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ABSTRACT
Commonsense reasoning plays a pivotal role in the development of intelligent systems for decision-
making, system analysis, control and other applications. As Prof. L. Zadeh mentions a kernel of the 
theory of commonsense is the concept of usuality. Zadeh suggested main principles of the theory of 
usuality, unfortunately up to present day; a fundamental and systemic approach to reasoning with 
usual knowledge is not developed.
In this study, we develop a new approach to calculus of usual numbers (U-numbers). We consider a 
U-number as a Z-number, where the second component is “usually”. Validity of the suggested approach 
is verified by examples.

1. Introduction

The theory of usuality should be considered as a basis of deci-
sion analysis, system analysis and control in problems where 
commonsense knowledge plays an important role. As a rule, 
this knowledge is imprecise, incomplete, and partially reliable. 
The concept of usuality is naturally characterized by bimodal 
information. Formally, it may be handled by possibilistic- 
probabilistic constraints like

Where X is the constrained variable and A is a constraining 
relation. The usuality constraint presupposes that X is a random 
variable and the probability that X isu A is “usually”:

Prob{X is A} ; is usually, or Prob{X is A} is B
Where A is a usual value of X, e.g. A is “small”; B is modality 

of a generalized constraint, for example, “almost always”.
In the proposed study, usuality is considered as a special 

case of a Z-number valued information, where the second com-
ponent is “usually”, and is referred to as U-number. Humans 
mainly use U-numbers in everyday commonsense reasoning. 
Thus, calculus of U-numbers should be rather approximate 
than exact.

In Zadeh (1983, 1984a, b) Zadeh has suggested main prin-
ciples of the theory of usuality. In Zadeh (1985) the author 
shows that the concept of dispositionality is closely related to 
the notion of usuality. Theory of usuality is defined as a tool 
for computational framework for commonsense reasoning.

In Zadeh (1996) the author outlines a theory of usuality, 
which is on representing the meaning of usuality-qualified 
propositions. A system of inference for usuality-qualified 
propositions is developed. Yager (1986) introduces a formal 
mechanism for representing and manipulating of usual values. 
This mechanism is based on a combination of the linguistic 
variables and Shafer evidential structures (Shafer, 1976). In 
Whalen & Schott (1992) the authors analyze the concept usu-
ality, regularity and dispositional reasoning from the point 

of view of approximate reasoning. Schwartz (2010) discusses 
fuzzy quantifiers, fuzzy usuality modifiers and fuzzy likelihood 
modifiers. He analyzes these notions with unified semantics.

The main conclusion stemming from the review of the works 
mentioned above is that research in the scope of U-number 
calculus in existing literature is very scarce. In this study we 
develop a new approach to calculus of U-numbers.

The rest of the paper is structured as follows: In Section 2 we 
present some prerequisite material to be used in the sequel. In 
Section 3 we present some arithmetic and algebraic operations 
on U-numbers. In Section 4 we consider approximate reason-
ing with usual information. In Section 5 we provide several 
examples to illustrate the application of the proposed approach 
and provide comparative analysis. Section 6 concludes.

2. Preliminaries

Definition 1. Arithmetic operations over random variables 
(Charles, Grinstead, & Snell, 1997; Springer, 1979; Williamson 
& Downs, 1990). Let X1 and X2 be two independent continuous 
random variables with pdfs p1 and p2. A pdf p12 of X12 = X1 * X2, 
where *  is a two-place operation, is referred to as a convolution 
of p1 and p2, and is defined as p12(x) = ∬

�

p1(x1)p2(x2)dx1dx2, 
� = {(x1, x2)|x =x1 ∗ x2}.

