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ABSTRACT
In this article, the researcher at first focuses on introducing a linear regression based on the Z-number. 
In this regression, observations are real, but the coefficients and results of observations are unknown 
and in the form of Z-rating. Therefore, to estimate this type of regression, we have three distinct ways 
depending on different conditions dominating the problem. The three methods are a combination of 
artificial neural networks and fuzzy generalized improvements of the technique. Moreover the method 
of calculating the weights of the Z-number neural network has been mentioned and the stability of 
neural network weights is considered. In some examples, the answer is estimated compared with the 
original answer.

1. Introduction

Regression analysis is one of the basic tools of scientific 
research that enables the identification of the performance of 
dependent and independent variables. In the analysis of the 
classic regression, both dependent and independent variables 
are real numbers. However, in many real conditions of life, 
where the complexity of the physical system has been dictated, 
adopting a more holistic view is required where the regression 
variables are given as non-numerical constructs such as lin-
guistic variables (Cheng & Lee, 2001). Unfortunately, most of 
the real conditions in life are out of the classic regression anal-
ysis range (Bardossy, 1990; Bardossy, Bogardi, & Duckstein, 
1990). After introducing the concept of fuzzy sets by Zadeh 
in 1965 (Zadeh, 1965, 1979, 1996), different researchers have 
developed the regression analysis. Fuzzy linear regression 
(FLR) was first suggested by Tanaka and colleagues (Tanaka, 
1987), that is the extension of classic regression analysis that 
has turned into a powerful tool for the discovery of ambigu-
ous relationships (Coppi, 2008). Indeed, in fuzzy regression, 
some of the elements of the regression model have been pre-
sented with ambiguous information. Different methods have 
been presented for solving these types of problems (Kao & 
Chyu, 2003; Modarres, Nasrabadi, & Nasrabadi, 2005; Mosleh, 
Allahviranloo, & Otadi, 2012; Mosleh, Otadi, & Abbasbandy, 
2011; Tanaka, Havashi, & Watada, 1989). Among these meth-
ods is the use of the method of least squares for the study and 
fitness of fuzzy regression models that were first presented 
by Celmins (1987) and Diamond (1987). But, for this useful 
information, it must be reliable. Humans have a clear capacity 
for making logical decisions based on ambiguous, imprecise 
or incomplete information. Formalization of this capacity is 
at least to some degree a challenge that is estimated with dif-
ficulty. Zadeh proposed a subject called Z-number that has 
two components Ã, B̃ (Zadeh, 2011). The first component, Ã, 

is a restriction (constraint) on the values, which a real-valued 
uncertain variable, X, is allowed to take. The second compo-
nent, B̃, is a measure of reliability (certainty) of the first com-
ponent. Typically Ã and B̃ are described in a natural language. 
For example: (About 45  min. is very reliable). Yager (2012) 
used Z-number to calculate the waiting time for the bus. Kang, 
Wei, Li, and Deng (2012) used the Z-number for making deci-
sion in an ambiguous environment. Regression analysis of the 
Z-number is an extension of the fuzzy regression analysis that 
some elements in this model have been shown with ambigu-
ous information, which consist of a reliability degree and this 
type of regression has been introduced in this article. On the 
other hand, the artificial neural network is a powerful tool in 
estimating many functions, especially fuzzy regression (Mosleh 
et al., 2011, 2012). The neural network used in this article is a 
generalized neural system that is introduced later in this study.

The present article consists of following sections: In Section 2, 
the basic and required concepts have been stated. In Section 3, 
the Z-number neural network has been introduced. In Section 4, 
the estimate of ZLR regression has been stated using Z-number 
neural network. In Section 5, the analysis of recommended 
method error has been stated. In Section 6, the method of 
calculating the weights of Z-number neural network has 
been mentioned. In Section 7, the stability of neural network 
weights. In Section 8, a numerical example is presented. In 
Section 9, the conclusion is presented and in Section 10, the 
references are listed.

2. The Basic and Required Concepts
Definition 1: the parametric form of a fuzzy number that is introduced with a 
regular pair from function in the form of (a1(�), b1(�)), 0 ≤ � ≤ 1, consists 
of following conditions:

a1(�) is a bounded increasing function and is continuous on 
interval [0, 1] from right.
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b1(�) is a descending bounded function and is continuous on 
interval [0, 1] from left.

Definition 2: If A and B be fuzzy numbers with [A]
�
=
[
a1(�), a2(�)

]
.

[B]
�
=
[
b1(�), b2(�)

]
 and � ∈ [0, 1], then fuzzy operation 

between them are defined as follows (Zimmermann, 1991):

Definition 3: (Xu & li, 2001) the distance between two fuzzy numbers of A and 
B based on weight function of f (�) is defined as:

Where index α is the α-cut, A and B are two fuzzy num-
bers, A and B are two fuzzy numbers, A

�
=
[
a1(�), a2(�)

]
 and 

B
�
=
[
b1(�), b2(�)

]
 are cuts of A and B, respectively. f (�) is an 

increasing function on the interval [0, 1] for which we have, 
f (0) = 0 and 

1∫
0

f(�)d� =
1

2
. The amount d

(
A

�
, B

�

)
 measures the 

distance between � − cut of fuzzy numbers from A and B. f (�) 
could be interpreted as weight of d2

(
A

�
, B

�

)
.

Definition 4: (Xu & li, 2001) let A be a symmetric trianggolar fuzzy number in 
lR form (a, sa) such that a is center and sa is width.

We write A = (a, sLa , s
R
a )T, a is the center of A. sLa andsRa  are the 

left and right widths, respectively. In a special case, if sLa = sRa , 
the A is called the symmetric fuzzy and we write A = (a, sa)T.

Theorem 5. Suppose A = (a, sa)T and B = (b, sb)T be two 
symmetric fuzzy numbers, then based on weight function 
f(�) = �, we have

Proof: (Mohammadi & Taheri, 2004).

