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ABSTRACT
The main objective of this paper is to propose a new method for failure mode and effects analysis 
(FMEA) based on Z-numbers. In the proposed method, firstly, Z-numbers are used to perform the 
valuations (Z-valuation) of the risk factors like occurrence (O), severity (S) and detection (D). Secondly, 
the Z-valuations of the risk factors are integrated by fuzzy weighted mean method. A new risk priority 
number named as ZRPN is calculated to prioritize failure modes based on a modified method of 
ranking fuzzy numbers. Finally, a case study for the rotor blades of an aircraft turbine is performed to 
demonstrate the feasibility of the proposed method.
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1. Introduction

Failure mode and effects analysis (FMEA), which was devel-
oped in the late 1950s, was originally used to study the prob-
lems that might arise from malfunctions of military systems. 
Nowadays, it has become one of the most efficient reliability 
analysis techniques for identifying and prioritizing poten-
tial failures in systems, designs, process and/or services. This 
methodology was intended to gather information for making 
risk management decisions, has been widely applied to several 
industry fields such as aerospace, engineering design and man-
ufacturing (Braglia, Frosolini, & Montanari, 2003; Kim, Yun, 
Jeon, Lee, & Cho, 2010; Liu, You, Fan, & Lin, 2014; Silveira, 
Atxaga, & Irisarri, 2010). FMEA cannot only help analysts to 
identify known and potential failure modes and their causes 
and effects, but also help the designers to identify the key 
design that requires special controls for manufacturing, and 
to highlight areas for improvement in characteristic control 
or performance (Du, Lu, Su, Hu, & Deng, 2016; Yang, Huang, 
He, Zhu, & Wen, 2011).

Traditional FMEA uses the risk priority number (RPN) to 
prioritize failure modes. A RPN is obtained by multiplying 
the ratings of occurrence (O), severity (S) and detection (D) 
of a failure mode. The three factors O, S and D are all evalu-
ated using ratings (also called rankings or scores) from 1 to 
10. The failures with higher RPNs are assumed to be more
important and should be given higher priorities. Owing to its 
visibility and simplicity, the traditional RPN method has been 
widely used in a number of industries as a solution to various 
reliability problems. However, some setbacks are still exposed 
to the traditional FMEA, which have been criticized by many 
researches (Chin, Wang, Poon, & Yang, 2009; Gargama & 
Chaturvedi, 2011; Pillay & Wang, 2003; Ravi Sankar & Prabhu, 
2001; Sawant, Dieterich, Svatos, & Keall, 2010; Wang, Chin, 
Poon, & Yang, 2009).

Uncertainty is a key concept in risk conceptualisation and 
risk assessment (Aven, 2016). In order to measure and pro-
cess uncertain information more adequately, evidence theory 

(Dempster, 1967; Shafer, 1976), fuzzy set theory (Zadeh, 1965) 
and some other new concepts like Deng entropy (Deng, 2016), 
evidential reasoning (Fu, Yang, & Yang, 2015), Power Average 
Operator (Jiang, Wei, Tang, & Zhou, 2017; Jiang, Wei, Zhan, 
Xie, & Zhou, 2016; Song, Jiang, Xie, & Zhou, 2017; Yager, 
2001) D numbers (Mo & Deng, 2016; Zhou, Deng, Deng, & 
Mahadevan, 2017) and so on (Du et al., 2016; Hong, Zhang, 
Cao, & Du, 2016; Ning, Yuan, & Yue, 2016; Ning, Yuan, Yue, & 
Ramirez-Serrano, 2014; Ning et al., 2016;) were used to model 
and process uncertain information.

Evidence theory has been employed to quantify the impreci-
sion and uncertainty in reliability and risk analysis (Deng, Han, 
Dezert, Deng, & Shyr, 2016; Deng, Jiang, & Zhang, 2017; Deng, 
Xiao, & Deng, 2017; Jiang, Xie, Zhuang, & Tang, 2017; Jiang 
& Zhan, 2016; Jiang, Zhuang, Xie, & Wu, 2017). For example, 
Yang et al. (2011) analyzed the risks of failure modes based 
on evidence theory and applied it to the application of rotor 
blades of an aircraft engine. Song and Jiang (Song & Jiang, 
2016) applied evidence theory to engine fault diagnosis based 
on senor data fusion.