Let X1 and X2 be two independent discrete random variables 
with the corresponding outcome spaces X1 = { x11...x1i...x1n1

} 
and X2 = { x21...x2i...x2n2

} and the corresponding discrete prob-
ability distributions p1 and p2. The probability distribution of 
X1 * X2, * ∊ { + , - , ⋅ , /}, comes as the convolution p12 = p1 ∘ p2 
of p1 and p2, which is defined as follows:

Definition 2. Probability measure of a fuzzy number 
(Pedrycz & Gomide, 2007; Zadeh, 1968). Let X be a continu-
ous random variable with pdf p. Let A be a continuous fuzzy 

X is u A or Usuality(r = u),

p12(x) =
∑

x=x1∗x2

p1(x1)p2(x2), x ∈ { x1 ∗ x2
||x1 ∈ X1, x2 ∈ X2 }
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number describing a possibilistic restriction on values of X. A 
probability measure of A denoted P(A) is defined as

For a discrete fuzzy number and a discrete probability distri-
bution, the probability measure is defined as

3. A general approach to computation with 
U-numbers

Let X be a random variable and A be a fuzzy number playing 
a role of fuzzy constraints on values that the random variable 
may take; X is A. The definition of a usual value of X may be 
expressed in terms of the probability distribution of X as fol-
lows (Zadeh, 1996). If p(xi) is the probability of X taking xi as 
its value, then
 

Or
 

A usual number describing, “usually, temperature in this 
city is medium” is shown Fig. 1.

As it was mentioned above, in Zadeh (1996), the author 
provided an outline for the theory of usuality, however, this 
topic requires further investigation. Needed is a more general 
approach for other usuality quantifiers. In this paper “usuality” 
will be a composite term characterized by fuzzy quantities as 
always, usually, frequently / often, occasionally, seldom, almost 
never/rarely, never. The codebook for “usuality” is shown in 
Fig. 2.

In Zadeh (1996), the author raised the following questions; 
“How can the usual values of two or more variables be com-
bined? More concretely, if X12 = X1 + X2, and the usual values 
of X1 andX2 are given, what will be the usual value of X12?”, 
“How can we construct an inference system for reasoning with 
usuality-qualified propositions”?

Computation with U-numbers is related to usuality con-
straint propagation. Assume that X is a random variable tak-
ing values x1, x2 ... and p is probability distribution of X. The 
constraint propagation is as follows:

P(A) = �

�A(x)p(x)dx

P(A) =

n∑

i=1

�A(xi)p(xi) = �A(x1)p(x1)

+ �A(x2)p(x2) +⋯ + �A(xn)p(xn)

(1)Usually(X is A) = �usually

(∑
i
p(xi)�A

(
xi
))

(2)U = (X ,A,B) = �B

(∑
i
p(xi)�A

(
xi
))

X isu A

Prob{X is B} is C
,

μC(y) = sup p(x)(μusually( ∫ RμA(x)p(x)dx)),
Subject to

y = ∫ RμB(x)p(x)dx.

First, consider computation with U-numbers according to 
basic two-place arithmetic operations + , - , ⋅,  /.

Let U1 = (A1, B1) and U2 = (A2, B2) be U-numbers (B1 and 
B2 are fuzzy terms of the usuality codebook) describing val-
ues of random variables X1 and X2. Assume that it is needed 
to compute the result U12 = (A12, B12) of a two-place opera-
tion* ∊ { +, - , ⋅,  /}: U12 = U1 * U2.

Consider the case of discretized version of components of 
usual numbers. The first stage is the computation of two-place 
operations * of fuzzy numbers A1 and A2 on the basis of fuzzy 
arithmetic. For example, for sum U12 = U1 + U2 we have to 
calculate A12 = A1 + A2:

The second stage involves step-by-step construction of 
B12 and is related to propagation of probabilistic restrictions. 
We realize that in U-numbers U1 = (A1, B1) and U2 = (A2, B2), 
the “true” probability distributions p1 and p2 are not exactly 
known. In contrast, the information available is represented 
by the fuzzy restrictions:

Which are represented in terms of the membership functions as

Given these fuzzy restrictions, extract probability distribu-
tions pj,  j = 1, 2 by solving the following goal linear program-
ming problem:
 

Subject to
 

X isu A → Prob{X is A} is usually → �usually

(

∫R �A(x)p(x)dx

)
,

�A1+A2
(x) = sup

x1

(min{�A1
(x1),�A2

(x − x1)}).

n1∑

k=1

�A1
(x1k)p1(x1k) is B1,

n2∑

k=1

�A2
(x2k)p2(x2k) is B2,

�p
1

(p
1
) = �B

1

(
n
1∑

k=1

�A
1

(x
1k)p1(x1k)

)
,�p

2

(p
2
)

= �B
2

(
n
2∑

k=1

�A
2

(x
2k)p2(x2k)

)
.