Definition 6: Definition of the Z-number

Zadeh (2011) introduced the Z-number along with an 
unknown variable X. A Z-number has two components (A,B). 
The first component, Ã, is a restriction (constraint) on the 

[A + B]
�
=
[
a1(�) + b1(�), a2(�) + b2(�)

]
,

[−A]
�
=
[
−a2(�),−a1(�)

]
,

[A − B]
�
=
[
a1(�) − b2(�), a2(�) − b1(�)

]
,

[𝜆A]
𝛼
=
[
𝜆a1(𝛼), 𝜆a2(𝛼)

]
, 𝜆 > 0,

[𝜆A]
𝛼
=
[
𝜆a2(𝛼), 𝜆a1(𝛼)

]
, 𝜆 < 0.

d(A, B) =

[
1∫
0

f(�)d2(A
�
, B

�
)d

�

] 1

2

,

d2
(
A

�
, B

�

)
=
[
a1(�) − b1(�)

]2
+
[
a2(�) − b2(�)

]2

d2(A,B) = (a − b)2 +
1

6
(sa − sb)

2

values, which a real-valued uncertain variable, X, is allowed 
to take. The second component, B̃, is a measure of reliability 
 (certainty) of the first component. Zadeh introduced (x, A, B) 
as Z-valuation and showed that this amount is equal to this, 
that X is equal to (A,B). Here Z provides information about 
the value of variable X. An example of this valuation of Z is 
as follows:

Example: (about 45 min., very sure), (about 30 min., sure). 
This valuation for Z according to proposal of Zadeh is observed 
as a restriction in X and is interpreted as follows:

Indeed, it means that

Where μA is the membership function of fuzzy set A and u is 
a part of y. Py(u) is the probability density function of y and 
P(y = u) is the probability function of y. Whereas we do not 
know the basic probability distribution, it is clear from this 
information that the probability distribution function is itself 
a fuzzy number.

3. Z-number Neural Network (ZNN)

Although artificial neural networks are not comparable with the 
natural neural system, they have specifications where there is a 
need to learning linear mapping and nonlinear mapping, they are 
distinguished. Among the specifications of the artificial neural 
network they are ability to learn, distribution of information, 
generalizability, parallel processing (high speed) and being dura-
ble (ability to be repaired, error acceptance). A type of artificial 
neural network is the feed forward artificial neural network. This 
type of technology was first introduced by Rosenblatt (1962). 
This technology has for many years been widely used in different 
fields. In this article, a feed forward artificial neural network that 
is of a double-layer type is used. The first layer consists of inputs 
and the second layer forms the outputs with a linear transfer 
function. This network could be used for prediction, identifica-
tion, and classification of the paradigm. In this study, the learn-
ing algorithm used for teaching of the artificial neural network 
is the algorithm after error dispersion. In designing the neural 
network, the section of the number of inputs is of special impor-
tance, because each input pattern consists of important informa-
tion on the structure of the correlation itself and the complex 
structure of the data. To obtain input nodes, most researchers 
have used the error and trial method in this article, the number 
of input nodes is exactly equal to the number of unknowns in the 
problem, that is, the coefficients of regression and the number of 
nodes differs depending on the type of the problem.

Z-number neural network is defined with symbol [Net] z 
as follows:

Where [.] z is the valuation symbol of Z-number, oi is the input 
of the neural system that is of Z-number type and corresponding 
xij. [wi]

z is the weights of neural network with Z-number value.

P(X isA) isB

R
(
y
)
:y is A → Poss

(
y = u

)
= �A(u)

P
(
y is A

)
= ∫

R

�A(u)Py(u)du is B

 (1)
[Net]z = (A,B)

[Net]z = [w0]
z +

n∑
i=1

[wi]
zoii,
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Where f is the transformation function. For the case where 
the relationship between the first component restriction and the 
second component (the confidence limits) is not clear, the ZNN 
neural network cannot directly be used, but this neural network 
must be turned into two fuzzy neural networks. The first fuzzy 
neural network is related to the first section and the second 
one is related to the second section. The inputs of the neural 
network are common, but its outputs are distinct. The output of 
the first fuzzy neural network according to the first section of the 
variable is unknown and the output of the second fuzzy neural 
network based on the second section of the variable is unknown 
too. Hence, ZNN neural network consists of two independent 
target functions where the instruction method of both functions 
based on total squares of error have been defined according to 
distance in Theorem 2.5 and are independent from each other. 
This means that for solving problems where the relationship 
between the first and second components of the given numbers 
is not known, a Z-number neural network with a common func-
tion target cannot be used for real inputs and Z-number outputs.

4. Z-number Linear Regression (ZLR) Estimates 
using Neural Network

Consider the general model of ZLR as follows:
 

Where AY plays the role of restriction for Yi and BY the role of 
degree of confidence and both of them have fuzzy values and 
have been defined as follows:

 

xi1 ∈ R, a0, a1, a2,… , an are fuzzy numbers and 
[
Yi

]z is  
Z - number.

We limit the discussion to the case where AY and BY are 
symmetric triangular fuzzy numbers. Since in the real world, 
ZLR regression given the different conditions (problem infor-
mation), can have different states and in this section, we study 
and estimate some of those states.

4.1. First state

Suppose that [Y]z in (2) consists of around AY value and den-
sity function f(X) = 𝜆e−𝜆X , 𝛼 ≤ 𝜆 ≤ 𝛽,X > 0 (where� and β 
are fixed numbers and α < β). The probability that Y, be AY, 
it consists of BY. That is, with the assumption that AY = (a, b) 
and BY = (c, d) where a and c be the center, b and d the fuzzy 
widths, AY and BY respectively. So we have
 

(2)[Yi]
z =

(
AY ,BY

)

(3)
AY =

(
a0 + a1xi1 + a2xi2 +⋯ + anxin

)
,

BY = p
(
YiisAY

)
,

(4)
p(a ≤ Y ≤ b) = � b

a
f(X)dX = � b

a
�e−�XDX

= −e−�X|ba = e−�a − e−�b

Where for � ≤ � ≤ �, in (4) will be as follows:
 

Where degree of membership for the above relation is intro-
duced with G(p) and is as follows:

The objective based on observations in the form of

 To obtain an optimal model with fuzzy co-efficients for 
describing and analyzing the data and predicting based on it 
where xij are real numbers and [yi]

z are of Z-numbers type. 
For estimating regression with above conditions, we define the 
proposed method as follows:

Where yT is the proposed solution and Net is the feed forward 
artificial neural network that consists of two layers. The first 
layer is the inputs layer and the second layer is the outputs 
layer with linear transfer function that is introduced in the 
following form:
 

Where w0 and w1 are artificial neural network weights. oij are 
inputs of neural network and correspond X. Now, let’s suppose 
our proposed method consists of the same density function of 
the problem, that is, f(X) = �e−�X , � ≤ � ≤ �. It is clear that the 
neural network of relation (7) has fuzzy value and this means 
that we have fuzzy weights for real observations, thus equation 
(7) could be written as follows:

We suppose Net = (NetA1
,NetA2

) where the value of NetA1
is the 

center and the value of NetA2
 is the fuzzy width of Net neural 

network, so the relation (8) could be rewritten as follows:
 

Where NetA1
 and NetA2

 are in the following form:

 

Now, we should find the four weights of relation (9) that are 
met following two conditions:

1 -  The value of Net that is almost the estimated answer 
yT is close to the value limit of the main answer Y.

