete rules and literals in negotiation model,
that is to say, edges and nodes will be deleted in negotiation
network. When choose to delete edges, we sort them by their
importance in advance. When choose to give up rules, agent
gives up rules with smaller weight. The computing method of
weight of rules is as follows:

For rules whose body contain more literals, the computing
method is as follows:

where k1 is the degree of the head literal, k2 + k3 + … + kn rep-
resents the degrees of all nodes in the body of the rule, and n
stands for number of literals contained in the body of the rule.

For example, in rule{c ← d, e, not f }, kd,ke and kf represent
degrees of node of demands d,e and f respectively. The degree
of the rule is

√
kc ∙

kd+ke+kf

3
.

When choosing rules, it needs to work out the weight of
each rule first. Rules with larger weight play a more impor-
tant role in network. Agent chooses rules with larger degree
to negotiate and gives up rules whose degrees are smaller in
order to make maximum benefit.

(3) � � Sort demands by node betweenness (Mishkovski et
al., 2011)

Betweenness of node reflects the tightness of the node with
other nodes in negotiation network. The larger betweenness the
node is, the node is more important in negotiation network,
and the influence after deleting it is bigger. The computing
method of betweenness of demand is as follows:

where D(v) represents the betweenness of node (demand or
literal), nij is the number of shortest paths between node I and
node j . nij(v) stands for number of shortest paths between
node i and node j including node v. Agent chooses demands
with larger betweenness to negotiate and give up demand with
smaller betweenness in order to make a deal.

(4) � � Sort rules by boundary coefficient bl is the bound-
ary coefficient of edge l:

Where nij represents the number of shortest paths between
node I and node j,nij(l) stands for number of shortest paths
between node I and node j including edge l. The larger the
boundary coefficient is, the more important the rule is in nego-
tiation network.

The definition of average boundary coefficient is as follows:

where |E| is the number of edges.

(1)we(e) =

√
k1 ∙

k2 + k3 +…+ kn
n − 1

(2)D(v) =
∑
i≠j

nij(v)

nij

(3)bl =
∑
i≠j

nij(l)

nij

(4)b(G) =
1

|E|
∑
l∈E

bl

(5)b(G) =
1

|E|
∑
l∈E

∑
i,j∈V

nij(l)

nij

=
1

|E|
∑
l∈E

1

nij

(∑
i,j∈V

nij(l)

)

INTELLIGENT AUTOMATION & SOFT COMPUTING﻿    5

4.  Related Work

We have studied some papers based on ASP and negotiation,
and found that some researchers do consider the importance of
negotiation demands, but they have not proposed the comput-
ing method of priority of demands. Still, a very few researchers
have proposed the computing method. Here is the comparison
of methods with this paper.

Zhang and Foo, Brewka and Eiter have done detailed work
about the priority of rules in ASP respectively, and proposed
mature theories (Brewka & Eiter, 1999; Zhang & Foo, 1997). In
their work, there is a partial order between any two rules in ASP.
The method of determining the priority of rules based on prefer-
ence is qualitative. In this paper, we compute the priority based on
the relation of rules in ASP, which has been already established.
The method is quantitative and it can be used to compute the pri-
ority of combinations of rules. In the researches of Zhang and Foo
(Zhang & Foo, 1997), the priority of rules remains unchangeable
after it has been given, but the priority in our work is dynamic.
With the negotiation approaches, the relation of inference among
rules changes dynamically, thus the priority changes accordingly,
which is more suitable in the real situation.

The method proposed by Zhang and Foo, Brewka and Eiter
can solve many issues in negotiation, but it behaves insuffi-
ciently in following instance:

We can find that rule 4 is more important than rule 3. However,
rule 3 is as important as rule 4 using the method of theirs,
which has some difference from a real situation. In our work,
we get that rule 4 is more important than 3 by the method of
a boundary coefficient.

Above all, the sort methods based on boundary coefficient
and betweenness can compute priority quantitatively and solve
the priority among combinations. And the priority is dynamic
during negotiation, which is more close to real situation. Also,
the method can be used to predict the result of negotiation.