(3)c1v
l
1 + c2v

l
2 +⋯ + cnv

l
n → bjl

(4)
vl1 + vl2 +⋯ + vln = 1

vl1, v
l
2...v

l
n ≥ 0

}

P

Usually

1

B

u

Medium

1

.temp

20 22 24 1/3 2/3 1

Figure 1. An example of a u-number.
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Where ck = �Aj
(xjk) and vk = pj(xjk), k = 1⋯ ..nj, k = 1 .. nj. As 

a result, pjl(xjk), k = 1 … nj is found and, therefore, distribution 
pjl is obtained. Thus, to construct the distributions pjl, we need 
to solve m simple problems (3)-(4).

Distributions pjl(xjk), k = 1 … nj naturally induce proba-
bilistic uncertainty over the result X12 = X1 * X2. This is a crit-
ical point of computation of U-numbers, at which the issue 
of dependence between X1 and X2 should be considered. For 
simplicity, here we consider the case of independence between 
X1 and X2. This implies that given a pair p1l1 , p2l2, the convo-
lution p12s = p1l1◦p2l2 , s = 1...m2 is to be computed as on the 
basis of Definition 1.

For the case of dependence between X1 and X2, p12s should 
be computed as a joint probability distribution by taking into 
account dependence between random variables (Williamson, 
1989; Williamson & Downs, 1990; Wise & Henrion, 1986).

Given p12s, the value of probability measure of A12, 
P(A12) =

∑n

k=1 �A12
(x12k)p12(x12k) can be computed. However, 

the “true” p12s is not exactly known as the “true” p1l1 , p2l2 are 
described by fuzzy restrictions. These fuzzy restrictions induce 
the fuzzy set of convolutions p12s, s = 1...m2 with the member-
ship function defined as

 

Subject to
 

Where ∧  is min operation. The min operation is the simplest 
t-norm operation. In general, any t-norm operation can be 
used, but the use of a t-norm operation is context-dependent. 
For example, the use of the product t-norm (or another t-norm, 
which provides a smaller value than the min does) would pro-
duce a more strict constraint �p12

. In turn, this will result in a 
more strict constraint �B12

 (see below). In other words, this may 
reduce an entropy of resulted B12 and help to better interpret 
the result (one will have a more concentrated B12). Indeed, as 
fuzzy restrictions over p1l1 , p2l2 are of a subjective basis, it may 
be helpful to reduce an effect of small membership degrees �p1

 
and �p2

 on �p12
. This can be done by using the product t-norm. 

Thus, the use of some t-norm operations may improve inter-
pretability of results without sufficient loss of information.

As a result, fuzziness of information on p12s described by Z12 
induces fuzziness of the value of the probability measure P(A12) 
in a form of a fuzzy number B12. The membership function of 
B12 is defined as

 

(5)�p12
(p12s) = max

p12s=p1l1
◦p2l2

[�p1
(p1l1

) ∧ �p2
(p2l2

)]

(6)�pj
(pjlj ) = �Bj

( nj∑

k=1

�Aj
(xjk)pjlj (xjk)

)
, j = 1, 2

(7)�B12
(b12s) = max(�p12

(p12s))

Subject to
 

As a result, U12 = U1 * U2 is obtained as U12 = (A12, B12).
Let us now consider one-place algebraic operations as a 

square and a square root of U-numbers.
Construction of U = U 2

1 is as follows: A = A2
1 is determined 

as

 

The probability distribution p is determined given p1 as 
(Aliev, Huseynov, Aliyev, & Alizadeh, 2015),
 

Next by noting that a “true” p1 is not known, one has to con-
sider fuzzy constraint �p1

 to be constructed by solving a certain 
LP problem (3)-(4).The fuzzy set of probability distributions p1,l 
with membership function �p1

 naturally induces the fuzzy set 
of probability distributions pl with the membership function 
μp(pl) defined as
�p(pl) = �p1

(p1l), l = 1\cdotsm
Where p is determined from p1 based on (11).