2 -  The value of p
(
yT is Net

)
 approaches the value of 

p(a ≤ Y ≤ b) = (c, d).

To that end, we define the target function of the neural net-
work as follows:

(5)p(a ≤ Y ≤ b) =

{
c = e−�1a − e−�1b, �1 = �

d = e−�2a − e−�2b, �2 = �

G
(
p
)
= B

(
p(a ≤ Y ≤ b)

)
=

{
1, c ≤ e−�a − e−�b ≤ d

0, other

(
[yi]

z, xi1, xi2,… , xin
)
, i = 1,… , n.

(6)yT =
(
Net, p

(
yT is Net

))
=

(
AyT

,ByT

)

(7)
Net = w0 + w1oi1 +…+ wnoin,

i = 1,… ,m, j = 1,… , n

 (8)Net = w0 + w1oi1 +⋯ s.twi is fuzzy

(9)
Net =

(
NetA1

,NetA2

)

=

(
w0A1

,w0A2

)
+

(
w1A1

,w1A2

)
oi1 +⋯

(10)

{
NetA1

= w0A1
+ w1A1

oij +⋯

NetA2
= w0A2

+ w1A2

|||oij
||| +⋯
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That is the probability Y, be yk and equals to yH and in the 
form of relation (14). For estimating Z-number regression of 
equation (14) with above conditions, we define the proposed 
method as follows:

Where A' plays the role of output restriction of the neural net-
work and B’ the probability that yT be A’. w’i are the Z-number 
co-efficients of yT where the value of the restriction section 
of these co-efficients are determined using a neural network 
introduced in the relationship (8). Suppose [w�

i]
z = (w�

iA,w
�

iB) 
where w’iA and w’iB are symmetric fuzzy triangular numbers. 
Indeed iA means that the related component plays the role of 
restriction wi and indeediB means that the related component 
plays the role of degree of confidence for the first component 
that has been shown with iA matrix. Supposing that

w�

iA =

(
w

�

iA1
,w

�

iA2

)
 and w�

iB = (w�

iB1
,w�

iB2
), equation (15) can 

be rewritten as follows:

Where A’ is in below form and later in equation (20) we intro-
duce B′.
 

The coefficients in equation (17) are obtained from relation-
ships (8) and (11).

Since these coefficients in our proposed method are of 
Z-number value, now we should obtain the probabilities of 
these coefficients:

 

And

(15)

[yT ]
z = (A�,B�)

[yT ]
z = [w�

0]
z + xi1[w

�

0]
z +⋯ + xin[w

�

0]
z

+[�n]
z, i = 1,… ,m., j = 1,… .,

(16)
[yT ]

z =

(
w�

0A�

1

,w�

0A�

2

)(
w�

0B�

1

,w�

0B�

2

)

+

(
w�

1A�

1

,w�

1A�

2

)(
w�

1B�

1

,w�

1B�

2

)
x +…

(17)A
�

=

⎧⎪⎨⎪⎩

A�1 = w�

0A1
+ w�

1A1
x,

A�2 = w�

0A2
+ w�

1A2
x.

(18)

p
�
w�

0A�

1

≤ w�

0
≤ w�

0A�

2

�

= � w�

0A�
2

w�

0A
�

1

�e−�XDX = e
−(�w�

0A
�

1

)

− e
−

�
�w�

0A
�
2

�

⇒ p
�
w�

0A�

1

≤ w�

0
≤ w�

0A
�

2

�

=

⎧⎪⎨⎪⎩

w
0B�

1

= e
−(�

1
w�

0A
�

1

)

− e
−

�
�
1
w�

0A�
2

�
, �

1
= �

w
0B�

2

= e
−(�

2
w�

0A
�

1

)

− e
−

�
�
2
w

�

0A�
2

�
, �

2
= �

 (19)

p
�
w�

1A
�

1

≤ w�

1
≤ w�

1A�
2

�

= �
w�

1A�
2

w�

1A
�

1

�e−�XDX = e
−(�w�

1A
�

1

)

− e
−

�
�w�

1A�
2

�

⇒ p
�
w�

1A
�

1

≤ w�

1
≤ w�

1A�
2

�

=

⎧⎪⎪⎨⎪⎪⎩

w
1B

�

1

= e
−

�
�
1
w

�

1A
�

1

�

− e
−

�
�
1
w

1A
�
2

�
, �

1
= �

w
1B

�

2

= e
−

�
�
2
w

�

1A
�

1

�

− e
−

�
�
2
w

�

1A�
2

�
, �

2
= �

 

Where in general, for n observations we will have x.

By minimizing equation (11) four weights of the neural net-
work, namely, w0A1

, w1A1
, w0A2

 and w1A2
 are obtained. By sub-

stituting the weights obtained in equation (9), the values of 
NetA1

 and NetA2
 are obtained and eventually the value of Net in 

equation (8) will be obtained. Now, we calculate the probability 
that yt may be a neural network (Net)

 

By substituting values obtained in equation (12) and in equa-
tion (6), the approximate solution with rating Z-number yT is 
obtained. In the example section it is shown that the approxi-
mate solution is close to the main solution.

4.2. Second State

We consider the problem in such a way that the regression coef-
ficients themselves be of the Z-number type objective based on 
following observations:

 To obtain an optimal model with Z-number co-efficients for 
describing, analyzing and predicting based on it, where xij are 
real and [yi]

z are of Z-number type.
The basic model of Z-number linear regression (ZLR):
 

Where
xi1 ∈ R,

[
A0

]z
,
[
A1

]z
,
[
A2

]z
, … ,

[
An

]z
, and 

[
Yi

]z are 
Z-number.