Fuzzy sets theory (Zadeh, 1965) is widely used in many 
applications due to its efficiency to model fuzzy information 
(Chou, 2016; Liu, 2014; Noori, 2015; Song, Wang, Lei, & Xue, 
2015); such as environmental impact assessment (Rikhtegar 
et al., 2014), risk analysis (Akyar, 2016) and decision-making 
(Kahraman, Onar, & Oztaysi, 2015). It is also applied in FMEA 
under uncertain environments. For example, Liu, Liu, and Lin 
(2013) proposed a risk priority model for FMEA based on fuzzy 
evidential reasoning (FER) and belief-rule based (BRB) meth-
odology to overcome the shortcomings of the traditional fuzzy 
FMEA. The FER method was used to aggregate the valuations 
of the experts and the BRB approach was used to model the 
uncertainty and nonlinear relationships between risks factors 
and corresponding risk levels.

Researchers tried to find a method, which can describe the 
uncertainty of information more reasonably and adequately, 
a model, which can simulate the process of cognitive and 
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decisions of humans more properly. However, information 
in real life is characterized not only by fuzziness restrictions 
on values of variables, but also by partial reliability. Indeed 
the risk assessments, be it precise or not, are subject to the 
confidence in sources of knowledge background and experi-
ence. Therefore, fuzzy valuations or other uncertainty treat-
ment approaches cannot adequately figure out the real-word 
problems. Therefore, reliability should be taken into account in 
the procedure of risk assessment. The concept of a Z-number 
is developed by L.A. Zadeh (2011) in 2011, which expresses 
both the restriction and the reliability of an evaluation, and 
is suggested as a more adequate formal construct for descrip-
tion of real-life information. Now, we can see more and more 
researchers employ Z-numbers to uncertainty modeling and 
decision-making. For example, Jiang et al. (2011) introduced 
the Z-number to model fuzziness and reliability of the sensor 
data and applied it to fault diagnosis. Kang et al. (2016) pro-
posed a methodology for supplier selection with Z-numbers. 
In Aliev & Memmedova (2015), Z-number is applied to psy-
chological research to increase precision and reliability of data 
processing results.

In this paper, we develop a model for FMEA based on 
Z-numbers. Firstly, we construct a Z-valuation structure, where 
the assessments of the risk factors are expressed by Z-numbers. 
Then, we use fuzzy weighted mean method (FWM) to integrate 
the Z-valuations of risk factors and synthesize the integrated 
valuations of the experts in FMEA team to a fuzzy number by 
taking into consideration the weights of them. Finally, ZRPNs 
are calculated by a modified method of ranking fuzzy numbers 
to rank failure modes. The advantages of this approach are that; 
the risk assessments are based on Z-numbers, which contain the 
reliability of the uncertain valuations; besides, in comparison 
with the traditional Fuzzy FMEA methodologies, this method 
overcomes the setbacks of defining a large number of mem-
bership functions and if-then rules, which are time-consuming 
and difficult. Last but not least, the proposed method is flexible 
and simple, and is much applicable for real-word applications.

The rest of the article is organized as follows: Section 2 
recalls the basic theoretical background of failure risk analy-
sis and the basic concepts of the fuzzy number and Z-number. 
Section 3 describes the new method developed in this study. 
Section 4 the validity of the proposed approach is tested in a 
real problem. The study is briefly summarized in Section 5.

2. Theoretical Background

In this section, we will briefly introduce some basic concepts 
about the FMEA, Z-number and fuzzy numbers used in this 
paper.