The probability measure P(A) given p is produced on basis 
of Definition 2. Finally, given a fuzzy restriction on p described 
by μp, we extend P(A) to a fuzzy set B by solving a problem 
analogous to (7)-(8). As a result, U2 is obtained on the basis 
of the extension principle for computation with U-numbers 
as U2 = (A, B). Let us mention that for X1 ≥ 0, it is not needed 
to compute B, because it is the same as B1 (Aliev, Alizadeh, & 
Huseynov, 2015; Aliev et al., 2015). Computation of U = Un

1 , 
where n is any natural number, is carried out in an analogous 
fashion.

Let us consider computation of U =
√
U1 based on 

the extension principle for computation with U-numbers. 
A =

√
A1 is determined as follows:

 

 

The probability distribution p is determined given as (Aliev 
et al., 2015).
 

Then we compute μp by solving problems (3)-(4) and recall that

Where p is determined from p1 on the basis of (14). Next 
we compute probability measure P(A). Finally, given the 
membership function μp, we construct a fuzzy set B by solv-
ing a problem analogous to (7)-(8). Let us mention that for 
the square root of a U-number, it is not needed to carry 
out computation of B, because it is the same as B1B1 (Aliev  
et al., 2015).

(8)b12s =
∑

k

�A12
(xk)p12s(xk)

(9)A2
1 = ∪

�∈[0,1]
�[A2

1]
� ,

(10)[A2
1]

� = {x21
||x1 ∈ A�

1}.

(11)p(x) =
1

2
√
x

�
p1(

√
x) + p1(−

√
x)
�
, x ≥ 0.

(12)
√
A = ∪

�∈[0,1]
�[

√
A1]

� ,

(13)[
√
A1]

� = {
√
x1
��x1 ∈ A�

1}.

(14)p(x) = 2xp1(x
2).

�p(pl) = �p1
(p1l),

0          0.1              0.5                0.9     1

1

B
Usually

Almost
always AlwaysOftenSeldomRarelyNever

P

Figure 2. the Codebook of the fuzzy Quantifiers of usuality.
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logic (Aliev, 1994; Aliev & Tserkovny, 2011; Jamshidi, 1997) 
and provides many successful applications in various fields 
(Aliev, 2013; Aliev & Memmedova, 2015).

The problem of approximate reasoning with usual informa-
tion is stated as follows:

Given the following U-rules:
If X1 is UX1,1

= (AX1,1
,BX1,1

) and… and Xm is 
UXm ,1

= (AXm ,1
,BXm ,1

) then Y is UY = (AY, 1, BY, 1)
If X1 is UX1,2

= (AX1,2
,BX1,2

) and… and Xm is 
UXm ,2

= (AXm ,2
,BXm ,2

) then Y is UY = (AY, 2, BY, 2)
···
If X1 is UX1,n

= (AX1,n
,BX1,n

) and… and Xm is 
UXm ,n

= (AXm ,n
,BXm ,n

) then Y is UY = (AY, n, BY, n)
And a current observation
X1 isUX1

= (A�

X1
,B�

X1
) and… and Xm is U �

Xm
= (A�

Xm
,B�

Xm
),

Find the U-value of Y.
The idea underlying the suggested interpolation approach is 

that the resulting output is computed as a convex combination 
of consequent parts. The coefficients of linear interpolation 
are determined on the basis of the similarity between a cur-
rent input and antecedent parts (Kóczy & Hirota, 1991). This 
implies that the resulting output U ′