We suppose [A]z and [y]z are respectively regular pairs 
[A]z = (Ak, AH) and [y]z = (yk, yH) that AH, Ak, yH, yk are fuzzy 
numbers. Ak and yk play the role of restriction and AH and yH 
play the role of degree of confidence for restrictions, respec-
tively. The discussion is limited to the state where AH, Ak, yH, 
Wyk be symmetric fuzzy triangular numbers. Thus, the main 
problem with density function f(X) = �e−�X , � ≤ � ≤ � (where 
a and b are fixed numbers greater than zero and α  <  β are 
shown as follows:

 

(11)

Min(e
−

(
NetA1

�1

)
− e−a�1)2

+
1

6

(
e
−

(
NetA2

�2

)
− e−b�2

)2

Min
∑n

i=1

��
e
−

�
NetiA1

�1

�
− e−ai�1

�2

+
1

6

�
e
−

�
NetiA2

�2

�
− e−bi�2

�2
�

(12)

p
�
yT is Net

�
= p

�
NetA

1

≤ yT ≤ NetA
2

�

=

NetA
2�

NetA
1

�e−�odo = e−(�NetA1 ) − e
−

�
�NetA

2

�

⇒ p
�
yT is Net

�

=

⎧⎪⎨⎪⎩

e−(�1
NetA

1
)
− e

−

�
�
1
NetA

2

�
, �

1
= �

e−(�2
NetA

1
)
− e

−

�
�
2
NetA

2

�
, �

2
= �

(
[yi]

z, xi1, xi2,⋯ , xin
)
, i = 1,… , n.

(13)[Yi]
z = [A0]

z + [A1]
zxi1 + [A2]

zxi2 +…+
[
An

]z
xin

(14)

(
yk, yH

)
=
(
Ak0, AH0

)
+
(
Ak1, AH1

)
x1 +⋯ +

(
Akn, AHn

)
xn
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There are different methods for calculating each one of Ak and 
AH. References (Diamond, 1988; Hojati, Bector, & Smimou, 
2005; Peters, 1994; Savic & Pedrycz, 1991; Tanaka, Uejima, & 
Asai, 1982) could be used for more study.

In this work, since the correlation between known and 
unknown variables is not clear, thus the artificial neural net-
work could be an appropriate method for an approximate 
answer. Therefore, we consider the double-layer progressive 
Z-number neural network that consists of n input units and 
one output unit. Input vectors are real and their related weights 
are of Z-number type. And the correlation between the inputs 
and outputs of the Z-number neural network could be written 
in below the form:

Input units:

Output units:

As f is an increment function. 
[
�n

]z is the approximation 
method error.

We suppose [wi]
z = (ui, vi) where u and v are symmetric 

triangular fuzzy numbers. For answer approximation of equa-
tions (21) and (22) we will have:

 

That Nk and NH both are artificial fuzzy neural networks and 
are in the following forms:

 

And

5. Error Analysis

In this section, we study the error for the third state, that the 
first and second states can be studied in the same way.

The 
[
�i

]z error in equation (2) is stated in following form:
 

Where �ki, �Hi are symmetric triangular fuzzy numbers.
Now, we minimize the total square error given by distance 

d mentioned in previous section by using 
[
wi

]z
= (ui, vi).

Given what was said for both equations (25) and (26) we have:
 

oi0 = 1, oij = xij, j = 1, 2,… , n, i = 1,… ,m.

 (23)
[yi]

z
= f

([
Neti

]z)
, i = 1,… , m, [Neti]

z

= [w0]
z
…+ oin

[
wn

]z
+
[
�n

]z

(24)

[Net]
z
= (N

k
, N

H
)(

N
k
,N

H

)
=
(
u
0
, v

0

)
+
(
u
1
, v

1

)
o
1
+⋯

+
(
u
n
, v

n

)
o
n
+
(
�
k
, �

H

)
.

(25)Nk = u0 + u1o1 +⋯ + unon + �k

(26)NH = v0 + v1o1 +⋯ + vnon + �H

(27)
[
�i

]z
=
[
Yi

]z
−
[
Neti

]z

[
Mi

]z
=
(
Mki, MHi

)
=

(
n∑
i=1

�2ki,

n∑
i=1

�2Hi

)

Min
[
Mi

]z
=
(
MinMki,MinMHi

)
= (MinM

(
u0,… , un

)
,MinM

(
v0,… , vn

)
)

(28)M
(
u0,… , un

)
=

m∑
i=1

d2
(
Nki, yki

)

That there by, w′

0B′

1

,w′

0B′
2
,w′

1B′

1

 and w′

1B′

2

 are obtained from the neu-
ral network. Ultimately B’ is computable as follows:

In the examples section, it is shown that the value of A’ is close 
to the value of A and the value of B’ is close to the value of 
B and this shows that our Z-number weights are almost the 
regression coefficients (ZLR).

4.3. Third State

In this state we do not have enough information on the problem 
of regression, that is, we have been given the Z-number values 
Y based on observations and we do not have any information 
about the density function or the probability distribution func-
tion. We state following definition prior to solving regression.

Definition: suppose Z1 = (A, B) and Z2 = (A’, B’) be two Z-numbers in a 
way that A = (a, sa)T, A’ = (a’, s’a)T and B = (b, sb)T, B’ = (b’, s’b)T, 
be symmetric and fuzzy. then, based on weight function f (�) = �,

Now, based on the above definition for solving Z-number 
linear regression, we first divide the problem into two sections; 
where the first section is based on restriction and the second 
section based on the confidence scale. Thus, relation (2) could 
be written as follows:

 

And

(20)B
�

=

⎧
⎪⎨⎪⎩

B
�

1 = w�

0B1
+ �1w

�

1B1
o, �1 = �

B
�

2 = w�

0B2
+ �2w

�

1B2
o, �2 = �.

d2
(
A,A�

)
= (a − a’)2 +

1

6
(sa − s’a)

2

d2(B, B’) = (b − b’)2 +
1

6
(sb − s’b)

2

(21)
yk = Ak0 + Ak1x1 +…+ Aknxn(
yk, xi1, xi2,… , xin

)
; xij ∈ R,

i = 1,⋯ , m, j = 1,… , n.