2.1.  FMEA

FMEA is a technique used for defining, identifying and elim-
inating known and/or potential failures, problems, errors and 
so forth from the system, design, process, and/or service before 
they occur (Stamatis, 1995). Decision makers usually take the 
RPN as a criterion for prioritizing failures. The RPN is obtained 
by multiplying the ratings of O, S and D, which represents 
occurrence, severity and detection, respectively. Each of the 
three risk factors is evaluated with a rating from 1 to 10. The 
failure mode with a higher RPN should be given more con-
cerns than that with a lower one. Due to the merits of simplic-
ity and practicality, this method is widely used in many fields 

such as aerospace, engineering design and manufacturing, etc. 
However, the risk factors like O, S and D are difficult to be 
determined precisely in real-word applications. Some other 
setbacks and irrationalities of the traditional FMEA methods 
are listed as follows (Chin et al., 2009; Gargama & Chaturvedi, 
2011; Pillay & Wang, 2003; Ravi Sankar & Prabhu, 2001; Sawant 
et al., 2010; Wang et al., 2009):

•  �The relative importance among risk factors is not taken
into consideration in determining the priority of the
failures. The three factors are assumed to be of equal
importance, but this may not be the case in practical
applications.

•  �The RPN considers only three factors mainly in terms
of safety. Other possible influencing factors such as eco-
nomical aspects are ignored.

•  �Different sets of O, S and D ratings may produce exactly
the same value of RPN, although their hidden risk impli-
cations may be totally different. For example, two differ-
ent failures with the O, S and D values of 1, 4, 9 and 1, 6,
6, respectively, have the same RPN value of 36.

•  �The RPN elements have many duplicate numbers.
Although 1000 numbers are assumed to be produced
from the product of O, S and D, only 120 of them are
unique.

2.2.  Fuzzy Numbers

The theory of fuzzy numbers (Dubois & Prade, 1978) is based 
on the theory of fuzzy sets. It can well express information that 
is vague and imprecise, thus, is widely used in statistics, com-
puter programming, engineering, experimental science and so 
on. Corresponding definitions along with some basic notions 
on fuzzy sets are given as follows:

Definition 2.1. A fuzzy set A is defined on an universe X 
may be given as:

Where μA → [0, 1] is the membership function A. The member-
ship value μA(x) describes the degree of x ∊ X in A.

Definition 2.2. A fuzzy number A is a fuzzy subset of the 
real line X with the membership function A. The triangular 
fuzzy number and trapezoidal fuzzy number are the two most 
widely used fuzzy numbers, which are defined as follows:

Definition 2.3. The α-cut, α ∈ (0,1], of a fuzzy number A is a 
crisp set defined as:
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A α − cut of a fuzzy number A can be noted as a closed interval, 
which can be shown in Figure 1:

2.3.  Z-number

The real word information is characterized not only by fuzzi-
ness; the other essential property of the information is its par-
tial reliability. In view of this, the concept of a Z-number is 
proposed by L.A. Zadeh to describe the real-world information 
more adequately. According to Zadeh (2011), a Z-number is 
an ordered pair fuzzy numbers denoted as Z = (A, B). The first 
component A is a restriction on the values of an uncertain 
variable X. The second component B is a measure of reliability 
of the component A.

In real life, much of everyday reasoning and decision-mak-
ing is based on a collection of Z-valuations.

For a random variable X, the ordered triple (X ,A,B) refers to 
a Z-valuation and it is equal to the statement X is (A,B) (Yager, 
2012; Zadeh, 2011). This can be interpreted as Prob(X is A), 
and

Where pX(u) is the underlying probability distribution of X. So 
the fuzzy number B plays a role of a soft constraint on a value of 
probability measure P(A) of A. As P(A) is determined on pX(u), 
fuzziness of P(A) implies that actual probability distribution is 
not known (Aliev, Alizadeh, & Huseynov, 2015).

Some examples of the Z-valuations are as follows:
(Oil price will be significantly higher than 100 dollars/bar-

rel, very likely) and
(Anticipated budget deficit, close to 3 million dollars, likely) 

and
(Population of Spain, about 47 million, quite sure).

