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ABSTRACT
In this paper, the uncertainty property is represented by the Z-number as the coefficients of the fuzzy 
equation. This modification for the fuzzy equation is suitable for nonlinear system modeling with 
uncertain parameters. We also extend the fuzzy equation into dual type, which is natural for linear-
in-parameter nonlinear systems. The solutions of these fuzzy equations are the controllers when the 
desired references are regarded as the outputs. The existence conditions of the solutions (controllability) 
are proposed. Two types of neural networks are implemented to approximate solutions of the fuzzy 
equations with Z-number coefficients.

1. Introduction

Uncertainties are inevitable in real systems. Control of an 
uncertain system is classified in two methodologies; direct and 
indirect techniques (Feng, 2006). The methodology involves 
the direct control, which incorporates the uncertain system as 
a controlling mechanism, whereas the indirect uncertain model 
is used to approximate the nonlinear system as a first step, 
then proceeds controller design based on uncertain model. The 
indirect fuzzy controller works on the principle of generalized 
topological structure as well as universal approximation capac-
ity associated to fuzzy model. It has been utilized primarily, 
considering the case of uncertain nonlinear system control. 
This paper utilizes the indirect control method.

Since the uncertainty in parameters can be transformed into 
a fuzzy set theory (Zadeh, 2005), fuzzy set and fuzzy system 
theory are good tools to deal with uncertain systems. Fuzzy 
models are applied for a large class of uncertain nonlinear sys-
tems. Fuzzy method is a highly favorable tool for the uncertain 
nonlinear system modeling. The fuzzy models approximate 
uncertain nonlinear systems with several linear piecewise 
systems (Takagi-Sugeno method) (Takagi & Sugeno, 1985). 
Mamdani models use fuzzy rules to achieve a good level of 
approximation of uncertainties (Mamdani, 1976). In recent 
days, many methods involving uncertainties have used fuzzy 
numbers (Buckley & Qu, 1990) (Jafari & Yu, 2015) (Jafarian & 
Jafari, 2012) (Jafarian, Jafari, et al. 2016), where the uncertain-
ties of the system are represented by fuzzy coefficients.

The application of the fuzzy equations is an in direct con-
nection with the nonlinear control. Given a fuzzy equation, the 
control incorporated in the equation is in fact a solution of the 
equation. There are a number of techniques to study the solu-
tions of fuzzy equations. Friedman, Ming, and Kandel (1998) 
used the fuzzy number on parametric shapes and replaced the 
original fuzzy equations with crisp linear systems. A survey on 
the extension principle is proposed by Buckley and Qu (1990) 
and it suggests that the coefficients can be either real or complex 
fuzzy numbers. Nevertheless, there will be no guarantee that 

the solution exists. Abbasbandy (2006) proposed the homeo-
typic analysis technique. Abbasbandy and Ezzati (2006) used 
the Newton methodology. In Allahviranloo, Otadi, and Mosleh 
(2007) the solution associated to the fuzzy equations is studied 
by the fixed point technique. One of the most popular methods 
is the α -level (Goetschel & Voxman, 1986). By applying the 
technique of overlay of sets, fuzzy numbers can be resolved 
(Mazandarani & Kamyad, 2013). The fuzzy fractional differen-
tial and integral equations have been investigated extensively 
in Agarwal, Lakshmikantham, and Nieto (2010), Arshad and 
Lupulescu (2011), Salahshour, Allahviranloo, and Abbasbandy 
(2012), Wang and Liu (2011). In Khastan, Nieto, and Rodríguez-
López (2013), the first-order fuzzy differential equation with 
periodic boundary conditions is analyzed. Then, higher order 
linear fuzzy differential equations is studied. In Allahviranloo, 
Kiani, and Barkhor- dari (2009), the analytical solution of the 
second-order fuzzy differential equation is obtained. The ana-
lytical solutions of third-order linear fuzzy differential equa-
tions are found in Hawrra and Amal (2013), while Buckley 
and Feuring (2001) proposed analytical approach to resolve 
nth-order linear fuzzy differential equations. Nevertheless, the 
analytical solutions of fuzzy equations are difficult to obtain 
and the aforementioned techniques involve greater complexity.