 (22)
yH = AH0 + AH1x1 +…+ AHnxn(
yH, xi1, xi2,… , xin

)
;xij ∈ R,

i = 1,… , m, j = 1,… , n.
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In a way that A1(k) and A2(k) are respectively the matrices of 
the second derivatives from performance functions F̂1(k) and 
F̂2(k) for present values of the weights. Also

In the above equations, k is the number of repetitions. The 
disadvantage of Newton’s method is that it is too complex 
and computationally too expensive and as a result they are 
not appropriate for neural networks, of course, there is a type 
of algorithm based on Newton’s methods that since it does 
not require calculating the second derivative, its computa-
tional cost is lower. These methods are called Quasi-Newton’s 
methods. They update the algorithm of approximate Hessian 
matrix for each repetition. Updating is conducted through a 
function from the slope. The Quasi-Newton method that has 
considerably been successful consists of BFGs method. This 
algorithm is usually converged faster and in lower number of 
repetitions. In the end, after obtaining weights, that is, ui and 
vi using the mentioned algorithm (that is by order of fminunc 
in subject), we substitute them in equation (24) and achieve 
relation (23).

For the first and second states the same process is applied.

7. The Stability of Neural Network Weights

In this section, we study the stability of artificial neural network 
weights. The repetitive relation of the weight calculation in 
equation (37) must be considered as follows:

Where � is the Hessian matrix approximation in each rep-
etition and k is representative of each repetition. Now, we 
consider the initial weights as u∗

0(k) = u0(k) + Δ0(k) and 
�∗

0 (k) = �0(k) + Δ0
�(k) that in this case for

We will have

(37)
uij(k + 1) = uij(k) − A−1

1 (k)
𝜕F̂1i(k)

𝜕uij(k)
,

𝜎ij(k + 1) = 𝜎ij(k) − A−1
1 (k)

𝜕F̂1i(k)

𝜕𝜎ij(k)
.

(38)
vij(k + 1) = vij(k) − A−1

2 (k)
𝜕F̂2i(k)

𝜕vij(k)
,

cij(k + 1) = cij(k) − A−1
2 (k)

𝜕F̂2i(k)

𝜕cij(k)

 (39)F̂1(k) =

m∑
i=1

e2ik1 +
1

6

m∑
i=1

e2ik2;eik1 and eik2 for yk, Nk

F̂2(k) =

m∑
i=1

e2iH1 +
1

6

m∑
i=1

e2iH2;eiH1 and eiH2 for yH, NH (40)

uij(k + 1) = uij(k) − 𝛼
𝜕F̂1i(k)

𝜕uij(k)
,

𝜎ij(k + 1) = 𝜎ij(k) − 𝛼
𝜕F̂1i(k)

𝜕𝜎ij(k)

⌢

F1(k) = (u0(k) + u1(k)o1 − yk)
2 +

1

6
(𝜎0(k) + 𝜎1(k)o1 − sk)

2

⌢

F̃1 = (u∗0(k) + u1(k)o1 − yk)
2 +

1

6
(𝜎∗

0 (k) + 𝜎1(k)o1 − sk)
2,

The idea of finding the least squares is 
[
wi

]z that are obtained 
by minimizing 

[
Mi

]z, that is, the total square errors on distance 
d and this is done using the Matlab soft-ware and fminunc 
command is based on Quasi-Newton algorithm.

6. Weight Calculation Algorithm for the Third State

In this section, the algorithm for the calculation of neural net-
work weights for the third state is studied. The first and second 
states resemble the third state too. To that end, we first explain 
the method of calculating ui.

Suppose yki and ui be as yki = (yki, ski)T and ui = (ui, �i)T. 
Where yki and ui are the centers, ski and �i the widths of the 
symmetric triangular fuzzy numbers yki and ui, respectively. 
Given the equation (10) we have

Where

Given the equation (31) and (32), relation (28) turns into fol-
lowing form:

 

To calculate vi, in a similar way, suppose yHi and vi are 
yHi = (yHi, sHi)T and vi = (vi, ci)T where yHi and vi are the center, 
sHi and ci are the widths of symmetric triangular fuzzy number, 
yHi and vi, respectively. Given the equation (10), we have

Where
 

Given the equations (34) and (35), equation (29) turns into 
following form:

Now, by minimizing equations (33) and (36) with initial 
weights ui = vi = 0, weights in the direction that the target 
function (the performance function) decreases, that is, con-
trary to its slope, they are updated, the algorithm of the neu-
ral network for the purpose of calculating the weights in this 
article is a quasi-Newton algorithm or BFGs (Broyden Fletcher 
Goldfarb Shanno), (Liu & Nocedal, 1989). The basic step in 
Quasi-Newton methods is calculated based on teewton for-
mula. the N

(29)M
(
v0,… , vn

)
=

m∑
i=1

d2
(
NHi, yHi

)

 (30)
N

ki
=
(
u
0
+ u

1
o
i1
+⋯ + u

n
o
in
, �

0
+ �

1
||oi1|| +⋯ �

n
||oin||

)
T
.

 (31)[Netki]Two = u0 + u1oi1 +…+ unoin

 (32)[Netki]Two = �0 + �1
||oi1|| +… �n

||oin||

(33)
M
(
u0,… , un

)
=

m∑
i=1

((
[
Netki

]
One

− yki)
2 +

1

6
(
[
Netki

]
Two

− Ski)
2 )

NHi =

(
v0 + v1oij +…+ vnoin, c0 + c1

||oi1|| +…+ cn
||oin||

)
T
.

(34)[NetHi]One = v0 + v1oi1 +…+ vnoin

(35)[NetHi]Two = c0 + c1
||oi1|| +…+ cn

||oin||

 (36)
M
(
v0,… , vn

)
=

m∑
i=1

(([
NetHi

]
One

− yHi

)2
+

1

6

([
NetHi

]
Two

− SHi

)2 )
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[yT ]
z = (A

�

,B
�

), (two state). Where stopping criteria; k \, = \, 
19 iterations of the learning algorithm. The training starts 
with [w0]

z = (0, 0)(0, 0), [w1]
z = (0, 0)(0, 0). The value of [yTi]

z 
in Table 3b is visible.