3. Description of the New Method for FMEA

The main idea of the proposed approach in this paper is to 
develop a new priority model for FMEA that can better model 
and process uncertain information. The flowchart in Figure 
2 shows the overall procedure of the proposed approach. In 
the Z-valuation process, a Z-valuation triplet is developed to 

(4)A
𝛼
= {x|x ∈ X ,A(x) > 𝛼}
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(6)Prob(X is A) = P(A) = ∫
R

�A(u)pX(u)du

express the uncertain valuations of the three risks factors by 
using Z-numbers. And the ranking Z-numbers process is a pro-
cedure used to prioritize risks by processing and ordering the 
information of the Z-valuations. The details of the arithmetic’s 
are described in the following subsections.

3.1.  Z-valuation for Risks

In this section, a Z-valuation triplet for risk assessment for 
FMEA is defined, where the assessments of the risk factors are 
expressed by Z-numbers. To reduce the analytical and com-
putational complexity, component A and B in a Z-number are 
assumed to be trapezoidal (triangle) fuzzy numbers.

Definition 3.1. Suppose there are K experts conducting risk 
assessments of L risk factors for M potential failure modes. 
Then the kth expert’s Z-valuation of the lth risk factor for failure 
mode i can be defined as an ordered triplet:

Where, i = 1⋯M, l = 1⋯L, k = 1⋯K. FMil represents the risk 
degree of risk factors l with respect to the ith failure mode.

Ak
l =

(
akl1, a

k
l2, a

k
l3, a

k
l4

)
 and Bk

l =
(
bkl1, b

k
l2, b

k
l3

)
Represents the restraint of risk and the related reliability, 

respectively, where aklj(j = 1, 2, 3, 4) ∈ [0, 10],
aklr(r = 1, 2, 3) ∈ [0, 1]. Then the defined Z-valuation can be 

interpreted as; the fuzzy probability of (FMil is Ak
l ) is Bk

l .
The Z-valuation model can be shown in Figure 3. The first 

component A is defined within the interval [0, 10]. The second 
component B is within the interval [0, 1], the more the confi-
dence or reliability of valuation, the larger the value B repre-
sented. Some simple examples about the triplets of Z-valuation 
are listed as follows:

(7)Z̃k
l =

(
FMil ,A

k
l ,B

k
l

)

Figure 1. A α-cut Set of the Fuzzy Number A.

Figure 2. The Flowchart of the Proposed Method.
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Take into consideration that the value of ā
4
 may exceed the 

maximum of the rating (i.e. 10). The following method, which 
is based on α-cut set is used to standardize the fuzzy number.

For a synthesized valuation V̄ =
(
ā
1
, ā

2
, ā

3
, ā

4

)
, α is 

defined as;

Then,

The normalized fuzzy number can be noted as V̄
𝛼
, the definition 

of which is defined as follows:

3.3.  The ZRPN Generation Method

In order to prioritize the risks of the failure modes, a RPN is 
usually employed as a ranking reference standard. The idea and 
method of producing a RPN is various. For example, a classi-
cal RPN is obtained by multiplying the scores of O, S and D, 
directly. This method is simple and practical, and is widely 
used in many applications. However, many shortcomings are 
exposed to this method, which has been discussed in previous. 
In Yang et al. (2011), evidence theory is used to express more 
uncertain information in the process of evaluating risks and 
integrating information. These methods can overcome some 
setbacks of the traditional FMEA; however, the final RPN gen-
eration methods in these papers back to produce the classical 
RPN, which may confront with the same problems with the 
traditional FMEA in some cases. Take into account this fact; we 
proposed a novel RPN generation method. Firstly, we employ 
the FWM to integrate the Z-valuations of the O, S, and D. Then, 
the integrated valuations are synthesized by considering the 
weights of the experts. Finally, a modified method of Chen  
et al. (2012) is presented for defuzzification to produce the ZRPN.