5.  Conclusion and Future Work

In this paper, each literal is considered as a demand and
demands can be divided into two parts; the basic demands and
the extended demands. Negotiation mainly solves the issues of
accepting and giving up demands. We regarded ASP as a negoti-
ation relation of agent based on answer set programming and use
answer set to represent negotiation demand. We translated ASP
into negotiation network. In particular, we proposed sort meth-
ods of the importance of rules or literals based on the degree of
node, the weight of edge and betweenness and we proposed the
method of measuring the influence after accepting and giving up
rules or literals. Also, we proposed the method of predicting the
results of negotiation. The sort method of negotiation demands
based on the relation of nodes solved the problem of unbal-
anced negotiation. Future work is to use these sort methods
in accepting and giving up demands and bring research of the
priority of ASP into multi-agent negotiation. Meanwhile, sort-
ing itself defined in the rules of logic program is important and
worthy to study and doing some research about classification

1:a ← .

2:b ← .

3:c ← a.

4:d ← b.

5:f ← d.

The boundary coefficients of rule 3, 4 and 5 are; b(3) = 2,
b(4) = 2, b(5) = 1 and the relation of importance of rules is
{1 = 2 ≻ 3 = 4 ≻ 5} according to the boundary coefficient of
edges. In the process of negotiation, agent will give up demand
f (rule 5) if necessary in order to maximize benefit.

3.2.  Analyzing Negotiation Network

We can compute the importance of demands by the sorting
methods above and we introduce how to accept and give up
demands using these methods in the following part.

In complete graph, every two nodes are connected by an
edge. There are N(N-1) edges in a complete graph with N
nodes. So the vulnerability of complete graph is as follows
(Mishkovski et al., 2011):

Where Gcomplete stands for complete graph G.
Path diagram is a kind of simplest graph. It contains nodes

whose degrees are 1 or 2 only, and only two nodes’ degrees are
1. There are N-1 edges in a path diagram with N nodes. So the
vulnerability of path diagram is as follows:

where Gpath stands for path diagram G.
If the number of nodes is no less than 2 in network, we have

the relation below;

In order to measure the vulnerability of negotiation network
more clearly, we regard the normalized average boundary to
evaluate the vulnerability.

where N represents the number of nodes in negotiation net-
work. So we can find that 0 ≤ bnor(G) ≤ 1. When bnor(G) is close
to 1, the negotiation network G is more vulnerable, similarly,
G is more robust when bnor(G) approaches 0.

Assume that G′ is the graph we get after sorting G by the
degrees of node and adding or deleting some nodes, we can add
some important nodes and delete some unimportant nodes:

Assume that G″ is the graph we get after sorting G by the
degrees of node and adding or deleting some edges, we can
add some important edges and delete some unimportant edges:

The larger the values of KInor(G), KIedge(G) are, the worse the
vulnerability of negotiation network after giving up this literal
is.

When receiving demands, the counterpart might have sev-
eral schemes. Agent adds these demands or rules into own pro-
gram, compute KInor(G) or KIedge(G), and choose the scheme,
which has the smallest KInor(G) or KIedge(G).

(10)bp(Gcomplete) = 1

(11)bp(Gpath) =
N(N + 1)

6

(12)bp(Gcomplete) < bp(G) < bp(Gpath)

(13)bnor(G) =
b(G) − b(Gcomplete)

b(Gpath) − b(Gcomplete)
=

b(G) − 1
N(N+1)

6
− 1

(14)KInor(G) =
bnor(G

�) − bnor(G)

bnor(G)

(15)KIedge(G) =
bnor(G

��) − bnor(G)

bnor(G)

6   ﻿ H. WANG ET AL.

References
Albert, R., & Barabasi, A.-L. (2002). Statistical Mechanics of complex

networks. Reviews of Modern Physics, 74, 47–97.
Baral, C. (2003). Knowledge Representation, Reasoning and Declarative

Problem Solving. Cambridge: Cambridge University Press.
Boccaletti, S., Buldu, J., & Herrero, R. (2007). Multiscale vulnerability of

complex networks. Chaos, 17, 043110.
Brewka, G., & Eiter, T. (1999). Preferred answer sets for extended logic

programs. Artificial Intelligence, 109, 297–356.
Chen, W., Zhang, M., & Wu, M. N. N. (2009). A Logic-program-based

Negotiation Mechanism. Journal of Computer Science and Technology,
24, 753–760.