The optimal weight of the neural network is as follows:

(1c) Using the data in Table 2 and Table 3c, develop an 
estimated fuzzy regression equation [Yi]

z =
(
AY ,BY

)
 by 

[Neti]
z = [w0]

z + oi1[w1]
z, (three state). Where stopping cri-

teria; k=19 iterations of the learning algorithm. The training 
starts with [w0]

z = (0, 0)(0, 0), [w1]
z = (0, 0)(0, 0). The value of 

[Neti]
z in Table 3c is visible. Weights obtained in our proposed 

scheme (FLS network) can be obtained with weight FLS pro-
cedure (Diamond, 1987) comparable.

w0A = (5.60, 1.79)(0.37, 0.39),

w1A = (1.34, 0.17)(0.20, 0.27).

yik = (4.95, 1.84) + (1.70, 0.16)xFor FLS network

y = (4.95, 1.84) + (1.71, 0.16)x forFLSmethod

Thus, in the next repetition, that is, k \, + \, 1, we will have

Now, we determine the limitation of both sides of the above 
equation when Δ0 tends towards zero.

That is

The procedure for the other weights is the same. For the first 
and second states it is similar, too.

8. Numerical Example

In this section, three numerical examples are presented for 
calculating Z-number regression coefficients according to three 
states mentioned above.

Example 1. For Z-number variables, consider the depend-
ent variable Y and the independent real variable xi, the values 
given in Table 1 (information in Table 1 has been adopted from 
reference (Tanaka et al., 1989)).

Suppose that the Z-number value of [Yi]
z for each real obser-

vation Xi is in table 2:
(1a) Using the data in Table 2 and Table 3a, develop an 

estimated fuzzy regression equation [Yi]
z =

(
AY ,BY

)
 by 

yT =
(
Net, p

(
yT is Net

))
, (first state). Where stopping crite-

ria; \, k=32 iterations of the learning algorithm. The training 
starts with w0 = (0, 0), w1 = (0, 0). The value of [yTi]

z for density 
function �e−�X in Table 3a for 0.2 ≤ � ≤ 0.3 visible. The optimal 
weight of the neural network is as follows:

(1b) Using the data in Table 2 and Table 3b, develop an 
estimated fuzzy regression equation [Yi]

z =
(
AY ,BY

)
 by 

⌢

F̃1 = (u
0
(k) + Δ

0
(k) + u

1
(k)o

1
− yk)

2

+
1

6
(𝜎

0
(k) + Δ�

0
(k) + 𝜎

1
(k)o

1
− sk)

2

𝜕
⌢

F̃1

𝜕u∗

0

=
𝜕

𝜕u∗

0

(
(
u
0
(k) + Δ

0
(k) + u

1
(k)o

1
− yk

)2

+
1

6

(
𝜎
0
(k) + Δ�

0
(k) + 𝜎

1
(k)o

1
− sk

)2
)

u∗

0(k + 1) = u∗

0(k) − 𝛼
𝜕F̃1(k)

𝜕u∗

0 (k)

= u0(k) + Δ0(k) − 𝛼
𝜕F̃1(k)

𝜕u∗

0 (k)

⇒ u∗

0
(k + 1) = u

0
(k) + Δ

0
(k)

− �
�

�u∗

0

((u∗

0
(k) + u

1
(k)o

1
− yk)

2

+
1

6

(
�
0
(k) + Δ�

0
(k) + �

1
(k)o

1
− sk

)2
)

= u
0
(k) + Δ

0
(k) − 2�

(
u∗

0
(k) + u

1
(k)o

1
− yk

)

lim
Δ

0
→0

u
*

0
(k + 1) = lim

Δ
0
→0

u
0
(k)

+ Δ
0
(k) − 2� lim

Δ
0
→0

(
u∗

0
(k) + u

1
(k)o

1
− yk

)

= u
0
(k) − 2�(u

0
(k) + u

1
(k)o

1
− yk)

= u
0
(k + 1)

⇒ lim
Δ0→0u

∗

0(k + 1) = u0(k + 1)

u*0(k + 1) − u0(k + 1)
Δ0→0

→ 0

Net = (5.60, 1.79) + (1.34, 0.17)x

Table 1.  Crisp Input- fuzzy output Data-set from (tanaka, Havashi & Watada, 
1989).

Interval Yi Y
i
= (Yi , ei, ēi)T Xi i

(6.2, 9.8) (8, 1.8) 1 1
(4.2, 8.6) (6.4, 2.2) 2 2
(6.9, 12.1) (9.5, 2.6) 3 3
(10.9, 16.1) (13.5, 2.6) 4 4
(10.6, 15.4) (13, 2.4) 5 5

Table 2. Crisp Input- Z-number output.

 Y
i
= (Yi , ei, ēi)T Xi i

(8, 1.8)(0.495,0.492) 1 1
(6.4, 2.2)(0.365,0.370) 2 2
(9.5, 2.6)(0.444,0.400) 3 3
(13.5, 2.6)(0.527,0.440) 4 4
(13, 2.4)(0.544,0.466) 5 5

Table 3a. Crisp Input- Z-number output data-set.

 [Y
T
]
z
= (YT , ei, ēi)T Xi i

(6.9, 1.9)(0.432, 0.439) 1 1
(8.3, 2.1)(0.4669, 0.449) 2 2
(9.6, 2.3)(0.484, 0.445) 3 3
(10.9, 2.4)(0.5057, 0.448) 4 4
(12.3, 2.6)(0.5090, 0.4334) 5 5

Table 3b. Crisp Input- Z-number output Data-set.

 yik = yih = (yi, ei, ēi)T Xi i
(6.9, 1.9)(0.41, 0.474) 1 1
(8.3, 2.1)(0.45, 0.558) 2 2
(9.6, 2.3)(0.49, 0.624) 3 3
(10.9, 2.4)(0.53, 0.726) 4 4
(12.3, 2.6)(0.57, 0.81) 5 5

Table 3c. Crisp Input- Z-number output Data-set.

 [Y z

i
= (Yi , ei, ēi)T Xi i

(6.6, 2)(0.42, 0.43) 1 1
(8.37, 2.16)(0.44, 0.43) 2 2
(10.08, 2.32)(0.47, 0.43) 3 3
(11.78, 2.48)(0.49, 0.43) 4 4
(13.49, 2.64)(0.52, 0.43) 5 5
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The value of [yTi]
z for density function �e−�X in Table 6a for 

0.2 ≤ � ≤ 0.3 is visible. The optimal weight of the neural net-
work is as follows:

(2b) Using this data, develop an estimated fuzzy regression 
equation [Yi]

z =
(
AY ,BY

)
  by [yT ]

z = (A
�

,B
�

), (two state). Where 
stopping criteria; k = 30 iterations of the learning algorithm. 
The training starts with [w0]

z = (0, 0)(0, 0), [w1]
z = (0, 0)(0, 0). 

