
IntellIgent AutomAtIon & Soft ComputIng, 2017
http://dx.doi.org/10.1080/10798587.2017.1290328

Middleware for Internet of Things: Survey and Challenges

Samia Allaoua Chellouga and Mohamed A. El-Zawawyb,c

aDepartment of Information technology, College of Computer and Information Sciences, princess nourah bint AbdulRahman university, Riyadh,
Kingdom of Saudi Arabia; bCollege of Computer and Information Sciences, Al Imam mohammad Ibn Saud Islamic university, Riyadh, Kingdom of
Saudi Arabia; cDepartment of mathematics, faculty of Science, Cairo university, giza, egypt

ABSTRACT
The Internet of things (IoT) applications span many potential fields. Furthermore, smart homes, smart
cities, smart vehicular networks, and healthcare are very attractive and intelligent applications. In
most of these applications, the system consists of smart objects that are equipped by sensors and
Radio Frequency Identification (RFID) and may rely on other technological computing and paradigm
solutions such as M2 M (machine to machine) computing, Wifi, Wimax, LTE, cloud computing, etc. Thus,
the IoT vision foresees that we can shift from traditional sensor networks to pervasive systems, which
deliver intelligent automation by running services on objects. Actually, a significant attention has been
given to designing a middleware that supports many features; heterogeneity, mobility, scalability,
multiplicity, and security. This papers reviews the-state-of-the-art techniques for IoT middleware
systems and reveals an interesting classification for these systems into service and agent-oriented
systems. Therefore two visions have emerged to provide the IoT middleware systems: Via designing
the middleware for IoT system as an eco-system of services or as an eco-system of agents. The most
common feature of the two approaches is the ability to overcome heterogeneity issues. However,
the agent approach provides context awareness and intelligent elements. The review presented in
this paper includes a detailed comparison between the IoT middleware approaches. The paper also
explores challenges that form directions for future research on IoT middleware systems. Some of the
challenges arise, because some crucial features are not provided (or at most partially provided) by the
existing middleware systems, while others have not been yet tackled by current research in IoT.

1. Introduction

IoT is a concept that emerged recently from the intersection
of multiple technologies and computing paradigms to allow a
variety of things that are uniquely identified to be effectively
present in a certain environment. IoT concept addresses this
challenge by allowing things to collect and exchange data
through a wired or a wireless infrastructure that may be gov-
erned by many communication protocols. Moreover, the IoT
combines two ideas. The first one focuses on a network-ori-
ented style, however, the second one pushes towards on generic
objects. So, the aim of the IoT is to create a network of intelli-
gent objects that are able to take context-based decisions and
adapt themselves to the surrounding environment (Atzori, Iera,
& Morabito, 2010). IoT is a reality; it has been reported in
(Internet of caring things, 2014; The Internet of Things: making
the most of the Second Digital Revolution, 2014) that approx-
imately 14 billion of objects are connected to the Internet. The
industry trends lead to the believe that a massive growth in
IoT deployment; hence the number of connected objects will
reach 100 billion objects that will include devices rather than
pcs, smartphones, and tables.

One of the essential components of each IoT system
is the middleware. This component plays a vital role as it
provides an infrastructure supporting communication
between heterogeneous devices, abstraction of different
applications, service discovery, mobility of the things, and

security and privacy. Designing a middleware for IoT is an
active research field; variety of designs and approaches has
been proposed to realize the middleware concept (Atzori
et al., 2010; Perera, Zaslavsky, Christen, & Georgakopoulos,
2014; Bandyopadhyay, Munmun Sengupta, Souvik Maiti,
& Subhajit Dutta, 2011). Many of these approaches pro-
fessionally utilize the service-oriented technology. Other
approaches investigate semantic web to solve the syntax and
semantic conflicts. However, recent research work imple-
ments the middleware as a set of interacting agents that act
according to their rules.

This paper surveys existing techniques for implementing
an IoT middleware. In this context we provide a classification
to the existing techniques and a comparison between most
important existing techniques. Equally important, the paper
reviews current challenges and suggests directions for future
work that are related to the middleware systems.

This paper is organized as follows: Section 2 presents basic
concepts behind IoT. Section 3 surveys the middleware tech-
niques illustrating main concepts and requirements to satisfy
the IoT features. This also includes introducing and discussing
a new classification for middleware techniques, service-ori-
ented approaches and agent-oriented approaches. Section 4
presents potential challenges that have not yet been addressed
in the existing literature for middleware for IoT. Finally Section
5 concludes the paper.

© 2017 tSI® press

KEYWORDS
Iot; middleware; Sensor
network; RfID; Service
oriented middleware; Agent
oriented middleware

CONTACT Samia Allaoua Chelloug SAChelloug@pnu.edu.sa

mailto: SAChelloug@pnu.edu.sa
http://www.tandfonline.com

2 S. A. CHELLOUG AND M. A. EL-ZAWAWY

2. IoT Concepts

IoT has been attracting much interest of researchers in the last
few years. This is so as it enables a set of things/objects to be:

• Pervasive by sensing data.
• Connected through wired or wireless networks.
• Identified via a unique address.
• Cooperative with other things to create new applications

or services (Vermesan & Friess, 2013).

