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ABSTRACT
Many practical applications, under the definitive evolutionary state of the nature, the consequences of 
the decisions, mental states of a decision maker are required. Thus, the need is for a new concept in the 
analysis of decision-making. Zadeh has introduced this concept as the Z-number. Because the concept 
is relatively new, Z-number in fuzzy sets, hence, its basic theoretical aspects are yet undetermined. This 
paper presents a method for ranking Z-numbers. Hence, we propose a new method for ranking fuzzy 
numbers based on that of hyperbolic tangent function and convex combination. Then, using the same 
technique we propose a method for ranking Z-numbers.

1.  Introduction

During recent decades, the classic fuzzy is set heavily in distribu-
tions such as; fuzzy control, fuzzy decision, optimization, fore-
casting and etc. (Abbasbandy & Hajjari, 2011; Allahviranloo & 
Saneifard, 2012; Deng & Chan, 2011; Deng, Chan, Wu, & Wang, 
2011; Deng, Chen, Zhang, & Mahadevan, 2011; Deng, Jiang, & 
Sadiq, 2011; Deng & Liu, 2005a; Deng & Liu, 2005b; Deng, Zhu, 
& Liu, 2006; Dubois & Prade, 1983; Wang, Liu, et al., 2009; Yager, 
1981). But the challenge we face here is that the reliability of the 
data provided is not well taking into consideration compared to 
classical fuzzy number, Z-number has more ability to represent 
human perceptions (Zadeh, 2011). A few ranking Z-number 
techniques are introduced in (Alive, Alizadeh, & Huseynov, 
2015; Alive, Huseynov, Alive, et al 2015; Alive, Huseynov, & 
Serdaroglu, 2016; Bakar & Gegov, 2015; Jiang, Xie, Luo, & Tang, 
2017; Kang, Wei, Li, & Deng, 2012a; Kang, Wei, Li, & Deng, 
2012b; Mohamad, Shaharani, & Kamis, 2014). In this work, we 
develop a new method for ranking fuzzy numbers. By applying 
the method and the one described by Kang (Kang, Wei, Li and 
Deng, 2012b) proposes a method for ranking Z-numbers. It is 
defined in the base. Section 2, includes a new approach based on 
hyperbolic tangent function for ranking fuzzy numbers is devel-
oped. In Section 3, a multilayer method for ranking Z-numbers 
is generated. Then, the numerical outcomes are presented in 
Section 4. Finally in Section 5, conclusions will be expressed.

Definition 1. A fuzzy set is said to be convex if for 
x, y ∈ X , 𝜆 ∈ [0, 1],𝜇Ã

(
𝜆x + (1 − 𝜆)y

)
≥ min

[
𝜇

Ã
(x),𝜇

Ã
(y)

]

Definition 2. A fuzzy number Ã = (a, b, c, d; 𝜔) is described 
as any fuzzy subset of the real line R with membership function 
R, which processes the following properties:

(a) � 𝜇Ã is a continuous mapping from R to the closed inter-
val [0, w], 0 ≤  w ≤  1.

(b) � 𝜇Ã = 0, for all x ∈ (−∞, a].

(c) � 𝜇Ã, is strictly increasing on [a, b].
(d) � 𝜇Ã = 𝜔, for all x ∈ [b, c], where ω is constant and 

� ∈ (0, 1].

(e) � 𝜇Ã, is strictly increasing on [c, d].
(f) � 𝜇Ã = 0, for all  x ∈ [d,∞), where  a, b, c, d  are  real  numbers.  

We may let a = −∞, or a = b, or c = d, or d = +∞.

If ω = 1, in (d) Ã is a normal fuzzy number, and if 0 < ω < 1, 
in (d)) Ã is a non-normal fuzzy number. The image (opposite) 
of Ã = (a, b, c, d; 𝜔) can be given by −Ã = (−d,−c,−b,−a; 𝜔).

Definition 3. (Hyperbolic Tangent) This function follows form 
h(n) =

e
n−e−n

e
n+e−n

. The output of this function values ​​in the range 
[−1, 1]. And To express very well and very badly used. As it 
is in Figure 1.