The numerical solution associated to the fuzzy equation 
and the fuzzy differential equations (Lupulescu, 2009) can be 
extracted by iterative technique (Kajani, Asady, & Vencheh, 
2005), interpolation technique (Waziri & Majid, 2012) and 
the Runge-Kutta technique (Pederson & Sambandham, 2008). 
However, the implementations of these techniques are diffi-
cult. Both neural networks as well as fuzzy logic are consid-
ered to be the universal estimators, which can estimate any 
nonlinear function to any notified precision (Cybenko, 1989). 
Recent results show that the fusion of the neural networks 
and the fuzzy logic gives remarkable success in nonlinear 
system modeling (Yu & Li, 2004). The neural networks may 
also be used to solve fuzzy equations. Buckley and Eslami 
(1997) used a neural network with three neurons to estimate 
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the second degree fuzzy equation. Jafarian, Jafari, et al. (2015) 
and Jafarian and Measoomynia (2011) extended the result of 
Buckley and Eslami (1997) to fuzzy polynomial equations. In 
Jafarian and Jafari (2012), the solution of dual fuzzy equation 
is obtained by neural networks. Mosleh (2013) gave a matrix 
form of the neuronal learning. By extending classical fuzzy 
set theory, Hüllermeier (1997) obtained a numerical solu-
tion for a fuzzy differential equation. The predictor-corrector 
approach is applied in Allahviranloo, Ahmady, and Ahmady 
(2007). The Euler numerical technique is used in (Tapaswini 
& Chakraverty, 2014) to solve fuzzy differential equations. 
Whatsoever, these techniques are not general, they cannot give 
the fuzzy coefficients directly with neural networks Tahavvor 
and Yaghoubi (2012).

The decisions are carried out based on knowledge. In order 
to make the decision fruitful, the knowledge acquired must 
be credible. Z-numbers connect to the reliability of knowl-
edge (Zadeh, 2006). Many fields related to the analysis of the 
decisions use the ideas of Z-numbers. Z-numbers are much 
less complex to calculate when compared to nonlinear sys-
tem modeling methods. The Z-number is an abundantly ade-
quate number than the fuzzy number. Although Z-numbers 
are implemented in many literatures, from theoretical point 
of view, this approach is not certified completely. There are 
few structure based on the theoretical concept of Z-numbers 
(Gardashova, 2014). Aliev, Alizadeh, and Huseynov (2015) gave 
an inception, which results in the extension of the Z-numbers. 
Kang, Wei, et al. (2012) proposed a theorem to transfer the 
Z-numbers to the usual fuzzy sets. In Zadeh (2006) a novel 
approach was followed for the conversion of Z-number into 
age old fuzzy number.

Normal fuzzy equations contain fuzzy numbers just on 
one side of the equation. Nevertheless, dual fuzzy equa-
tions contain fuzzy numbers on both sides of the equation. 
Whereas the fuzzy numbers are not able to move between 
the sides of the equation (Kajani, Asady, & Venchech, 2005), 
dual fuzzy equations can be considered to be more general 
and complicated.

In this paper, we use dual fuzzy equations (Waziri & Majid, 
2012) to model the uncertain nonlinear systems, where the 
coefficients are Z-numbers and the Z-numbers are on both 
sides of the equation. The Z-number is a novel idea that is sub-
jected to a higher potential in order to illustrate the information 
of the human being as well as to use in information processing 
(Zadeh, 2006). Z-numbers can be regarded as to answer ques-
tions and carry out the decisions (Kang et al., 2012).

This paper is one of the first attempts in finding the solution 
of dual fuzzy equations based on Z-numbers. We first discuss 
the existence of the solutions of the dual fuzzy equations. It 
corresponds to controllability problem of the fuzzy control 
(Chen, 1994). After that, we use two types of neural networks, 
feed-forward and feedback networks, to approximate the solu-
tions (control actions) of the dual fuzzy equation. At the end 
several examples are utilized in order to demonstrate the affec-
tivity of our fuzzy control design methods.