In this sense, IoT creates a worldwide network of intercon-
nected objects that should be uniquely addressable. Computers,
smartphones, vehicles, homes appliances, cameras are exam-
ples of such things/objects (Atzori et al., 2010). For example,
smart refrigerators trace and report the availability and expira-
tion dates of food items. They also rely on IoT network to place
an order to grocery shops once a certain limit of the supply of
food items is reached (Kopetz, 2011).

IoT is the integration of many technologies. Some of them
help to acquire and process contextual information, while
others improve security and privacy. Namely, sensor networks
and RFID technologies play a major role for IoT systems.
More specifically, RFID includes a tag that is equipped with
an antenna for object identification. A sensor network based
on RFID provides not only the possibility to identify objects,
but also to track their behaviour or measure some parameters
of the environment (Atzori et al., 2010; Jia, Feng, Fan, & Lei,
2012). On the other hand, cloud computing is also exploited
in some IoT systems to create contents and applications for
the users. The motivation behind integrating IoT and cloud
computing is to enhance an IoT environment by taking benefit
from the storage and processing capacities of cloud computing.
This helps to avoid sensors’ constraints. The cloud computing
may also benefit from IoT by providing services to smart
objects (G. Suciu, Vulpe, Todoran, Cropotova, J. Suciu, Suciu,
Vulpe, Todoran, Cropotova, & Suciu, 2013; Botta, de Donato,
Persico, Pescape, 2014). The work in (Li, Vögler, Claessens, &
Dustdar, 2013) provides a virtual vertical architecture where
each customer can adapt its own solution to its environment.
(Li et al., 2013) propose to develop an IoT Paas (Dillon, Wu, &
Chang, 2010) that delivers IoT services in a scalable manner.
Moreover, architecture introduced in (He, Yan, & Da Xu, 2014)
focuses on vehicular networks and relies on cloud computing
for delivering real-time services. Beside the services offered by
a service oriented system, the architecture in (He et al., 2014)
proposed new services to achieve the cloud aims; network

and data processing, data storage, and network management.
The research of (He et al., 2014) developed also two models
that enable an intelligent framework for parking service and
a vehicular data mining cloud service respectively for guiding
drivers and avoiding dangerous roads. IoT applications are
numerous. For example, intelligent cars, trains, roads, and
trails would be equipped by sensors and tags and communicate
with traffic control sites. IoT can be used for smart homes and
offices. It enables controlling the room heating and changing
the room lightning according to the time and day (Atzori
et al., 2010; Jia et al., 2012; Kopetz, 2011).

A simplified architecture of IoT is depicted in Figure 1. The
architecture has two main layers consisting of two sub-layers
each. The perception layer includes all technologies that allow
perceiving and collecting data. The network layer takes care of
transporting data in a transparent manner using the suitable
communication standards including Wifi, Wimax, GPRS, and
WSN. Rather than the data management sub-layer of the ser-
vice layer, which treats complex and uncertain data structures,
the application service sub-layer handles transforming data
into content and providing an interface to user application (Jia
et al., 2012). The data management sub-layer is also called the
middleware layer and it represents the most critical layer of
the architecture.

3. Middleware for IoT

The idea of IoT is to have a large number of different devices
producing enormous amounts of data. Therefore there is a need
for software (IoT middleware) that is to coordinate between
components of IoT (applications exploiting the hardware and
data). Hence, the role of IoT middleware is to facilitate the
interaction between a multitude of diverse devices and data.
This is to be done in a way that makes it easy to produce a new
IoT having a single core code working on different kinds of
devices or data formats.

In other words, the middleware is needed for the following
reasons:

• It provides an abstraction by resolving the syntax and
the semantic of sensor data.

• It is difficult to define common standards among a set
of diverse devices (Soma Bandyopadhyay et al., 2011).

Three main functional components are required for IoT
middleware:

Figure 1. Iot Architecture and middleware.

INTELLIGENT AUTOMATION & SOFT COMPUTING 3

• Interface protocol for providing interoperability and
resolving the syntax and semantics.

• Central management: It is responsible for device discov-
ery, and context detection and management.

• Application abstraction: Which provides the interface
with local and remote applications (Atzori et al., 2010;
Soma Bandyopadhyay et al., 2011).

It is important to mention that most middleware systems
ensure the device management functionality. However, only
some of them are designed to handle context awareness issues.
Figure 1 illustrates a simplified scheme for the required com-
ponents of an IoT middleware to allow interaction among a
set of things. The scheme shows that the middleware should be
equipped with interfaces to make the communication possible
among the things. The middleware has three main modules tak-
ing care of abstraction, context-detection and management, and
security. The abstraction module provides an abstraction for
things and applications. The context detection and management
module is meant to ensure the context awareness and mobility
management features. However, the security module provides
the mechanisms of authentication, privacy, and security.