The value of [yTi]
z in Table 6b is visible.

The optimal weight of the neural network is as follows:

(2c) Using this data, develop an estimated fuzzy regression equa-
tion [Yi]

z =
(
AY ,BY

)
 by [Neti]

z = [w0]
z + oi1[w1]

z, (three state). 
The training starts with [w0]

z = (0, 0)(0, 0), [w1]
z = (0, 0)(0, 0). 

The value of [Neti]
z in Table 6c is visible. For yik, weights 

obtained can be obtained with the weight FLS procedure 
(Diamond, 1987) comparable.

Net = (1.42, 0.16) + (0.11, 0.02)x

w0A = (1.42, 0.16)(0.21, 0.30),

w1A = (0.11, 0.02)(0.01, 0.02).

To have yik:
Firstorderopt: 4.220008850097656e-05

TT = 0.436802800000002
Where TT is the time to calculate the weights of the neural 

network related to yik. The convergence of the neural network 
weights to yik for the third mode is visible in Figure 1b.

To have yiH:
Firstorderopt: 2.019573003053665e-06

TT = 0.436802799999999
The convergence of the neural network weights to yiH for 

the third mode is visible in Figure 1a.
In this case we have

Example 2. For Z-number variables, consider dependent varia-
ble Y and independent real variable xi, the values given in Table 4 
(information in Table 4 has been adopted from reference 
(Diamond, 1988)).

Suppose that the Z-number value of [Yi]
z for each real 

 observation Xi is in table 5a:
(2a) Using this data, develop an estimated fuzzy regression 

equation [Yi]
z =

(
AY ,BY

)
 by yT =

(
Net, p

(
yT is Net

))
, (first 

state). Where stopping criteria; k=30 iterations of the  learning 
algorithm. The training starts with w0 = (0, 0), w1 = (0, 0). 

F̂ = 9.219000000073168

F̂ = 0.016321933333523

[y]
z
= [A

0
]
z
+ [A

1
]
z
x
1

= (4.95, 1.84)(0.398, 0.427)

+ (1.70, 0.16)(0.025, 0.002)x.

Figure 1a. the Convergence of neural network Weights to the Component likely 
example (1c).

Figure 1b. the Convergence of neural network Weights of Components in such 
restrictions 1c.

Table 4. Crisp Input- fuzzy output Data-set from (Diamond, 1988).

 Y
i
= (Yi , ei, ēi)T Xi i

(4, 0.8) 21 1
(3, 0.3) 15 2
(3.5,0.35) 15 3
(2, 0.4) 4 4
(3, 0.45) 12 5
(3.5, 0.7) 18 6
(2.5, 0.38) 6 7
(2.5, 0.5) 12 8

Table 5a. Crisp Input- Z-number output Data.

 [Y
i
]
z
= (Yi , ei, ēi)T Xi i

(4, 0.8)(0.40, 0.48) 21 1
(3, 0.3)(0.39, 0.50) 15 2
(3.5,0.35)(0.43, 0.55) 15 3
(2, 0.4)(0.25, 0.33) 9 4
(3, 0.45)(0.36, 0.46) 12 5
(3.5, 0.7)(0.37, 0.46) 18 6
(2.5, 0.38)(0.32, 0.41) 6 7
(2.5, 0.5)(0.29, 0.38) 12 8

Table 5b. Relative performance of yiK and other methods (Cpu time).

Methods SSE CPU time (hh:mm:ss:ss)
tan 3.6542 00:00:00:16
HBS 0.6666 00:00:00:94
pet 1.1978 00:00:00:06
flS 0.0846 00:00:00:19
Sp 14.8243 00:00:00:16
fRBf 0.0046 00:02:06:56
Proposed method 75.34 00:00:00:7

Table 6a. Crisp Input- Z-number output Data-set.

 [Y
Ti
]
z
= (Yi , ei, ēi)T Xi i

(3.73, 0.58)(0.41, 0.51) 21 1
(3.07, 0.46)(0.37, 0.47) 15 2
(3.07, 0.46)(0.37, 0.47) 15 3
(2.41, 0.34)(0.31, 0.41) 9 4
(2.74, 0.4)(0.34, 0.44) 12 5
(3.40, 0.52)(0.39, 0.49) 18 6
(2.08, 0.28)(0.28, 0.38) 6 7
(2.74, 0.4)(0.34, 0.44) 12 8
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The figure 3c presents the convergence of weights for y
−iH

(3b) Using this data, develop an estimated fuzzy regression 
equation [Yi]

z =
(
AY ,BY

)
 by [yT ]

z = (A
�

,B
�

), (two state). Where 
stopping criteria; k=26 iterations of the learning algorithm. The 
training starts with [w0]

z = (0, 0)(0, 0), [w1]
z = (0, 0)(0, 0). The 

value of [yTi]
z in Table 6b is visible. The optimal weight of the 

neural network is as follows:

(3c) Using this data, develop an estimated fuzzy regression equa-
tion [Yi]

z =
(
AY ,BY

)
 by [Neti]

z = [w0]
z + oi1[w1]

z, (three state). 
The training starts with [w0]

z = (0, 0)(0, 0), [w1]
z = (0, 0)(0, 0). 

The value of [Neti]
z in Table 6c is visible.

To have yik:

Firstorderopt: 3.013610839843750e-04,
TT = 0468003000000000
For example, if x = 0.75 the predicted value of yik will be 

yik = (5.97, 0.57), where to (Mohammadi & Taheri, 2004):
yik = (5.70, 0.60).
To have yiH:

w0A = (4.41, 0.16)(0.55, 0.68),

w1A = (1.15, 0.54)(0.10, 0.14).

k = 16,

yik = (0.81, 0.06) + (6.90, 0.69)x,

F̂1 = 2.677921909968936e + 02,

k = 13,

Where stopping criteria; k = 24 iterations of the learning 
algorithm,

Firstorderopt: 2.999007701873779e-04
TT = 0.780004999999999
The average relative performance of the proposed method 

for yiK and the other methods, measured by CPU time, is com-
pared in Table 5b.