2. Nonlinear System Modeling with Dual Fuzzy
Equations and Z-numbers

In order to utilize dual fuzzy equations and Z-numbers, we 
first introduce some concepts of discrete-time nonlinear system 
and Z-numbers. A general discrete-time nonlinear system can 
be described as

where Ψ(⋅) is a nonlinear difference equation exhibiting the 
plant dynamics, uk and yk are computable scalar input and 
output respectively, d is noted to be time delay. The nonlinear 
system, which is represented by (2), is implied as a NARMA 
model. The input of the system with incorporated nonlinearity 
is considered to be as

Taking into consideration the nonlinear systems as mentioned 
in (2), it can be simplified as the following linear-in-parameter 
model

Or

Here ai and bi are considered to be the linear parameters, fi
(
xk
)

and gi(xk) are nonlinear functions. The variables related to these 
functions are quantifying input and output. A popular example 
of this pattern of model is considered to be a robot manipulator 
(Spong & Vidyasagar, 1989)

(5) can be explained as

The modeling of uncertain nonlinear systems can be 
achieved by utilizing the linear-in-parameter models linked 
to fuzzy parameters. We assume the model of the nonlinear 
systems (3) and (4) have uncertainties in the parameters ai and 
bi . These uncertainties are in the sense of Z-numbers (Zadeh, 
2011).

Definition 1: A fuzzy number A is a function A ∈ E :ℜ → [0, 1],  
in such a way, (1) A is normal, (there prevail x0 ∊ ℜ in such a way 
A(x0) = 1; (2) A is convex, A(�x + (1 − �)y) ≥ min {A(x), A(y)},
∀x, y ∈ ℜ,∀� ∈ [0, 1], 3) A is upper semi-continuous on ℜ, 
i.e., A(x) ≤  A(x0) + ɛ, ∀x ∊ N(x0),  ∀x0 ∊ ℜ,  ∀ɛ > 0,  N(x0)
is a neighbourhood, 4) The set A+ = {x ∈ ℜ, A(x) > 0} is 
compact.

Definition 2: A Z-number has two components; Z =
[
A(x), p

]
.  

The primary component A(x) is termed as a restriction on a 
real-valued uncertain variable x. The secondary component p 
is a measure of reliability of A. p can be reliability, strength of 
belief, probability or possibility. When A(x) is a fuzzy num-
ber and p is the probability distribution of x, the Z-number 
is defined as Z+−number. When both A(x) and p are fuzzy 
numbers, the Z-number is defined as Z--number.

The Z+−number carries more information than the  
Z--number. In this paper, we use the definition of Z+−num-
ber, i.e., Z =

[
A, p

]
, A is a fuzzy number, p is a probability 

distribution.
In order to demonstrate the fuzzy numbers, the membership 

functions are utilized. The most widely discussed membership 
functions are noted to be the triangular function

(1)yk = Ψ[yTk−1, y
T
k−2,… uT

k , u
T
k−1,…]

(2)xk = [yTk−1, y
T
k−2,… uT

k , u
T
k−1, ldots]

T

(3)zk =

n∑
i=1

aifi
(
xk
)

(4)zk +

m∑
i=1

bigi(xk) =

n∑
i=1

aifi
(
xk
)

(5)M
(
p
)
p̈ + C

(
p, ṗ

)
ṗ + Bṗ + g

(
p
)
= 𝜏

(6)

n∑
i=1

Yi

(
p, ṗ, p̈

)
𝜃i = 𝜏
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As well as trapezoidal function

The probability measure is expressed as

Where p is the probability density of x and R is the restriction 
on p. For discrete Z-numbers, we have

The space of discrete fuzzy sets is denoted by Ẽ. Ẽ
[a, b] denotes 

the space of discrete fuzzy sets of [a, b] ⊂ R. Signifying Ẑ the 
space of discrete Z-numbers as

Definition 3: The α -level associated to a fuzzy number A is 
stated as

also, 0 < α ≤  1. Or

In order to operate the Z-number, we propose the following 
definition.
Definition 4: The α-level of the Z-number Z = (A, p) is demon-
strated as

Where 0 < α ≤  1. [p]α is calculated by the Nguyen’s theorem

Where p([A]�) =
{
p(x)|x ∈ [A]�

}
. So [Z]α can be expressed 

as the form α-level of a fuzzy number

Where Pα = Aαp(xiα), P̄𝛼 = Ā𝛼p(xi
𝛼
), [xi]

� = (xi
� , xi

�
).