There are many issues that make developing an IoT mid-
dleware not an easy task. These issues include:

• Interoperability: The middleware should allow heteroge-
neous devices to collaborate together.

• Scalability: A large number of devices should be sup-
ported by the middleware.

• Unfixed infrastructure: Mobile objects are expected to
publish their location and their resources.

• Multiplicity: The middleware should allow a kind of
optimization such that the best service will be selected
among many ones.

• Security: This is a tricky issue as the IoT system com-
bines hardware devices and networks. Therefore IoT
may face cloud attacks. On the other hand, some devices
require different security mechanisms due to their lim-
ited energy (Chaqfeh & Mohamed, 2012; Gil, Ferrández,
Mora-Mora, & Peral, 2016).

Adapting specific communication protocols is another
issue that must be tackled before deploying an IoT middle-
ware system. Paper of (Azzara, Bocchino, Pagano, Pellerano,
& Petracca, 2013) listed and discussed the main protocol and
paradigm solutions for IoT middleware systems.

• IEEE 802.15.4: Its main feature concerns energy savings
by altering the devices from the active to the idle sate and
vice versa depending on the medium status (Institute of
Electrical & Electronics Engineers, 2006).

• IETF 6LoWPan: Allows sending IPV6 datagrams in
IEEE 802.15.4 based networks (Mulligan, 2007).

• Routing protocol for low-power and lossy networks: It
builds an optimized graph to reach a specific destina-
tion based on the links and nodes properties (Internet
Engineering Task Force (IETF), 2012).

• IeTf constrained application protocol: It is an application
protocol that is intended for use by resource constrained
devices. It allows mapping with HTTP to provide M2 M
interactions. In fact, CoAP (constrained application pro-
tocol) interoperates with many HTTP client or HTTP
server (Internet Engineering Task Force (IETF), 2014).

• Efficient XML interchange: It is an extension of XML
and allows data representation and exchange between
resource constrained devices (W3C, 2014).

• Restful web services: It enables the use of representa-
tional state transfer for web services called using their
URIs. The restful web services representation provides
the opportunity to specify the constraints of the web
services to obtain a specific property (Alarcon & Wilde,
2010).

After reviewing a huge amount of related literature, we
came to the conclusion that most middleware systems can be
classified as service-oriented middleware (Hong, 2012) or agent-
oriented middleware. Some middleware did not follow the
service or the agent approach. Furthermore, we point out that
the work in (Hong, 2012) presents an IoT middleware that is
based on web services where each IoT resource is identified
via a URI and the interaction within the resources is done
through the web browser. (Hong, 2012) has also established
a comparison between his proposed resource oriented
middleware that has been tested using Zigbee and the service
oriented approach. The conclusion was that resource oriented
approach is suitable for dynamic environments. However from
our point of view, the resource oriented approach is just an
extension of the service oriented approach.

The middleware systems presented in (Jayaraman, Perera,
Georgakopoulos, & Zaslavsky, 2014) is limited to constrained
mobile devices. In this case, sensors collect data only if a con-
sumer makes a request. Hence, sensors use little energy. In
addition, the proposed middleware system enables sensors to
process data locally before transmitting it to the cloud. In this
context the middleware provides a plugging for each sensor it
is compatible with it.

The Virtus middleware (Bazzani, Conzon, Scalera, Spirito,
& Trainito, 2012) was designed for e-health application and did
not follow the service, nor the agent approaches. It incorporates
different technologies: Java to support portability, OSGI (OSGi
Alliance, 2007) to allow a modular and a dynamic solution,
XMPP open-protocol that is based on XML to ensure real time
communications among heterogeneous sensors and actua-
tors. XMPP (Internet Engineering Task Force (IETF), 2004)
is required to exchange messages and events and check if each
message reaches its destination. The main advantage of Virtus
concerns the possibility of publishing data and retrieving it
once the status of the receiver is online.

A middleware was designed in (Azzara et al., 2013) for the
European Project Intelligent Cooperative Sensing for Improved
Efficiency (ICSI). This system applies the software engineering
approach to propose a coupe of components realizing the goals
of IoT middleware system; the event and the configuration
managers. It is based on restful web services and a network
operating system. The core advantage of the proposed middle-
ware in (Azzara et al., 2013) concerns its flexibility and there-
fore the ability to use it for different applications.

In addition, we indicate that some research works classify
sensor networks middleware as IoT middleware systems.
Furthermore, the Mires (Souto et al., 2006) middleware sup-
ports the communication between sensor applications based
on publish-subscribe mechanisms.

TinyDB is also a sensor network middleware, which pro-
vides mechanisms to handle (Madden, Hellerstein, & Hong,
2003):

4 S. A. CHELLOUG AND M. A. EL-ZAWAWY

and conflict resolution problems. A mathematical model is
used to estimate the conflict resolution and makes it easy to
connect to a server to find services that match the required
attributes. In a smart way, the proposed system of (Teixeira et
al., 2011) utilizes semantic concepts and provides an ontology
for sensors, actuators, and any other physical unit.