2.  Introducing an Algorithm for Ranking Fuzzy 
Numbers

We use the technique for ranking fuzzy numbers mean, and 
standard deviation. We use a combination of convex and the 
hyperbolic tangent function.

Fuzzy numbers ranking algorithm is as follows:

Step one: If Ã = (ai1, ai2, ai3, ai4; 𝜔Ãj
) Then 

Ã∗
j =

(
a∗i1, a

∗
i2, a

∗
i3, a

∗
i4; 𝜔Ãj

)
 is a normal fuzzy number,

Where 𝜔Ãj
∈ [0, 1], a∗ij =

aij

C
, ∀j = 1, 2, 3, 4, ∀i = 1, ..., n. 

And c = max
i,j

(
a
ij
, 1

)
 represents the maximum value of the 

universe of discourse.

Step two: Calculating xÃ∗
j
, the defuzzified value for each stand-

ardized generalized fuzzy number, xÃ∗
j
, using (by combining the 

definition of the mean value and convex combination. Convex 
combination can be considered for each case. We explain the 
procedure for a case (Other states are also similar)).
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Where δ1 = δ2 = 2,  xÃ∗
i
∈ [−1, 1], i = 1,… , n.

Step three: Calculate the spread STDÃ∗
j
 (A combination of con-

vex combination definition and standard deviation)
  

Step four: Calculate the fuzzy score (Ã∗
j ) of each standardized 

generalized fuzzy number, Ã∗
j  denoted as

    

where
     

where scor(Ã∗
i
) ∈ (−1, 1), i = 1, ... n. The larger value of (Ã∗

i ),  
the higher the preference of Ã∗

i .

Property 1. For Ã∗
i = (0, 0, 0, 0, 0) clear that xÃ∗

i
= 0 so 

scor(Ã∗
i ) = 0.

Property 2. For Ã∗
i = (1, 1, 1, 1, 1), We have,

xÃ∗
i
= 1,

STD(Ã∗
i ) = 0.

So scor(Ã∗
i ) = 0.76.

Property 3. For Ã∗
i = (−1,−1,−1,−1, 1), we have

xÃ∗
i
= −1,

STD(Ã∗
i ) = 0,

d = (−1 × 1) + 0.

So scor(Ã∗
i ) =

e(−1)−e−(−1)

e(−1)+e−(−1)
= −0.76

Property 4. For Ã∗
i = (a, a, a, a, 1), we have

xÃ∗
i
= a,

STD(Ã∗
i ) = 0 and

d = a2.
So scor(Ã∗

i ) =
e(a

2
)−e−(a

2
)

e(a
2
)+e−(a

2
)
.

(2.1)

xÃ∗
i

=
𝜆
(
a∗i2 + a∗i3

)
+ (1 − 𝜆)(a∗i1 + a∗i4)

𝜆𝛿
1
+ (1 − 𝜆)𝛿

2

(2.2)STDÃ∗
i
=

√√√√√√
𝜆

((
a∗i2 − xÃ∗

i

)2

+
(
a∗i3 − xÃ∗

i

)2
)
+ (1 − 𝜆)(

(
a∗i1 − xÃ∗

i

)2

+
(
a∗i4 − xÃ∗

i

)2

)

(
𝜆𝛿

1
+ (1 − 𝜆)𝛿

2

)
− 1

(2.3)scor
(
Ã∗

i

)
=

ed − e−d

ed + e−d

(2.4)d =
(
x
Ã

∗
i

× 𝜔
Ã

i

)
+ STD

Ã
∗
i

3.  Ranking Z-numbers

Zadeh (Zadeh, 2011) proposed a subject called Z-number that 
has two components; Z = (Ã, B̃). The first component, Ã, is 
a restriction (constraint) on the values, which a real-valued 
uncertain variable, X, is allowed to take. The second compo-
nent, B̃, is a measure of reliability (certainty) of the first com-
ponent. Typically, Ã and B̃ are described in a natural language.