To have yiH:
k=21,

Firstorderopt: 6.845151074230671e-05
TT = 0.452402900000003
The convergence of the neural network weights first com-

ponent of the first and second modes can be seen in Figure 
2a. The convergence of the neural network weights third case 
shown in Figure 2b and 2c are visible.

In this case we have

Example 3. For Z-number variables, consider dependent varia-
ble Y and independent real variable xi, the values given in Table 
7 (information in Table 7 has been adopted from reference 
(Mohammadi & Taheri, 2004)) with density function �e−�X 
for 0.1 ≤ � ≤ 0.2.

(3a) Using this data, develop an estimated fuzzy regression 
equation [Yi]

z =
(
AY ,BY

)
 by yT =

(
Net, p

(
yT is Net

))
, (first 

state). Where stopping criteria; k=26 iterations of the  learning 
algorithm. The training starts with w0 = (0, 0), w1 = (0, 0). 
The value of [yTi]

z for density function �e−�X in Table 6a for 
0.2 ≤ � ≤ 0.3 is visible. The optimal weight of the neural net-
work is as follows:

yik = (1.375, 0.147) + (0.120, 0.024)x For FLSnetwork,

yik = (1.374, 0.147) + (0.120, 0.025)xforFLS.

F̂ = 0.672169446070879

F̂ = 0.017117129638503,

[
y
]z
=
[
A

0

]z
+
[
A

1

]z
x
1
= (1.375, 0.147)(0.23, 0.32)

+ (0.120, 0.024)(00.8, 00.8)x

Net = (4.41, 0.16) + (1.15, 0.54)x.

Table 6b. Crisp Input- Z-number output Data-set.

 [Y
Ti
]
z
= (Yi , ei, ēi)T Xi i

(3.73, 0.58)(0.25, 0.27) 21 1
(3.07, 0.46)(0.24, 0.25) 15 2
(3.07, 0.46)(0.24, 0.25) 15 3
(2.41, 0.34)(0.22, 0.23) 9 4
(2.74, 0.4)(0.23, 0.24) 12 5
(3.40, 0.52)(0.24, 0.26) 18 6
(2.08, 0.28)(0.222, 0.228) 6 7
(2.74, 0.4)(0.23, 0.24) 12 8

Table 6c. Crisp Input- Z-number output Data-set.

 [Y
Ti
]
z
= (Yi , ei, ēi)T Xi i

(3.9, 0.6)(0.39, 0.48) 21 1
(3.1, 0.5)(0.35, 0.44) 15 2
(3.1, 0.5)(0.35, 0.44) 15 3
(2.4, 0.3)(0.30, 0.39) 9 4
(2.8, 0.4)(0.32, 0.41) 12 5
(3.5, 0.5)(0.37, 0.46) 18 6
(2, 0.2)(0.27, 0.36) 6 7
(2.8, 0.4)(0.32, 0.41) 12 8

Figure 2a. the Convergence of neural network Weights first Component of the 
first and Second modes.

Figure 2b.  the first Component Weights neural network Convergence Znn 
example 2.
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Firstorderopt: 8.568167686462402e-06,
TT = 0.452402900000003

The convergence of the weights for yik in Figure 3b is visible.

9. Conclusion

In this article, we introduced a Mathematical model from 
regression with Z-number coefficients and a generalized neu-
ral system based on the given number. Then, we calculated 
the ZLR regression coefficients using the artificial neural net-
work, the optimization technique and the least square error 
method based on the distance between two fuzzy numbers. It 
was shown that the calculation of regression coefficients (ZLR) 
is dependent on the coefficients of the neural network. The 
error of the method was studied and it was shown that the 
method error is of Z-number type. It was proven that the neural 
network weight section and regression co-efficient restriction 
section (ZLR) are convergent. Also, the stability of the neural 
network instruction algorithm in calculating optimal weights 
was proven and it was shown by examples that the proposed 
regression (ZLR) is a powerful method in solving complex 
problems.

Disclosure Statement
No potential conflict of interest was reported by the authors.

yiH = (0.36, 0.51), for x = 0.75.

yiH = (0.298, 0.511) + (0.088, 0.001)x,

F̂1 = 0.509280169810204,

Figure 2c. the Second Component Weights neural network Convergence Znn 
example 2.

Figure 3a. the Convergence of neural network Weights first Case example 3.

Figure 3b. Convergence Weights for yik third example 3.

Table 7. Crisp Input- Z-number output Data-set.

i  xi  [yi]
z
= (yki , si)(yHi , ci)

1 0.78 (3.08, 0.31)(0.23, 0.39)
2 0.64 (2.86, 0.29)(0.22, 0.37)
3 0.62 (6.25, 0.63)(0.40, 0.59)
4 0.49 (4.11, 0.41)(0.29, 0.48)
5 1.10 (1.04, 0.10)(0.08, 0.16)
6 0.61 (2.71, 0.27)(0.21, 0.36)
7 0.74 (4.45, 0.45)(0.31, 0.50)
8 1.15 (6.92, 0.69)(0.43, 0.62)
9 1.08 (7.41, 0.74)(0.45, 0.63)
10 0.38 (9.08, 0.91)(0.50, 0.67)
11 0.61 (6.56, 0.66)(0.41, 0.60)
12 0.98 (5.05, 0.51)(0.34, 0.53)
13 0.71 (5.23, 0.52)(0.35, 0.54)
14 0.51 (5.16, 0.52) (0.35, 0.54)
15 0.77 (11.10, 1.11)(0.56, 0.69)
16 0.99 (4.47, 0.45)(0.31, 0.50)
17 3.56 (28.84, 2.88) (0.69, 0.55)
18 0.86 (9.43, 0.94) (0.52, 0.67)
19 0.61 (4.50, 0.45)(0.31, 0.50)
20 0.64 (9.30, 0.94)(0.51, 0.67)
21 0.71 (9.48, 0.95)(0.52, 0.67)
22 0.61 (3.65, 0.37)(0.26, 0.44)
23 0.63 (10.14, 1.01)(0.54, 0.68)
24 1.13 (3, 0.3)(0.22, 0.39)

Figure 3c. Convergence Weights for yiH third example 3.
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