It is worth noting that the semantic approach that has been
introduced in (Song, Cárdenas, & Masuoka, 2010) has many
advantages. It enables interoperability, because the service
requestors can understand the available services of the pro-
viders. It also allows context awareness by reducing the search
space for service discovery and composition functionalities,
and improves security and privacy decisions.

WiseMid middleware (Domingues, Damaso, & Rosa, 2010)
is a service-oriented middleware that assumes a sensor network
that is integrated to the Internet, so, it jointly considers two fea-
tures; IP communication and energy saving. The middleware
itself tolerates different mechanisms for energy saving:

• Aggregation: The aggregation service avoids the net-
work traffic overload by processing correlated or redun-
dant data.

• Reply storage timeout: This service is very useful since
it stops sending the messages that contain the same
parameters as the first message, which has already been
sent.

• Atomic type conversion: This service removes bytes
from messages by converting their type.

• Invocation asynchronous patterns: Four patterns of
asynchronous communication are provided to avoid any
wasting time that consumes sensors’ energy.

Each WiseMid interface service is specified through the
Interface Definition Language (IDL) (W3C, 1997). Each inter-
face is simply described by its name and the operation handled
by the service. More specifically, IDL specifies the input/output
parameters of the operations and the exceptions that may trig-
ger at any time. From an architectural perspective, WiseMid is
composed of three layers:

• Common services layer: It specifies generic services that
are required by any application (such as aggregation,
grouping, and naming).

• Distribution service: Ensures remote request/reply
interactions among services.

• Service infrastructure: Consists of the server and client
request handlers.

The power consumption of WiseMid sensors was evalu-
ated and the performance of the middleware was proved to be
good. However, the main disadvantage of WiseMid is that it
does not provide any semantic interoperability among services
(Domingues et al., 2010).

The basic idea of Hydra (Eisenhauer, Rosengren, & Antolin,
2009) is to model each IoT device as a service. The system of
(Eisenhauer et al., 2009) associates a semantic to each service
using an ontology language like the Web Ontology Language
(OWL). In particular, each device is a semantic web service
that allows interoperability. Hydra annotates also new devices
using a device development kit. Commands (such as get, start,
stop, and current power consumption) and specific services
are performed by each device. Hydra supports many oper-
ating systems (including TinyOs, Linux, and Windows) and
many physicals layers (such as Zigbee and Bluetooth). Hydra

• Data readings of different sensors.
• Query generation and propagation.
• Memory management sensors.
• Topology management for efficient routing.

Senceive (Hermann & Dargie, 2008) was also developed
for sensor networks. The separation between the sensing and
application functionalities is the main feature of Senceive that
provides a high abstraction.

Bearing in mind features of sensor networks, we came to
the conclusion that the IoT environment should support extra
properties related to intelligence and identification. The IoT
environment may also integrate other technologies and pro-
tocols that are not used by sensor networks. This brings to
attention, the big issue and debate of how to extend sensor
networks middleware systems to handle the IoT scenario and
an open challenge concerns the enhancement of sensor net-
works middleware systems to handle IoT scenario. So, in the
next subsection we review IoT middleware that falls in our two
classes of middleware systems.

3.1. Service-oriented IoT Middleware

Service-oriented architectures (SOAs) (Endrei et al., 2004) have
been exploited to address some challenges of IoT middleware.
A service oriented architecture is used to manage many services
by incorporating a service provider that is intended to host
one or some services, a service consumer that represents any
application, and a register of services. A SOA is able to support
three important functionalities (Hachem, Pathak, & Issarny,
2014; Issarny et al., 2011):

• Service discovery: It allows announcing new services
and it also performs a search for the best services that
satisfy a certain request.

• Composition: This functionality should be enabled once
the system cannot discover an appropriate service to
handle a specific request.

• Access: It provides the interaction with the discovered
services.

Based on a SOA, a complex system is decomposed into an
ecosystem that consists of simple components. In order to alle-
viate the problem of interoperability, much research effort has
been expanded on designing a middleware for IoT via modi-
fying or enhancing the SOA. We will present in details related
work that proved and demonstrated that SOA is an efficient
way to build an IoT middleware.

Mobile Internet of Things (MOBIOT) (Hachem et al., 2014;
Issarny et al., 2011) solves the network topology issues to avoid
the situation of requesting a service that becomes suddenly
unavailable. The MOBIOT middleware is based on a set of
Nasa’s sweet ontologies to specify the IoT system (sensors,
actuators, etc.) and their relationships. The main feature of
MOBIOT is that the registration and lookup services are proba-
bilistic. This controls the ability of a new thing from registering
its services. MOBIOT computes the probability of presence of
a mobile thing within a sensing coverage. MOBIOT has been
implemented, but its performance has not been compared to
existing service oriented middleware for IoT.