A Z–number is represented by the following membership 
functions given by

And

where Ã = (a
1
, a

2
, a

3
, a

4
;𝜔Ã) and B̃ = (b

1
, b

2
, b

3
, b

4
;𝜔B̃). For 

Z = (Ã, B̃),
(I) Convert the B̃ (reliability) into crisp number by using
  

where ∫ denotes an algebraic integration.
(II) Add the weight of the B̃ to the Ã (restriction). The 

weighted Z-number is denoted as
  

Note that, α represents the weight of the reliability component 
of Z-number. In this work, we examine the case:

• � Ordering of Z-numbers
• � Ordering Batch of Z-numbers
Which are described below.

3.1.  Ordering of Z-numbers

Z-numbers ranking algorithm is as follows:

Step one: For Z = (Ã, B̃), Calculate α using equation (3.1).

Step two: For Zi = (Ãi, B̃i), If Ãi = (ai1, ai2, ai3, ai4; 𝜔Ãi
) is con-

verted into a

𝜇
Ã
(x) =

⎧
⎪⎪⎨⎪⎪⎩

x−a
1

a
2
−a

1

if a
1
≤ x ≤ a

2

𝜔
Ã

if a
2
≤ x ≤ a

3
a
4
−x

a
4
−a

3

if a
3
≤ x ≤ a

4

0 Otherwise

𝜇
B̃
(x) =

⎧
⎪⎪⎨⎪⎪⎩

x−b
1

b
2
−b

1

if b
1
≤ x ≤ b

2

𝜔
B̃

if b
2
≤ x ≤ b

3
b
4
−x

b
4
−b

3

if b
3
≤ x ≤ b

4

0 Otherwise

(3.1)𝛼 =
∫X x𝜇B̃ddx

∫X 𝜇B̃dx

(3.2)Z̃𝛼 =
{
(x,𝜇Ã𝛼 (x))|𝜇Ã𝛼 = 𝛼𝜇Ã(x), x ∈ [0, 1]

}

Figure 1. Shows a Hyperbolic Tangent Function.

Table 1. The Calculated Results by the Existing Methods for Example 1.

Methods  Z1  Z2

Mohamad’s method (2014) 0.0774 0.0774
Bakar’s method (2015) 0.0288 0.0288
Kang’s method (2012) 0.3000 0.3000
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standardized fuzzy number, Ã∗
i = (a∗i1, a

∗
i2, a

∗
i3, a

∗
i4;𝜔Ãi

), where 
a∗ij =

aij

C
, ∀j = 1, 2, 3, 4, ∀i = 1, ..., n.

𝜔Ãi
∈ [0, 1] and c = max

i,j

(
aij, 1

)
 represents the maximum 

value of the universe of discourse.

Step three: Calculating xÃi
 by (2.1). (Convex combination can 

be considered for each case. We explain the procedure for a 
case (Other states are also similar)).

Step four: Calculate the spread STDÃi
 by (2.2).

Step five: Calculate score 
(
Zi

)
′ 

where

  

where scor
(
Zi

)
∈ (−1, 1), i = 1,… , n. The larger value of 

scor
(
Zi

)
, the higher the preference of.

Property 1. Let Zi = (Ãi, B̃i), if Ãi = (0, 0, 0, 0, 0) and 
B̃i = (0, 0, 0, 0, 0), then scor

(
Zi

)
= 0.

Proof: Clear, scor(Ãi) = 0 and scor(B̃i) = 0. Obviously, α = 0, 
so scor

(
Zi

)
= 0.

Property 2. Let Zi = (Ãi, B̃i), if Ãi = (a, a, a, a, 1) and 
B̃i = (b, b, b, b, 1), then

Proof: Using the formula (2.3),

and According to (2.1) Obviously, xÃ∗
i
= a and |�| = |a| 

is the center of gravity B̃i. So STDÃi
= 0 and eventually 

scor
(
Zi

)
=

e(a
2
)−e−(a

2
)

e(a
2)+e−(a

2)
.

3.2  Ordering Batch of Z-numbers

If we have Zi1,Zi2,… ,Zin, So that 
Zij = (Ãi, B̃i), ∀j = 1, ..., n., i = 1, ...,m.