Similarly with the fuzzy numbers (Jafari & Yu, 2015), the 
Z-numbers are also incorporated with four primary operations; 
⊕,⊖,⊙ and⊘. These operations are exhibited by; sum, sub-
tract, multiply and division. The operations in this paper are 
different from that mentioned in (Zadeh, 2011). The α-level of 
Z-numbers is applied to simplify the operations.

Let us consider Z1 = (A1, p1) and Z2 = (A2, p2) be two dis-
crete Z-numbers illustrating the uncertain variables x1 and x2,
also 

∑n

k=1 p1(x1k) = 1 and 
∑n

k=1 p2(x2k) = 1 .The operations are 
defined as

(7)
�A = F(a, b, c) =

{
x−a

b−a
a ≤ x ≤ b

c−x

c−b
b ≤ x ≤ c

otherwise �A = 0

(8)

�A = F(a, b, c, d) =

⎧
⎪⎨⎪⎩

x−a

b−a
a ≤ x ≤ b

d−x

d−c
c ≤ x ≤ d

1 b ≤ x ≤ c

otherwise �A = 0

(9)P = ∫R �A(x)p(x)dx

(10)P(A) =

n∑
i=1

�A(xi)p(xi)

(11)Ẑ = {Z = (A, p)|A ∈ Ẽ, p ∈ Ẽ
[0, 1]}

(12)[A]� = {x ∈ ℜ: A(x) ≥ �}

[A]𝛼 =
(
A𝛼 , Ā𝛼

)

(13)[Z]� =
(
[A]� , [p]�

)

[p]𝛼 = p([A]𝛼) = p([A𝛼 , Ā𝛼]) =
[
P𝛼 , P̄𝛼

]

(14)[Z]𝛼 =
(
Z𝛼 , Z̄𝛼

)
=
((
A𝛼 , P𝛼

)
,
(
Ā𝛼 , P̄𝛼

))

where ∗∈ {⊕,⊖,⊙,⊘}.
The operations for the fuzzy numbers are defined as (Jafari 

& Yu, 2015)

For all p1 * p2 operations, we use convolutions for the discrete 
probability distributions

The above definitions satisfy the Hukuhara difference (Aliev, 
Pedryczb, et al. 2016)

Here if Z1⊖HZ2 prevail, the α-level is

Obviously, Z1⊖HZ1 = 0,Z1⊖Z1 ≠ 0.
If A is a triangle function, the absolute value of the Z-number 

Z = (A, p) is

Now we utilize fuzzy equations (3) or (4) to model the 
uncertain nonlinear system (2). The parameters of the fuzzy 
Equations (3) or (4) are in the form of Z-numbers

or

where ai and bi are Z-numbers. (18) is considered to be more 
general as compared to (17), it is termed as dual fuzzy equation.

Taking into consideration a particular case, fi(xk) has pol-
ynomial pattern,

(19) is termed as dual polynomial based on Z-number.
The main intention associated with the modeling is to 

diminish error in midst of two output yk and zk. As yk is noted 
as a Z-number and zk is considered to be crisp Z-number, hence 
we apply the minimum of every points as the model mentioned 
below

Z12 = Z1 ∗ Z2 = (A1 ∗ A2, p1 ∗ p2)

(15)

[
A1 ⊕ A2

]𝛼
=

[
A
−

𝛼

1
+ A

−

𝛼

2
, Ā𝛼

1 + Ā𝛼

2

]

[A1⊖A2]
𝛼 = [A

−

𝛼

1
− A

−

𝛼

2
, Ā𝛼

1 − Ā𝛼

2 ]