Y is computed as

4. Approximate reasoning with usual information

The approximate reasoning can be considered as a formal model 
of commonsense knowledge-based reasoning with imprecise 
and uncertain information (Aliev, Alizadeh, & Guirimov, 
2010; Aliev, Mamedova, & Aliev, 1993; Aliev, Pedrycz, &  
Huseynov, 2012). Approximate reasoning is based on fuzzy 

(a) A1 (solid line), A2 (dashed line) (b) B

0

1

0 5 10 15
0

1

0 0.5 1

Figure 3. u-numbers U1=(A1, B1) and U2=(A2, B2).

(a) A12 (b) B12 (approximated by trapezoidal fuzzy 
number)

0

1

0 5 10 15 20 25
0

1

0 0.2 0.4 0.6 0.8 1

Figure 4. u-number U12=(A12, B12).

(a) A12 (b) B12 (approximated by trapezoidal fuzzy 
number)
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Figure 5. u-number U12.

0

1

0 0.2 0.4 0.6 0.8 1

Figure 6.  the given Value B (Dotted line), and the Computed Value B12: B12 
Computed by using the proposed Approach (Dashed line) and B12 Computed by 
using the Yager ’s Approach (Solid line).
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Example 2. Multiplication of U-numbers. Let U-numbers 
U1=(A1, B1) and U2=(A2, B2) be given (Figure 7.)

The result of computation of multiplication U12=U1*U2 
obtained by using the proposed approach (Section 3) is shown 
in Figure 8.

6. Conclusion

Prof. Zadeh suggested a theory of usuality, which plays a central 
role in common sense reasoning. However, this topic requires 
further investigation. It is needed to develop a more general 
approach for computation and approximate reasoning with 
usual information. Up to present day, no systematic approach 
is suggested to solve such problems of the usuality theory as 
a combination of usual values of two and more variables and 
reasoning with usuality-based IF-Then rules. In this study, 
we suggest a new approach to computation with U-numbers 
for modeling commonsense reasoning on the basis of usual 
information. The suggested basics of U-number calculus are 
illustrated by numerical examples. A comparative analysis 
shows effectiveness of the suggested approach as compared 
to existing works.
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Where UY, j is the U-valued consequent of the j-th rule, wj =
�j
n∑

k=1

�k

, j = 1...n; k = 1...n are coefficients of linear interpolation, n is 
the number of U-rules, ρj is defined as follows:
 

Where S is the similarity between current i-th U-valued input 
and the i-th U-valued antecedent of the j-th rule. Thus, ρj com-
putes the similarity between a current input vector and a vector 
of antecedents of j-th rule.

5. Examples and comparative analysis

Example 1. Addition of U-numbers. Let U-numbers U1 = (A1, B1) 
and U2 = (A2, B2) be given, where B1 = B2 = B (Figure 3).

The U-number U12=U1+U2 obtained by using the proposed 
approach is shown in Figure 4.

If we apply the bandwidth-based computation approach 
(Zadeh, 2011) as a special case of the proposed theory, the result 
is defined as U12≈(A1+A2, B

2). This result is shown in Figure 5.
For comparison, the given value of reliability, B, and the 

results of computation of B12 (approximated by trapezoidal 
fuzzy number) are shown in Figure 6.

This example shows that Yager’s approach to computation 
with usual numbers is a special case of the proposed theory, 
and is valid if 1st parts of U-numbers are non-fuzzy, particu-
larly, intervals.

 (15)U �

Y =

n∑

j=1

wjUY ,j =

n∑

j=1

wj(AY ,j,BY ,j),

(16)�j = min
i=1...m

S(U �

Xi
,UXi ,j

),

(a) A1 (solid line), A2 (dashed line) (b) B1 (solid line), B 2 (dashed line)
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Figure 7. u-numbers U1=(A1, B1) and U2=(A2, B2).

(a) A12 (approximated to triangular fuzzy 
number)

(b) B12
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Figure 8. u-number U12=(A12, B12).
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