(3.3)scor
(
Zi

)
=

eD − e−D

eD + e−D

(3.4)D =
(
xÃ∗

i
× |𝛼|

)
+ STDÃ∗

i

∀ b = a: scor(Ãi) = scor(B̃i) = scor
(
Zi

)
.

scor
(
Ãi

)
=

e(a
2) − e−(a

2)

e(a
2) + e−(a

2)
= scor

(
B̃i

)
.

The evaluation of each decision maker is represented as

Zij =

⎡⎢⎢⎣

z
11

⋯ z
1m

⋮ ⋱ ⋮

zn1 ⋯ zmn

⎤⎥⎥⎦

Table 2. The Calculated Results by the Proposed Method for Example 1.

 �
i Convex Combination Trapezoidal Fuzzy Numbers  x

Ã
 STD

Ã
 Scor(Z1)  Scor(Z2)

� = 0  �
(
a
∗
i1
+ a

∗
i2

)
+ (1 − �)

(
a
∗
i3
+ a

∗
i4

)
0.4 0.14 0.2556 0.2556

� = 0.5 0.3 0.2 0.2821 0.2821
� = 1 0.2 0.14 0.1987 0.1987
� = 0  �

(
a∗i1 + a∗i3

)
+ (1 − �)

(
a∗i2 + a∗i4

)
0.4 0.14 0.2556 0.2556

� = 0.5 0.3 0.2 0.2821 0.2821
 � = 1 0.2 0.14 0.1987 0.1987
 � = 0  �

(
a∗i1 + a∗i4

)
+ (1 − �)

(
a∗i2 + a∗i3

)
0.3 0 0.0897 0.0897

� = 0.5 0.3 0.2 0.2821 0.2821
 � = 1 0.3 0.28 0.3564 0.3564
 � = 0  �

(
a∗i2 + a∗i3

)
+ (1 − �)

(
a∗i1 + a∗i4

)
0.3 0.28 0.3564 0.3564

� = 0.5 0.3 0.2 0.2821 0.2821
 � = 1 0.3 0 0.0897 0.0897
 � = 0  �

(
a∗i2 + a∗i4

)
+ (1 − �)

(
a∗i1 + a∗i3

)
0.2 0.31 0.3594 0.3594

� = 0.5 0.3 0.2 0.2821 0.2821
 � = 1 0.4 0.31 0.4105 0.4105
 � = 0  �

(
a∗i3 + a∗i4

)
+ (1 − �)

(
a∗i1 + a∗i2

)
0.4 0.14 0.2556 0.2556

� = 0.5 0.3 0.2 0.2821 0.2821
 � = 1 0.2 0.14 0.1987 0.1987

Table 3. A Comparison of the Proposed Method with the Existing Methods for 
Example 1.

Methods Ranking
Mohamad’s method (2014)  Z1 ≈ Z2
Bakar’s method (2015)  Z1 ≈ Z2
Kang’s method (2012)  Z1 ≈ Z2
The proposed method  Z

1
≈ Z

2

Figure 2a. Ã
i
 of Z-numbers for Example 1.

Figure 2b. B̃
i
 of Z-numbers for Example 1.
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The evaluation of each decision maker needs to be aggregated 
so that a single outcome or result is attained. So the aggregation 
of Zi is given as.
  

Where R̃ = min(B̃
1
, B̃

2
, ..., B̃n), xD̃k

 is the relation (3.9).
Z-numbers ranking algorithm is as follows:

Step one: First, we specify minimum value between B̃
1
, ..., B̃n. 

We define the R̃ = min(B̃
1
, B̃

2
, ..., B̃n). So R̃ = min(r̃

1
, r̃

2
, r̃

3
, r̃

4
).

Step two: Convert the R̃ (reliability) into crisp number by using
 

So,

Step three:
We put
 

(3.5)Z
1
+ Z

2
+…+ Zn =

(
xD̃k

, R̃
)

(3.6)𝛼∗ =
∫ x𝜇R̃dx

∫ 𝜇R̃dx

�∗ =
∫
r
2

r
1

x(x − r
1
)dx + ∫

r
3

r
2

xdx + ∫
r
4

r
3

x
(
r
4
− x

)
dx

∫
r
2

r
1

(x − r
1
)dx + ∫

r
3

r
2

dx + ∫
r
4

r
3

(
r
4
− x

)
dx

(3.7)D̃
k
= (d̃

1k
, d̃

2k
, d̃

3k
, d̃

4k
; 𝛼∗)

Table 4a. The Calculated Results by the Proposed Method for Scor (Z
1
)  Example 2, (\alpha_{1} = 0.75,).