The work in (Teixeira, Hachem, Issarny, & Georgantas,
2011) proposed a middleware solution that aims at improving
the service discovery in an IoT environment, which is charac-
terized by inaccurate data and may face many data availability

INTELLIGENT AUTOMATION & SOFT COMPUTING 5

architecture is divided into two subsystems; application ele-
ments and device ones. The device elements include a seman-
tic, a service, a network, and a security layer. The application
elements include the same layers as the device elements, but it
incorporates additional components; schedule, ontology, event,
and diagnosis managers (Zarghami, 2013). It is worth men-
tioning that a diagnosis manager that ensures error detection
and provides recovery solutions is integrated to Hydra. The
diagnosis manager relies on the QoS manager, which negotiates
the QoS parameters with other services. The diagnosis manager
is based on OWL ontology and Semantic Web Rule Language
(SWRL). Hydra is state based and reports errors and warnings
(Zhang & Hansen, 2008).

The work in (Gama, Touseau, & Donsez, 2012) introduced
a generic service-oriented middleware that is extensible, and
adaptable. This middleware is based on Java technology to
define the main interfaces for starting, stopping, and config-
uring the readers as well as configuring the destination that
should receive the reports. The middleware of (Gama et al.,
2012) also focuses on an IoT environment that includes cli-
ents, servers, sensors, RFID readers and other intermediate
network devices. The middleware allows RFID events to be sent
to a specific destination. The proposed architecture contains
a collection and a filtering component that are responsible for
collecting and relaying RFID events.

The contribution in (Zhou, Fan, & Ma, 2013) is based on a
service oriented middleware that annotates user demands, web
services, and data resources that are classified using domain
ontologies. The annotation avoids any ambiguity and enables
to attach a semantic such that the system can reason about the
suitable service. The accuracy of the classification has been
measured through an experiment that demonstrated the per-
formance of the middleware. The advantage of such middle-
ware is that for new applications, one would to only replace
the domain ontologies.

The main feature of Socrades (de Souza et al., 2008) is to
integrate web services enabled devices with enterprise appli-
cations such ERP. The Socrades middleware is based on the
following services:

• Brokered access to devices: Provides the communication
between web services and servers via an intermediate
party.

• Service discovery: Is distributed and relies on UDP
multicast.

• Device Supervision: Provides the required static and
dynamic information about each physical device.

• Service lifecycle management: Ensures updating some
services when necessary.

• Crosslayer service catalogue: Is responsible of composi-
tion and discovery of a set of relevant ERP services.

• Security support: Controls the communication of ser-
vices, devices and the communication between them.
It also controls the access and supports security and
confidentiality.

3.2. Agent-oriented IoT Middleware

Other IoT middleware research has adopted another strategy to
build a middleware for IoT. The use of the agent technology is
an effective way to design decentralized systems that hold par-
tial failures, mobility, coordination, and negotiation. Despite its

Ta
bl

e
1.

 C
om

pa
ris

on
 b

et
w

ee
n

Io
t

m
id

dl
ew

ar
e

Sy
st

em
s.

A
pp

ro
ac

h
Fe

at
ur

es
M

ob
io

t
W

is
eM

id
H

yd
ra

(G
am

a
et

 a
l.,

20

12
)

(Z
ho

u
et

 a
l.,

20

13
)

So
cr

ad
es

U
bi

W
ar

e
(F

or
tin

o
an

d
Ru

ss
o

(2
01

3)
.

(F
or

tin
o

et
 a

l.,

20
13

)
(Y

an
g

et
 a

l.,

20
12

)
(M

ila
ga

ia
, 2

00
8)