In (2012) Chen et. al proposed a ranking method for gen-
eralized fuzzy numbers with different left heights and right 
heights. This method takes into consideration of the position 
information of a fuzzy number and can well address the issue 
of ranking fuzzy numbers. Based on this method, we present 
a new method to produce the ZRPN.

Where, Mi  =  LNi  +  RNi,  Ni  =  LPi  +  RPi; LNi (Left Negative 
area), RNi (Right Negative area), LPi (Left Positive area) and 
RPi (Right Positive area) are the four shaded areas in Figure 
4, respectively. COG

(
Ai

)
 is the center-of-gravity (COG) of the 

fuzzy number Ai, which is defined as:

4. Test Problems and Discussion of Results

To demonstrate the feasibility of the proposed risk assess-
ment and priority model, an illustrative example about the 

(10)𝛼 =

{
ā
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3.2.  Fuzzy Weighted Mean for Integrating Z-valuations

Ranking fuzzy numbers is a very important issue in a fuzzy set 
theory. It can give decision makers the best alternative and the 
ranking of the other alternatives. Therefore, similarly, the method 
of ranking Z-numbers can be a solution to prioritize the risks 
in FMEA. The existing methods of ranking Z-numbers, such as 
Bakar & Gegov (2015) and Kang, Wei, Li, & Deng (2012), usually 
transform the Z-numbers to fuzzy numbers by converting the 
component B to a crisp number, then use the methods of ranking 
fuzzy numbers to solve the problem. However, by reducing the 
fuzzy number B to a single number, we will lose the information 
we have purposely been keeping throughout the risk assessment. 
Therefore, in the process of integrating Z-valuations, we try to 
keep the fuzzy information of the B. Meanwhile, take the infor-
mation of A as the main effect on the risk assessment (Jiang, 
Xie, Luo, & Tang, 2017). Taking into account these concerns, 
we employ the FWM to address this issue. This method takes 
the reliability as the fuzzy weight of the uncertain valuations and 
avoids transforming the fuzzy information of component B into 
a crisp number. The FWM has been studied in depth in recent 
years (Dong & Wong, 1987; Kao & Liu, 2001). For example, in 
Chen & Chen (2003) and Chen, Munif, Chen, Liu, & Kuo (2012), 
Chen et.al used the FWM to aggregate the valuation items of 
the components of the manufactory for risk analysis. Wang  
et al. (2009) proposed a fuzzy weighted geometric mean method 
(FWGM) and applied it to FMEA. In this paper, we employ 
FWM to integrate Z-valuations of the risk factors for each of 
the experts, the arithmetic is as follows:

Where Ṽ  is an integrated fuzzy number; l = 1⋯L represents 
the risk factors O, S, D, etc.; k = 1⋯K represents the K experts.

Considering that the weights of the experts are different, 
the fuzzy numbersṼ  of the K experts are synthesized with the 
following formula:

Where V̄  is a synthesized fuzzy number, is denoted as (
ā
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; wk is the weight of the kth expert.
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ā
1
, ā
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Figure 3. The Proposed Z-valuation Model.
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method and the FWGM method proposed by Wang et al. 
(2009) based on the above experimental data. Table 4 gives 
the RPNs of the three methods with their related rankings.

From Table 4, we can find that the result of the proposed 
ZFMEA is in accordance with the FWGM method (Wang  
et al., 2009). That is FM1 > FM5 > FM2 > FM7 > FM4 > FM6 >  
FM3. Further, from Figure 5, we can clearly find the trend 
of RPN with respect to the two methods goes similarly. As 

rotor blades of an aircraft turbine is presented. The rotor blade 
includes two different subsystems; the compressor rotor blades 
and the turbo rotor blades. The effects of each failure mode 
on the system are studied. For each of the failure modes, the 
system is investigated for any alarms of conditions monitoring 
arrangement (Yang et al., 2011). There are nine potential failure 
modes and seven of them with their effects and alarms on the 
system are adopted as a FMEA case performed in this paper. 
The following steps lead to the risk priority of the seven failure 
modes according to the arithmetic’s defined above.