 �
i

Convex Combination Trapezoidal 
Fuzzy Numbers  x

Ã
 STD

Ã
 d =

(
x
A
∗ �

i

)
+ STD  Scor(Z1)

 � = 0  �
(
a
∗
i1
+ a

∗
i2

)
+ (1 − �)

(
a
∗
i3
+ a

∗
i4

)
0.62 0.02 0.49 0.45

 � = 0.5 0.59 0.06 0.50 0.46
 � = 1 0.56 0.05 0.47 0.44
 � = 0  �

(
a∗i1 + a∗i3

)
+ (1 − �)

(
a∗i2 + a∗i4

)
0.62 0.02 0.49 0.45

 � = 0.5 0.59 0.06 0.50 0.46
 � = 1 0.56 0.05 0.47 0.44
 � = 0  �

(
a∗i1 + a∗i4

)
+ (1 − �)

(
a∗i2 + a∗i3

)
0.6 0.2 0.65 0.57

 � = 0.5 0.59 0.06 0.50 0.46
 � = 1 0.58 0.08 0.51 0.47
 � = 0  �

(
a∗i2 + a∗i3

)
+ (1 − �)

(
a∗i1 + a∗i4

)
0.58 0.08 0.51 0.47

 � = 0.5 0.59 0.06 0.50 0.46
 � = 1 0.60 0.00 0.45 0.42
 � = 0  �

(
a∗i2 + a∗i4

)
+ (1 − �)

(
a∗i1 + a∗i3

)
0.56 0.05 0.47 0.44

 � = 0.5 0.59 0.06 0.50 0.46
 � = 1 0.62 0.02 0.49 0.45
 � = 0  �

(
a∗i3 + a∗i4

)
+ (1 − �)

(
a∗i1 + a∗i2

)
0.56 0.05 0.47 0.44

 � = 0.5 0.59 0.06 0.50 0.46
 � = 1 0.62 0.02 0.49 0.45

Table 4b. The Calculated Results by the Proposed Method for Scor (Z
2
) Example 2, (α2 = 0.75).

So ∀�
i
 Result Z

1
> Z

2
.

 �
i

Convex Combination Trapezoidal 
Fuzzy Numbers  x

Ã
 STD

Ã
 d =

(
x
A
∗ �

i

)
+ STD  Scor(Z2)

 � = 0  �
(
a
∗
i1
+ a

∗
i2

)
+ (1 − �)

(
a
∗
i3
+ a

∗
i4

)
0.30 0.14 0.36 0.35

 � = 0.5 0.25 0.23 0.42 0.39
 � = 1 0.20 0.28 0.43 0.40
 � = 0  �

(
a∗i1 + a∗i3

)
+ (1 − �)

(
a∗i2 + a∗i4

)
0.30 0.14 0.36 0.35

 � = 0.5 0.25 0.23 0.42 0.39
 � = 1 0.20 0.28 0.43 0.40
 � = 0  �

(
a∗i1 + a∗i4

)
+ (1 − �)

(
a∗i2 + a∗i3

)
0.04 0 0.03 0.02

 � = 0.5 0.07 0.10 0.16 0.15
 � = 1 0.1 0.14 0.21 0.21
 � = 0  �

(
a∗i2 + a∗i3

)
+ (1 − �)

(
a∗i1 + a∗i4

)
0.1 0.14 0.21 0.21

 � = 0.5 0.07 0.10 0.16 0.15
 � = 1 0.04 0 0.03 0.02
 � = 0  �

(
a∗i2 + a∗i4

)
+ (1 − �)

(
a∗i1 + a∗i3

)
0.02 0.02 0.04 0.04

 � = 0.5 0.07 0.10 0.16 0.15
 � = 1 0.12 0.11 0.20 0.20
 � = 0  �

(
a∗i3 + a∗i4

)
+ (1 − �)

(
a∗i1 + a∗i2

)
0.02 0.02 0.04 0.04

 � = 0.5 0.07 0.10 0.16 0.15
 � = 1 0.12 0.11 0.20 0.20

Table 5. Linguistic Terms for Restrictions and Reliability for Example 3.