Chen, W., Zhang, D., & Wu, M. (2013). A Sequential Model for Reasoning
about Bargaining in Logic Programs. Proceedings of the 12th
International Conference on Logic Programming and Non-monotonic
Reasoning (LPNMR2013). Springer, (pp. 239-244).

Crucitti, P., Latora, V., & Marchior, M. (2004). Model for cascading failures
in complex networks. Physics Review E, 69.045104.

Gelfond, M., & Lifschitz, V. (1991). Classical Negation in Logic
Programs and Disjunctive Databases. New Generation Computing,
9, 365–386.

Jiang, C., Wu, L., Xu, F., & Yuan, J. (2013). Characteristics and Reliability
Analysis of the Complex Network in Guangzhou Rail Transit. Intelligent
Automation and Soft Computing, 19, 217–225.

Marrone, S., Nardone, R., & Tedesco, A. (2013). Vulnerability Modeling
and Analysis for Critical Infrastructure Protection Applications.
International Journal of Critical Infrastructure Protection, 6, 217–
227.

Meyer, T., Foo, N., Kwok, R., & Zhang, D. (2004). Logical foundations
of negotiation strategies and preferences. In Proceedings of the
9th International Conference on the Principles of Knowledge
Representation and Reasoning(KR’04) AAAI Press 2004,
(pp. 311–318).

Mishkovski, I., Biey, M., & Kocarev, L. (2011). Vulnerability of Complex
Networks. Communications in Nonlinear Science and Numerical
Simulation, 16, 341–349.

Son, T. C., Pontelli, E., Nguyen, N.-h., & Sakama, C. (2014). Formalizing
Negotiations Using Logic Programming. ACM Transactions on
Computational Logic, 15(2), 1–30.

West, D. B. (2000). Introduction to Graph Theory. New Jersey: Prentice
Hall.

Wu, M.，Zhang, D., & Zhang, M. (2011). Language Splitting and
Relevance-based Change in Horn Logic. In the Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI-11),
AAAI Press 2011.

Zhang, Y. , & Foo, N. (1997). Answer Sets for Prioritized Logic Programs. In
Proceedings of International Logic Programming Symposium.

Zhang, D., Foo, N., Meyer, T., & Kwok, R. (2004). Negotiation as mutual
belief revision. Proceedings of the 19th National Conference on
Artificial Intelligence (AAAI04), AAAI Press / The MIT Press 2004,
(pp. 317–323).

and clustering methods in data mining combining this complex
networked method will be interesting and meaningful.

Disclosure statement
No potential conflict of interest was reported by the authors.

Notes on contributors

Hui Wang received a BS degree from Southwest
University, China, in 2015. Currently, he is studying in
College of Computer and Information Science of
Southwest University in China as a postgraduate stu-
dent. His main research interests include logic pro-
gramming, automated negotiation, knowledge
representation and reasoning.

Liang Li received a BS degree from Southwest
University, China, in 2015. Currently, he is working as
a software engineer in H3C Technologies Co. Limited.

Long-yun Gao received a BS degree from Southwest
University, China, in 2014. Currently, he is studying in
College of Computer and Information Science of
Southwest University in China as a postgraduate stu-
dent. His main research interests include bargaining,
logic programming, knowledge representation and
reasoning.

Wu Chen received BS and MS degrees from Southwest
Normal University in 1998 and 2004 respectively and
a PhD from Guizhou University in 2009. Now he is a
professor with the College of Computer and
Information Science, Southwest University, China.
His main research interests include bargaining, logic
programming, automated negotiation, knowledge
representation and reasoning.

Acknowledgement
We should thank the anonymous referees for their comments. This work
was supported in part by the Major Project of National Social Science of
China (14ZDB016).

	Abstract
	1. Introduction
	2. Preliminaries
	3. The Sorting Method of Demands
	3.1 How to Build the Sort over Demands
	3.2. Analyzing Negotiation Network

	4. Related Work
	5. Conclusion and Future Work
	Disclosure statement
	Notes on contributors
	Acknowledgement
	References