[A1 ⊙ A2]
𝛼 = [A

−

𝛼

1
A
−

𝛼

2
+ A

−

𝛼

1
A
−

𝛼

2
− A

−

𝛼

1
A
−

𝛼

2
, Ā𝛼

1 Ā
𝛼

2 + Ā𝛼

1 Ā
𝛼

2 − Ā𝛼

1 Ā
𝛼

2 ]

p1 ∗ p2 =
∑
i

p1(x1, i)p2(x2, (n−i)) = p12(x)

Z1⊖HZ2 = Z12

Z1 = Z2 ⊕ Z12

[Z1⊖HZ2]
∝ = [Z

−

𝛼

1
− Z

−

𝛼

2
, Z̄∝

1 − Z̄∝
2 ]

(16)|Z(x)| = (|a1| + |b1| + |c1|, p(|a2| + |b2| + |c2|))

(17)yk = a1 ⊙ f1
(
xk
)
⊕ a2 ⊙ f2

(
xk
)
⊕…⊕ an ⊙ fn

(
xk
)

(18)

a
1
⊙ f

1

(
xk
)
⊕ a

2
⊙ f

2

(
xk
)
⊕…⊕ an ⊙ fn

(
xk
)

= b
1
⊙ g

1

(
xk
)
⊕ b

2
⊙ g

2

(
xk
)
⊕…⊕ bm ⊙ gm

(
xk
)
⊕ yk

(19)

(
a1 ⊙ xk

)
⊕…⊕

(
an ⊙ xnk

)
=
(
b1 ⊙ xk

)
⊕…⊕

(
bn ⊙ xnk

)
⊕ yk

(20)
maxk

||yk − zk
|| = maxk

||�k||
yk =

((
u1(k), u2(k), u3(k)

)
, p

(
v1(k), v2(k), v3(k)

))
�k =

((
�1(k), �2(k), �3(k)

)
, p

(
�1(k), �2(k), �3(k)

))
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Here and  explained as mentioned in (13). Henceforth, the supe-
rior way of approximating at the juncture is. The minimization 
of the approximation error, which is termed as is achieved.

The process involved in order to design the controller is to 
obtain in such a manner that the output related to the plant yk 
can approach to the desired output y∗k , or the trajectory tracking 
error diminishes

This control entity can be regarded as to detect a solution 
uk for the following dual equation on the basis of Z-number
 

Where xk = [yTk−1, y
T
k−2,… uT

k , u
T
k−1,…]T.

It is not possible to acquire an analytical solution for (27). 
Here, neural networks are utilized to approximate the solution 
(control). In order to fit the neural networks, (27) is written as

 

We use feed-forward neural networks to approximate the solu-
tion of (28), see Figure 1. The Z-numbers ai and bi represents 
the inputs of the neural network, the Z-number yk represents 
the output. yk fi(x)ŷk,gj(x) and are the Z-number weights.

The main idea is to detect appropriate weights of neural 
networks in such a manner that the output of the neural net-
work approaches the desired output y∗k . From the view point 
of control, it is utter necessity to find out a suitable controller 
uk, which is a function of x, in such a manner that the plant (1) 
(crisp value) estimates the Z-number y∗k . In the control point 

(26)min
uk

‖‖yk − y∗k
‖‖

(27)

(
a
1
⊙ f

1

(
xk
))

⊕
(
a
2
⊙ f

2

(
xk
))

⊕…⊕
(
an ⊙ fn

(
xk
))

=(
b
1
⊙ g

1

(
xk
))

⊕
(
b
2
⊙ g

2

(
xk
))

⊕…⊕
(
bm ⊙ gm

(
xk
))

⊕ y∗k

(28)
(
a
1
⊙ f

1
(x)

)
⊕…⊕ (an ⊙ fn(x))

×⊖H

(
b
1
⊙ g

1
(x)

)
⊖H …⊖H(bm ⊙ gm(x)) = y∗k

By the definition of absolute value (abs), we conclude

The modelling constraint (20) is to uncover 
u1(k),  u2(k),  u3(k),  p(v1(k)),   p(v2(k)) and p(v3(k)) in such a 
manner