Linguistic terms
The Severity of Loss of the 

Sub-component, Wi Reliability, Ri
Absolutely low(AL) (0.0, 0.0,0.12) (0.0, 0.0,0.12)
Very-low(VL) (0.0,0.12,0.24) (0.0,0.12,0.24)
Low(L) (0.12,0.24,0.36) (0.12,0.24,0.36)
Fairly low(FL) (0.24,0.36,0.48) (0.24,0.36,0.48)
Medium(M) (0.36,0.48,0.60) (0.36,0.48,0.60)
Fairly high(FH) (0.48,0.6,0.72) (0.48,0.6,0.72)
High(H) (0.6,0.72,0.84) (0.6,0.72,0.84)
Very high(VH) (0.72,0.84,0.96) (0.72,0.84,0.96)
Absolutely high(AH) (0.84,1.00,1.00) (0.84,1.00,1.00)

Figure 3. Linguistic Terms Representation for Example 3.
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Step Four: Calculating xD̃k
, (Convex combination can be con-

sidered for each case. We explain the procedure for a case 
(Other states are also similar)).

 

(3.9)xD̃k
=

𝜆
(
d
2k + d

3k

)
+ (1 − 𝜆)(d

1k + d
4k)

𝜆𝛿
1
+ (1 − 𝜆)𝛿

2

Where
 (3.8) ⎧⎪⎪⎨⎪⎪⎩

d
1
=

a
11
+a

21
+…+an1

n
,

d
2
=

a
12
+a

22
+…+an2

n
,

d
3
=

a
12
+a

22
+…+an2

n
,

d
4
=

a
14
+a

24
+…+an4

n
.

Table 6. Evaluation of Sub-Components for Example 3.

Manu factory Subcomponents
Linguistic Values of the Severity of 

Loss, Wi
Linguistic Values of the Reliability, 

Ri

 W̃
11
= low  R

11
= fairly − low

 A11 (0.12,0.24,0.36) (0.24,0.36,0.48)
 C1 W̃

12
 = fairly high  R

12
= medium

 A12 (0.48,0.6,0.72) (0.36,0.48,0.60)
W̃

13
 = very low  R

13
= fairly − high

 A13 (0.0,0.12,0.24) (0.48,0.6,0.72)
W̃

21
 = very high  R

21
= very − high

 A21 (0.72,0.84,0.96) (0.72,0.84,0.96)
 C_{2} W̃

22
 = fairly low  R

22
= fairly − high

 A22 (0.26,0.36,0.48) (0.48,0.6,0.72)
W̃

23
 = medium  R

23
= medium

 A23 (0.36,0.48,0.60) (0.36,0.48,0.60)
W̃

31
 = absolutely high  R

31
= fairly − low

 A31 (0.84,1.00,1.00) (0.24,0.36,0.48)
 C3 W̃

32
 = absolutely low  R

32
= high

 A32 (0.0, 0.0,0.12) (0.6,0.72,0.84)
W̃

33
 = high  R

33
= very − low

 A33 (0.6,0.72,0.84) (0.0,0.12,0.24)

Table 7. The Calculated Results by the Proposed Method for Example 3.

In (Mohamad et al., 2014) the results for C̃
2
≥ C̃

1
≥ C̃

3
.