Sy
nt

ax
 a

nd
 se

m
an

-
tic

 re
so

lu
tio

n
pr

ov
id

ed
n

ot
 p

ro
vi

de
d

pr
ov

id
ed

n
ot

 p
ro

vi
de

d
pr

ov
id

ed
n

ot
 p

ro
vi

de
d

pr
ov

id
ed

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

pa
rt

ia
lly

 p
ro

vi
de

d
pr

ov
id

ed

Co
nt

ex
t d

et
ec

tio
n

pa
rt

ia
lly

 p
ro

vi
de

d
pa

rt
ia

lly
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
pa

rt
ia

lly
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
pa

rt
ia

lly
 p

ro
-

vi
de

d
pr

ov
id

ed
pa

rt
ia

lly
 p

ro
vi

de
d

pa
rt

ia
lly

 p
ro

vi
de

d
pr

ov
id

ed
pr

ov
id

ed

Ap
pl

ic
at

io
n

ab
-

st
ra

ct
io

n
n

ot
 p

ro
vi

de
d

pa
rt

ia
lly

 p
ro

vi
de

d
pa

rt
ia

lly
 p

ro
vi

de
d

pa
rt

ia
lly

 p
ro

vi
de

d
pr

ov
id

ed
n

ot
 p

ro
vi

de
d

pa
rt

ia
lly

 p
ro

-
vi

de
d

n
ot

 p
ro

vi
de

d
pa

rt
ia

lly
 p

ro
vi

de
d

pa
rt

ia
lly

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

Sc
al

ab
ili

ty
pr

ov
id

ed
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

pr
ov

id
ed

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

m
ob

ili
ty

pr
ov

id
ed

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

In
ac

cu
ra

te
 d

at
a

pr
ov

id
ed

pa
rt

ia
lly

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

pa
rt

ia
lly

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

Se
cu

rit
y

pa
rt

ia
lly

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
pa

rt
ia

lly
 p

ro
-

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

In
te

lli
ge

nc
e

an
d

re
as

on
in

g
pa

rt
ia

lly
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

n
ot

 p
ro

vi
de

d
pa

rt
ia

lly
 p

ro
vi

de
n

ot
 p

ro
vi

de
d

pa
rt

ia
lly

 p
ro

-
vi

de
d

pa
rt

ia
lly

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

pa
rt

ia
lly

 p
ro

vi
de

d
n

ot
 p

ro
vi

de
d

6 S. A. CHELLOUG AND M. A. EL-ZAWAWY

managed by the device management component of the archi-
tecture. There is also a knowledge base, which is controlled by
the KB management component for describing the objects.
Each is represented by its type and its source. In particular, an
event may carry a piece of information, a request, an error, or
a log-in issue. The event may be generated either by an internal
or external software or trigged by the device itself. According
to (Zhang & Hansen, 2008), this middleware has been imple-
mented using JADE platform. Also (Zhang & Hansen, 2008)
investigates many different scenarios of a smart environment
for supporting the working environment of office users.

Finally, we point out that the authors of (Yang, Wang, Liu, &
Wang, 2012) have presented a middleware for IoT that is based
jointly on web service and multi-agent systems. The developed
middleware acts at the network layer to hide the heterogeneity
in term of protocols and formats of the exchanged messages.
Each Internet object is considered as a web service and two
different agent layers are provided; the agent layer transforms
any communication protocol to a web service. However, the
gateway agent lay generates web service interfaces. The mid-
dleware enables to test and maintain a link and discover other
agents. Simulation results of (Yang et al., 2012) demonstrated
that the performance of the proposed middleware is good in
terms of the throughput and the time consumed by the agents
for the communication.

In this context, DPWS (Device Profile for web services)
(Milagaia, 2008) aims to merge the service and agent oriented
approaches. It is based on a stack that handles the discovery
process of services, the announcement of events, the assign-
ment of an address to a specific device, the association of a pol-
icy to a web service, and other optional security mechanisms.
The middleware includes some agents for managing the server
and others for managing clients. The agents can look up for
others by sending probe messages and upon the detection of
an event, a message is sent to the subscriber. The middleware
was tested and proved to be successful in connecting entities
of a virtual production line.

One of the main results of our survey is the construction of
a concise comparison (Table 1) between the above presented
approaches. We qualitatively captured and summarized the fea-
tures of each approach using the terms “provided”, “partially
provided” and “not provided”. We use the term “partially pro-
vided” to express the situation when the concerned technique
solves one or more aspects of the concerned feature but it did
fully cover it. The features indicated in Table 1 are partially
provided for one or more of the following reasons:

• Syntax and semantic resolution: Absence of the seman-
tic aspect and/or the syntax did not allow modeling all
required scenarios of an IoT system.

• Context resolution: Ignorance of events or other devices’
status.

• Application abstraction: The way of applying the con-
cerned middleware for different applications is not
specified.

• Inaccurate data: Lack of fusion of data.
• Security: Just some security issues are handled.
• Intelligence and reasoning: Lack of reasoning about new

situations that are not specified.

A precise investigation of Table 1 shows that all desired
criteria of a robust middleware system (syntax and seman-
tic resolution, context awareness, application abstraction,

advantages, the multi-agent approach presents some obstacles
for the middleware level: IoT includes heterogeneous devices
that may use different protocols and different data formats and
standards. So, ensuring the interoperability property with a
multi-agent system becomes a tricky problem.

The idea of Ubiware core middleware (Katasonov, Kaykova,
& Khriyenko, 2008; Nagy et al., 2009) is to integrate a soft-
ware agent to every IoT resource. The software agent will be
responsible for controlling the state of the resource. The agent
will communicate with other agents. It should also be able to
discover other agents. The structure of the Ubicore (reference)
agent is based on three layers; the behaviour engine in Java, a
declarative middle-layer that stores the agents’ beliefs and a set
of atomic behaviours, which represent Java components that
act as sensors, actuators. The Ubicore middleware aimed also
at addressing the problem of the huge number of rules and
beliefs in an IoT environment. So, Ubicore developed a solu-
tion called Semantic Agent Programming Languages (SAPL)
(Katasonov & Terziyan, 2008) that ensures the understanding
of the semantics of the rules. SAPL provides a semantic data
model and reasoning, because it is based on RDF. In addition,
SAPL uses the same storage for data and code. Further, using
SAPL, any rule can add or remove other rules upon its exe-
cution. In SAPL, everything is modeled as a basic semantic
statement or a set of linked semantic statements. The state-
ments are made of contexts and/or objects. The Ubicore mid-
dleware has been implemented and demonstrated for a smart
service desk application. Ubicore middleware has been able
to perform some automation for an operator’s service desk
by integrating heterogeneous components: Humans, custom-
ers’ equipment’s, and databases. Ubicore collects and reports
all information concerning the customers and allows them to
report any problem.