Considering (21), we have

(22) can be resolved by the application of linear programming 
methodology

(21)

max
K

||�k|| = max
K

[(|u1(k) − f (xk)| + |u2(k) − f (xk)|
+|u3(k) − f (xk)|), (|p(v1(k)) − f (xk)| + |p(v2(k)) − f (xk)| + |p(v3(k)) − f (xk)|)]
�1(k) = max

K
|u1(k) − f (xk)|, �2(k) = max

K
|u2(k) − f (xk)|,

�3(k) = max
K

|u3(k) − f (xk)|
p(�1(k)) = max

K
|p(v1(k)) − f (xk)|, p(�2(k)) = max

K
|p(v2(k)) − f (xk)|,

p(�3(k)) = max
K

|p(v3(k)) − f (xk)|

(22)

min
ui(k), p(vi(k))

{
max

k

||�k||
}
= min

ui(k), p(vi(k))

{
max

k

||yk − f (xk)
||
}
, i = 1, 2, 3

�
1
(k) ≥ |u

1
(k) − f (xk)|, �

2
(k) ≥ |u

2
(k) − f (xk)|,

�
3
(k) ≥ |u

3
(k) − f (xk)|

p(�
1
(k)) ≥ |p(v

1
(k)) − f (xk)|, p(�

2
(k)) ≥ |p(v

2
(k)) − f (xk)|

p(�
3
(k)) ≥ |p(v

3
(k)) − f (xk)|

(23)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜌1(k)

subject:

𝜌1(k) +

�
n∑
j=0

aj ⊙ x
j

k

�
⊖H

�
n∑
j=0

bj ⊙ x
j

k

�
≥ f (xk)

𝜌1(k) −

�
n∑
j=0

aj ⊙ x
j

k

�
⊖H

�
n∑
j=0

bj ⊙ x
j

k

�
≥ −f (xk)

min𝜑1(k)

subject:

p
�
𝜑1(k)

�
+

�
n∑
j=0

aj ⊙ x
j

k

�
⊖H

�
n∑
j=0

bj ⊙ x
j

k

�
≥ f (xk)

p
�
𝜑1(k)

�
−

�
n∑
j=0

aj ⊙ x
j

k

�
⊖H

�
n∑
j=0

bj ⊙ x
j

k

�
≥ −f (xk)

(24)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

min �2(k)

subject: �2(k) −

�
n∑
j=0

a
j
x
j

k
−

n∑
j=0

b
j
x
j

k

�
≥ f (xk)

�2(k) ≥ 0

min�2(k)

subject: p(�2(k)) −

�
n∑
j=0

a
j
x
j

k
−

n∑
j=0

b
j
x
j

k

�
≥ f (xk)

p(�2(k)) ≥ 0

(25)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min 𝜌3(k)

subject:
𝜌3(k) −

�
n∑
j=0

ājx̄
j

k
−

n∑
j=0

b̄jx̄
j

k

�
≥ f (xk)

𝜌3(k) ≥ 0
min𝜙3(k)

subject:
p(𝜙3(k)) −

�
n∑
j=0

ājx̄
j

k
−

n∑
j=0

b̄jx̄
j

k

�
≥ f (xk)

p(𝜙3(k)) ≥ 0
Figure 1. A Feed-forward Neural Network (NN) Approximates the Solutions of 
Fuzzy Equation.
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Here γ > 0. After the updating of x0, it is necessary to substitute 
it to the weights fi

(
x0
)
 and gj

(
x0
)
 . The solution related to the 

dual equation (27) can also be estimated by feedback neural 
network, as Figure 2. In this case, the inputs are the nonlinear 
Z-number functions fi(x) and gj(x), the concerned weights are 
taken to be as Z-numbers ai and bj. The training error ek has 
been utilized here in order to update x. Once the nonlinear 
operations fi(x) and gj(x) are performed, Of and Og are con-
sidered to be similar to (44). The output related to the neural 
network is taken as similar to (45).