�
(
a
∗
i1
+ a

∗
i2

)
+ (1 − �)

(
a
∗
i3
+ a

∗
i4

)
�
(
a∗i1 + a∗i3

)
+ (1 − �)

(
a∗i2 + a∗i4

)
i xC̃i STD(C̃i) Scor

(
C̃i
)

i xC̃i STD(C̃i) Scor
(
C̃i
)

� = 0 1 0.38 0.08 0.21 λ = 0 1 0.38 0.08 0.21
2 0.62 0.08 0.36 2 0.62 0.08 0.36
3 0.61 0.05 0.12 3 0.61 0.05 0.12

Result C̃
2
> C̃ > C̃

3
Result C̃

2
> C̃

1
> C̃

3

� = 1 1 0.26 0.08 0.17 λ = 1 1 0.26 0.08 0.17
2 0.50 0.07 0.30 2 0.50 0.07 0.30
3 0.52 0.06 0.12 3 0.52 0.06 0.12

Result C̃
2
> C̃

1
> C̃

3
Result C̃

2
> C̃

1
> C̃

3

� = 0.5 1 0.32 0.12 0.23 λ = 0.5 1 0.32 0.12 0.23
2 0.56 0.11 0.36 2 0.56 0.11 0.36
3 0.56 0.08 0.15 3 0.56 0.08 0.15

Result C̃
2
> C̃

1
> C̃

3
Result C̃

2
> C̃

1
> C̃

3

�
(
a∗i1 + a∗i4

)
+ (1 − �)

(
a∗i2 + a∗i3

)
�
(
a∗i2 + a∗i3

)
+ (1 − �)

(
a∗i1 + a∗i4

)
i xC̃i STD(C̃i) Scor

(
C̃i
)

i xC̃i STD(C̃i) Scor
(
C̃i
)

� = 0 1 0.32 0 0.11 λ = 0 1 0.32 0.16 0.27
2 0.56 0 0.26 2 0.56 0.16 0.40
3 0.57 0 0.06 3 0.56 0.12 0.18

Result C̃
2
> C̃

1
> C̃

3
Result C̃

2
> C̃

1
> C̃

3

� = 1 1 0.32 0.16 0.27 λ = 1 1 0.32 0 0.11
2 0.56 0.16 0.40 2 0.56 0 0.26
3 0.56 0.12 0.18 3 0.57 0 0.06

Result C̃
2
> C̃

1
> C̃

3
Result C̃

2
> C̃

1
> C̃

3

� = 0.5 1 0.32 0.12 0.23 � = 0.5 1 0.32 0.12 0.23
2 0.56 0.11 0.36 2 0.56 0.11 0.36
3 0.56 0.08 0.15 3 0.56 0.08 0.15

Result C̃
2
> C̃

1
> C̃

3
Result C̃

2
> C̃

1
> C̃

3

�
(
a∗i2 + a∗i4

)
+ (1 − �)

(
a∗i1 + a∗i3

)
�
(
a∗i3 + a∗i4

)
+ (1 − �)

(
a∗i1 + a∗i2

)
i xC̃i STD(C̃i) Scor

(
C̃i
)

i xC̃i STD(C̃i) Scor
(
C̃i
)

� = 0 1 0.26 0.08 0.17 � = 0 1 0.26 0.08 0.17
2 0.50 0.07 0.30 2 0.50 0.07 0.30
3 0.52 0.06 0.12 3 0.52 0.06 0.12

Result C̃
2
> C̃

1
> C̃

3
Result C̃

2
> C̃

1
> C̃

3

� = 1 1 0.38 0.08 0.21 � = 1 1 0.38 0.08 0.21
2 0.62 0.08 0.36 2 0.62 0.08 0.36
3 0.61 0.05 0.12 3 0.61 0.05 0.12

Result C̃
2
> C̃

1
> C̃

3
Result C̃

2
> C̃

1
> C̃

3

� = 0.5 1 0.32 0.12 0.23 � = 0.5 1 0.32 0.12 0.23
2 0.56 0.11 0.36 2 0.56 0.11 0.36
3 0.56 0.08 0.15 3 0.56 0.08 0.15

Result C̃
2
> C̃

1
> C̃

3
Result C̃

2
> C̃

1
> C̃

3
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5.  Conclusions

This article introduces a method for ranking fuzzy numbers 
using Hyperbolic tangent function based convex combination, 
then the mean value and standard deviations are estimated. 
We then tried a multi-layered approach using the Hyperbolic 
tangent function to rank obtain Z-numbers. Right in the core 
of the first and second layer the reliability of Z-number and the 
mean standard deviation of Z-number constrains over com-
bination of convex fuzzy numbers is obtained. And the third, 
using Hyperbolic tangent function along with the yields of the 
first and second layers Rating Z-numbers is computed. Ranking 
properties of our proposed method and some sample method 
is compared to other existing methods. As well as the results of 
examples showed that the proposed method for each mode of 
combining convex fuzzy numbers and per lambda same results 
as other methods are available.
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where δ1 = δ2 = 2,  xD̃k
∈ [−1, 1], k = 1, ..., n.