The research in (Fortino & Russo, 2013) proposed to tackle
the complexity of an IoT environment by integrating cloud
computing and multi-agents systems. The core motivations are
related to the facts that:

• The cloud provides powerful storage devices and enables
sharing resources and applications.

• Each agent is capable of taking a decision proactively.

The proposed architecture in (de Souza et al., 2008) is based
on JADE (Bellifemine, Poggi, & Rimassa, 2001), which is a
framework for developing multi-agent systems. In addition,
the architecture relies on programming languages for sensor
networks. It includes user agents that track humans’ behav-
iour and object agents for modeling the behaviour of Internet
objects. The developed architecture of (de Souza et al., 2008)
deals also with the communication issues and provides the
required interfaces using ACL (Agent Communication lan-
guage) (FIPA Architecture Board, 2000).

The idea of the middleware suggested in (Fortino, Guerrieri,
Lacopo, Lucia, & Russo, 2013) is similar to that presented in
(FIPA Architecture Board, 2000). However, the novelty of the
work proposed in (Fortino et al., 2013) is related to the event
driven feature of the implemented agent oriented middle-
ware. This includes a behaviour component that formalizes
the objects’ behaviours as a set of tasks that can be either pro-
active or reactive. The management of the events is handled
by the dispatcher. There is also a communication component
that manages the communication among the Internet objects.
The sensors and actuators (associated with every object) are

INTELLIGENT AUTOMATION & SOFT COMPUTING 7

in a way that makes them general enough to allow
heterogeneous devices to communicate. However the
generality of the commands have to accommodate the
specific nature of IoT. It seems that there is no research
at all in this direction, which may make good work in
this direction very welcome to the IoT community. One
way of designing the language commands is to have the
commands reacting to and setting values of group of
variables in the local and global memories of different
devices, (new way to achieve this (we believe). Therefore,
we think this direction ends up with a communication
language rather than a programming language (or may
be a mix of both of them).

• The available middleware did not specify the relation-
ship between the security layer and the other ones.

5. Conclusion

This paper discussed the main middleware infrastructures for
IoT. The paper presented a classification of the existing IoT mid-
dleware systems. The literature review led us to conclude most
recent research work adopted the service-oriented approach
for abstracting the complexity of the middleware design and
providing useful interfaces for the application layer. Among our
findings is that it is common for many researches in the field
to report the need to integrate semantic web in a service-ori-
ented style to support the heterogeneity of the things. On the
other hand, the “agent-oriented” style proves useful to achieve
the same job while allowing self-configuration, self-healing,
and reasoning. Our investigation reveals and discusses many
challenges and open problems that are still to be addressed in
this area. One major challenge concerns the integration of the
service and agent-oriented approaches. Another problem arises
by the fact that the IoT specification languages are not generic
enough to support different applications. Other issues are that
the self-healing and self-configuration properties are not fully,
nicely, and neatly realized. Finally there is no standard checking
model for middleware systems, which makes comparing them
is not a precise job.

Disclosure Statement

No potential conflict of interest was reported by the authors.

Notes on contributors

Samia Allaoua Chelloug received an Engineering
degree in Computer Science in 2003, a Master’s degree
in Computer Science in 2006, and a Ph.D. degree in
Networking in 2013, all from University of
Constantine, Algeria. From 2006 to 2013 she was an
Assistant Professor in the Faculty of Computer
Science in Constantine University. In August 2013,
she joined the Department of Networks and
Communication Systems at Princess Nourah bint

AbdulRahman University (Riyadh, Kingdom of Saudi Arabia) where she
is presently an Assistant Professor. Her current research interests include
wireless sensor networks, body area networks, cloud computing, cogni-
tive radio, mobile wireless networks, vehicular networks, Internet of
Things, and pervasive computing. Dr. Samia Allaoua Chelloug has pub-
lished 15 papers in journals and conference proceedings and she has
reviewed some ICCC15 conference papers.

scalability, mobility, processing of inaccurate data, security, and
intelligence) are still not fully provided by a single middleware
system. Therefore so many research challenges are still open.
In particular, scalability, mobility, inaccuracy of data, security
and intelligence are severe features that should be handled by
next generation middleware systems.

4. Challenges

Deep investigation of the existing techniques of IoT in general
and that of IoT middleware systems in particular derived us to
believe that these are very active and live research areas. Our
survey of IoT middleware systems resulted in concluding the
following list of open problems, challenges, and issues:

• Developing and effectively checking/testing models to
provide support for the complexity of an IoT middle-
ware? The most related work to this direction is the
work (Reetz, Kümper, Lehmann, & Tönjes, 2012), which
develops a framework for service testing in an IoT
dynamic environment. This framework is able to gener-
ate a specific test using finite state machines.

• Developing a self-adaptive middleware for IoT that takes
into account the network conditions and links reliability
is still a challenge.