Step 1 Construct Z-valuations for the failure modes.
The risk assessments for the three risk factors are performed 

by 3 experts. The weights of the three experts are 0.4, 0.3, 0.3, 
respectively. Suppose the Z-valuations have the same compo-
nents B (reliability), B = (0.7, 0.8, 0.9), and the components A 
(restriction) of the Z valuations are shown in Table 1.

Step 2 Calculate the integrated valuations Ṽ  and the syn-
thesized valuations V̄(V̄

𝛼
)

Integrate each experts’ Z-valuations of O, S, D with respect 
to a certain failure mode with Equation (8). Then synthesize 
and standardize the integrated information of three experts 
with Equation (9) and Equation (12). The integrated valuations 
of the risk factors Ṽ  and the synthesized valuations V̄(V̄

𝛼
) are 

obtained in Tables 2 and 3.
Step 3 Calculate the ZRPNs of the seven failure modes then 

prioritize the risks of the failure modes.
The Z-valuations are converted to a series of fuzzy num-

bers, finally. According to Equation (13) and Equation (14), 
the ZRPNs belonging to the seven failure modes are calculated 
and listed in Table 3.

It can be seen from Table 3 that failure mode 1 has the largest 
ZRPN in the seven failure modes, followed by failure modes 5, 
2, 7, 4, 6, 3. The larger the ZRPN is the more attention should be 
paid to the corresponding failure mode. Therefore, the failure 
modes 1, 5, 2 have higher priority than failure modes 7, 3, 6 and 
4, and the risk of the failure mode 1 has the top priority to be 
concerned. So the final risk priority of the seven failure modes 
is: FM1 > FM5 > FM2 > FM7 > FM4 > FM6 > FM3.

To further illustrate the effectiveness of the proposed 
method, we make comparisons with the traditional RPN 

Figure 4. The Areas on the Negative Side and the Positive Side of the Fuzzy Number Ai.

Table 1. The Components A of the Z-valuations for the Three Risk Factors with 
Respect to Seven Failure Modes.

Expert Failure mode

Component A of Z-valuations

O S D
Expert 1 FM1 (6,7,8,9) (5,6,7,8) (6,8,8,10)

FM2 (2,3,4,5) (7,8,9,10) (3,4,5,7)
FM3 (0,2,3,5) (1,3,3,5) (0,1,2,5)
FM4 (1,2,3,5) (5,6,7,9) (2,4,5,7)
FM5 (6,8,9,10) (3,4,5,6) (6,8,9,10)
FM6 (0,1,1,3) (0,1,2,3) (5,7,7,9)
FM7 (5,7,8,10) (3,4,4,5) (2,4,4,6)

Expert 2 FM1 (4,6,6,8) (6,7,7,8) (6,8,8,10)
FM2 (2,4,4,5) (6,7,7,8) (3,4,5,7)
FM3 (0,2,3,4) (0,1,1,3) (0,1,2,5)
FM4 (3,4,4,5) (5,6,7,8) (2,4,5,7)
FM5 (6,8,8,10) (2,4,4,6) (6,8,8,10)
FM6 (2,3,4,5) (1,3,3,5) (5,7,7,9)
FM7 (5,6,6,7) (3,4,5,6) (2,4,4,6)

Expert 3 FM1 (6,7,7,8) (4,6,7,9) (5,8,8,10)
FM2 (1,3,4,6) (6,7,8,9) (2,4,5,7)
FM3 (1,2,3,5) (0,2,3,5) (0,1,1,5)
FM4 (2,4,4,5) (2,6,6,10) (2,3,4,5)
FM5 (5,7,8,10) (2,5,5,7) (7,8,8,10)
FM6 (0,1,1,3) (0,1,1,4) (7,8,8,9)
FM7 (6,7,8,9) (2,4,5,7) (1,3,3,5)

Table 2. The Integrated Valuation Ṽ .