3. Simulations

In this section, we use one application to show how to use the 
fuzzy equation with Z-number to design the fuzzy controller.

The insulating materials center is considered to be the 
source of heat. The material widths are not precise and hence 
they suffice the trapezoidal function (8),

A = [(0.131, 0.153, 0.164, 0.197), p(0.7, 0.83, 0.9)] = a1
B = [(0.084, 0.105, 0.210, 0.527), p(0.8, 0.9, 1)] = a2
C = [(0.096, 0.107, 0.214, 0.428), p(0.7, 0.87, 0.9)] = b1
D = [(0.021, 0.032, 0.054, 0.086), p(0.8, 0.85, 0.92)] = b2

of view, we want to find a controller uk, which is a function of 
x, such that the output of the plant (1) yk (crisp value) approx-
imates the Z-numbery∗k . The input Z-numbers ai and bi are 
primarily implemented to α -level as (13)

The next step is initiated by multiplying the above relations 
with the Z-number weights fi(x) and gj(x) and summarized as

Here Mf = {i|f �
i
(x) ≥ 0}, Cf = {i|f 𝛼

i
(x) < 0},

M�

f = {i|fi
�

(x) ≥ 0}, C
�

f = {i|fi
𝛼

(x) < 0}, Mg = {j|g�
j
(x) ≥ 0},

Cg = {j|g𝛼
j
(x) < 0}, M�

g = {j|gj�(x) ≥ 0}, C
�
g = {j|gj𝛼(x) < 0}.

The neural network output is

The error of the training is

here 
[
y∗k
]�

=

(
y∗�
k
, y∗k

�
)
,
[
ŷk
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(
ŷ𝛼
k
, ŷk
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,
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, ē𝛼k

)
.

A cost function, which is generated on the basis of 
Z-numbers is implemented for the training of the weights as 
mentioned below

It is quite obvious, Jk → 0 when 
[
ŷk
]𝛼

→

[
y∗k
]𝛼
. The vital posi-

tiveness lies within the least mean square (46) is that it has a 
self-correcting feature that makes it suitable to function for 
arbitrarily vast duration without shifting from its constraints. 
The mentioned gradient algorithm is subjected to cumulative 
series of errors and is convenient for long runs in absence of 
an additional error rectification procedure.

𝜕Jk

𝜕x̄0
 can be calculated the same as above. The gradient tech-

nique is now utilized to train the Z-number weights fi(x) and 
gj(x) . The solution x0 is the function of fi(x) and gj(x). The 
solution x0 is upgraded as

Here η is the rate of the training η > 0.
For the requirement of increasing the training process, the 

adding of the momentum term is mentioned as

(29)
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Figure 2. Z-number and Fuzzy Number.

Table 1. Neural Networks Approximate the Z-numbers.

k x(k) with NN k x(k) with FNN
1 [(5.97,6.98,7.93,9.98),p(0.6,

0.8,0.85)]
1 [(5.98,6.99,7.97,9.98),p(0.7,0

.85,0.87)]
2 [(5.43,6.38,7.35,9.302),p(0.7

5,0.8,0.9)]
2 [(5.37,6.10,7.12,9.16),p(0.7,0

.85,0.87)]

61 [(2.11,3.170,4.22,6.33),p(0.
8,0.9,1)]

45 [(2.08,3.14,4.14,6.29),p(0.8,
0.96,1)]

62 [(2.06,3.08,4.11,6.17),p(0.8,
0.94,1)]

46 [(2.05,3.08,4.11,6.16),p(0.8,
0.94,1)]

Table 2. Neural Networks Approximate the Fuzzy Numbers.

k x(k) with NN k x(k) with FNN
1 (5.13,5.99,6.841,8.576) 1 (5.36,6.25,7.14,8.939)
2 (4.93,5.79,6.671,8.440) 2 (4.81,5.46,6.37,8.199)

61 (2.00,3.00,4.007,6.008) 45 (1.99,3.00,3.95,6.004)
62 (1.96,2.934,3.915,5.870) 46 (1.95,2.93,3.90,5.864)
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