Step five: Calculate the spread STDD̃k
:

   

Step six: Calculate the fuzzy score (D̃k) of each standardized 
generalized fuzzy number, D̃k denoted as
 

Where d̂ = (x
D̃

I

× |𝛼∗|) + STD
D̃

k

Where scor(D̃k) ∈ (−1, 1), i = 1, ..., n. The larger value of 
scor (D̃k), the higher the preference of D̃k.

4.  The Numerical Results

Example 1. Let Ã(0.1, 0.3, , 0.3, 0.5, 1), 
B̃
1
= (0.1, 0.3, , 0.3, 0.5, 1), B̃

2
= (0.2, 0.3, , 0.3, 0.4, 1).

The calculated results by the existing methods can be seen in 
Table 1. The Ranking for Z

1
= (Ã, B̃

1
) andZ

2
= (Ã, B̃

2
) per con-

vex combination can be seen in Table 2. The results of the pro-
posed method compared with existing methods and can be seen 
in Table 3. We calculated,�

1
= 0.3 forZ

1
, and �

2
= 0.3 forZ

2
,

Example 2. In this example, the Z-numbers that part Ãi (see 
Figure  2a) and part B̃i (see Figure.  2b) rankings do not have 
the same values (information in Example 2 has been adopted 
from reference (Kang, Wei, Li and Deng, 2012b)).

Z
1
= (0.52, 0.6, 0.64) (0.75, 1, 1), Z

2
= (0,0. 04, 0.2) (0.5, 

0.75, 1).
The calculated results by the proposed method can be seen 

in Table 4.

Example 3. In this example, C1 and C2 and C3 goal is to rank 
among to obtain. (information in Tables 5 and 6 has been 
adopted from reference (Mohamad et al., 2014)). Linguistic 
Terms Representation can be seen in Figure.  3. The  
calculated results by the proposed method can be seen in 
Table 7.

For C1, we have, min
{
R
11
,R

12
,R

13

}
= R

11
, for reliability 

C̃
1
,R

11
 is converted to

In a similar manner, for C
2
, we have,min

{
R
21
, R

22
, R

23

}
= R

23
, 

the reliability of C̃
2
,R

23
 is converted to�

2
= 0.48.

and for C
3
, we have,min

{
R
31
, R

32
, R

33

}
= R

33
, the reliability 

of C̃
3
,R

23
 is converted to �

2
= 0.12 (Mohamad et al., 2014). So

Values xC̃i
, STD(C̃i

), Scor(C̃i
) for each C̃i in the table below.

(3.10)

STDD̃k
=√√√√ 𝜆

((
d
2k
−x

D̃k

)2

+

(
d
3k
−x

D̃k

)2
)
+(1−𝜆)

((
d
1k
−x

D̃k

)2

+

(
d
4k
−x

D̃k

)2
)

(𝜆𝛿1+(1−𝜆)𝛿2)−1

(3.11)scor
(
D̃

k

)
=

e
d − e

−d

e
d

+ e
−d

�
1
=

∫
0.36

0.24
x(x − 0.24)dx + ∫

0.48

0.36
x(0.48 − x)dx

∫
0.36

0.24
(x − 0.24)dx + ∫

0.48

0.36
(0.48 − x)dx

= 0.36

C̃
1
= (0.20, 0.32, 0.32, 0.44, 0.36),

C̃
2
= (0.45, 0.56, 0.56, 0.68, 0.48),

C̃
3
= (0.48, 0.57, 0.57, 0.65, 0.12).
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