Failure mode
Expert 1 

(w1 = 0.4)
Expert 2 

(w2 = 0.3)
Expert 3 

(w3 = 0.3)
FM1 (4.4, 7, 8, 11.6) (4.1, 7, 7, 11.1) (3.9, 7, 7, 11.6)
FM2 (3.1, 5.3, 6, 10.3) (2.9, 5, 5, 8.6) (2.3, 4.7, 6, 9.4)
FM3 (0.3, 2, 3, 6.4) (0, 1.3, 2, 5.14) (0.3, 1.7, 2, 6.4)
FM4 (2.1, 4, 5, 9) (2.6, 4.7, 5, 8.6) (1.6, 4.3, 5, 8.57)
FM5 (3.9, 6.7, 8, 11.1) (3.6, 6.7, 7, 11.1) (3.6, 6.7, 7, 11.1)
FM6 (1.3, 3, 3, 6.4) (2.1, 4.3, 5, 8.1) (1.3, 3, 3, 7.3)
FM7 (2.6, 5, 5, 9) (2.6, 4.7, 5, 8.2) (2.3, 4.7, 5, 9)
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valuation with Z-numbers. Results obtained in the case study of 
the rotor blades of an aircraft turbine demonstrate the validity 
of the proposed approach.

The proposed approach has been proved to be useful and 
practical, but can still be improved in some aspects. For exam-
ple, and the weights of the risk factors were not accounted for 
in this study.
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to the traditional FMEA, the ratings of failure mode 2 and 
7 are opposite to the other methods. Then we can find the 
advantage of FWGM method and ZFMEA, which are more 
sensitive to capture and distinguish the uncertainty and similar 
information. As to the FWGM methods, Wang analyzed the 
related importance of the risk factors and model them with 
fuzzy numbers, the weights of the expert are also considered; 
but the reliability of the fuzzy valuation is overlooked. While in 
the proposed ZFMEA, we can express the uncertainty and reli-
ability simultaneously with Z-numbers. Besides, the proposed 
method has the merit of low computational complexity and 
simpleness when compared with the FWGM method. So from 
the above analysis, the proposed ZFMEA are more reasonable 
and effective for risk analysis.

5. Conclusion

Reliability of information is a very important issue in deci-
sion-making, management of information and risk valuation 
and analysis. This study presented a novel method for properly 
evaluating the level of risk. The main novelty introduced in the 
paper is taking into account the reliability part of the uncertain 

Figure 5. The Sparklines of RPN of the FWGM and ZFMEA.

Table 3.  The Synthesized Valuations and Risk Priority Ranking of the Seven 
Failure Modes.

Failure 
mode V̄ α V̄

𝛼
ZRPN

Priority 
ranking

FM1 (4.2,7,7.4,11.4) 0.47 (5.4, 7, 7.4, 10) 0.7 1
FM2 (2.8,5,5.8,9.5) 0 (2.8, 5, 5.8, 9.5) 0.52 3
FM3 (0.2,1.7,2.4,6) 0 (0.2, 1.7, 2.4, 6) 0.22 7
FM4 (2.1,4.3,5,8.7) 0 (2.1, 4.3, 5, 8.7) 0.45 5
FM5 (3.7,6.7,7.2,11.1) 0.28 (4.5, 6.7, 7.1, 10) 0.66 2
FM6 (1.5,3.4,3.7,7.2) 0 (1.5,3.4,3.7,7.2) 0.34 6
FM7 (2.5,4.8,5.2,8.7) 0 (2.5,4.8,5.2,8.7) 0.48 4

Table 4. The Comparisons of the Proposed Method with Two Available Methods.

Failure 
mode

Traditional RPN FWGM method Proposed ZFMEA

RPN Ranking FRPN Ranking ZRPN Ranking
1 337.68 1 7.16 1 0.70 1
2 97.68 4 5.03 3 0.52 3
3 4.2 7 1.96 7 0.22 7
4 71.04 5 4.49 5 0.45 5
5 264.88 2 6.67 2 0.66 2
6 17.92 6 2.82 6 0.34 6
7 99.16 3 4.82 4 0.48 4
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