• Building a self-healing middleware for critical applica-
tions is a good research topic. The middleware should
recognize a failure and isolate it even though there is not
a rule that handles the error. In other words, the middle-
ware should be intelligent.

• An interesting open problem is how to combine the
characteristics of service and agent oriented approaches
in one technique. The challenge concerns the enrichment
of service oriented with some multi-agent characteristics
or vice versa. This may result in a flexible, reconfigurable,
and interoperable middleware. The work presented in
(Yang et al., 2012; Milagaia, 2008) is a step towards the
integration of service and agent oriented approaches,
but still the integration is not well specified and there
still work needed to enhance the syntax and semantic
resolution as well as the reasoning aspect.

• Memory management is an important issue in IoT. The
idea of IoT makes it not clear whether traditional mem-
ory management techniques are convenient or suitable
for architectures of IoT. One scenario for example is that
we have many devices in a small spaces (communicat-
ing with each other). In this case is it convenient to have
each of the devices having its own private memory or is
it more convenient to have a shared memory? Or to have
part of each memory shared with others devices? Such
questions need to be answered.

• The real-time aspects of some IoT applications have not
been addressed in the developed middleware.

• The languages OWL and Semantic Web Rule Language
(SWRL) that are used by some middleware for IoT are
not generic enough. Developing a programming lan-
guage for main commands of communications between
heterogeneous devices composing IoT is a promising
direction for future work. Such programming model
has to be associated with semantics for its commands.
Also the commands of the language are to be designed

8 S. A. CHELLOUG AND M. A. EL-ZAWAWY

Endrei, M., Ang, J., Arsanjani, A., Chua, S., Comte, P., Krogkahl, P., …
Newling, T. (2004). Patterns: Service-oriented architecture and web
services. New York, NY: International Technical Support Organization,
IBM red books. ISBN 073845317x.

FIPA Architecture Board. (2000). FIPA agent management support
for mobility specification. Geneva, Switzerland: Foundation for
Intelligent Physical Agents. http://www.fipa.org/specs/fipa00087/
PC00087B.pdf

Fortino, G., Guerrieri, A., Lacopo, M., Lucia, M., & Russo, W. (2013).
An agent-based middleware for cooperating smart objects. In
communications in Computer and Information Science (pp. 387–398).
DOI: 10.1007/978-3-642-38061-7_36

Fortino, G., & Russo, W. (2013). Towards a Cloud-assisted and Agent-
oriented Architecture for the Internet of Things. In proceedings of the
14th workshop from Objects to Agents (WOA 2013) (pp. 60–65). Turin.
http://ceur-ws.org/Vol-1099/paper15.pdf

Gama, K., Touseau, L., & Donsez, D. (2012). Combining heterogeneous
service technologies for building an Internet of Things middleware.
Computer Communications, 35(4), 405–417. Doi:10.1016/j.
comcom.2011.11.003.

Gil, Pablo, Ferrández, Youcef, Mora-Mora, Markus, & Peral, J. (2016).
Internet of things: A review of surveys based on context aware
intelligent services. Sensors 2016, 16, 1-2, DOI: 10.3390/s16071069

Hachem, S., Pathak, A., & Issarny, V. (2014). Service-Oriented Middleware
for the Mobile Internet of Things: A Scalable Solution. IEEE
GLOBECOM: Global Communications Conference (pp. 1-6). Austin,
United States. https://hal.inria.fr/hal-01057530/file/GBC14.pdf

He, W., Yan, G., & Da XU, L. (2014). Developing Vehicular Data Cloud
Services in the IoT Environment. IEEE Transactions on Industrial
Informatics, 10, 1587–1595. Doi:10.1109/TII.2014.2299233.

Hermann, C., & Dargie, W. (2008). Senceive：A Middleware for a Wireless
Sensor Network. Advanced Information Networking and Applications
(pp. 612-619). Okinawa. DOI: 10.1109/AINA.2008.34

Hong, Y. (2012). A resource-oriented middleware framework for
heterogeneous internet of things. In Proceedings of the conference on
Cloud and Service Computing (pp. 12–16). Doi:10.1109/CSC.2012.10.

Internet Engineering Task Force (IETF). (2004). Extensible Messaging
and Presence Protocol (XMPP): Core. RFC 6120, https://tools.ietf.org/
html/rfc6120

Internet Engineering Task Force (IETF). (2012). RPL: IPv6 routing
protocol for low power and lossy networks. RCF 6550, https://tools.
ietf.org/html/rfc6550

Internet Engineering Task Force (IETF). (2014). Constrained Application
Protocol (CoAP). RFC 7252. https://tools.ietf.org/html/rfc7252

Institute of Electrical and Electronics Engineers. (2006). IEEE Std
802.15.4-2006,Wireless Medium Access Control (MAC) and
Physical Layer (PHY) Specifications for Low-Rate Wireless Personal
Area Networks (WPANs). https://standards.ieee.org/findstds/
standard/802.15.4-2006.html

Internet of caring things. (2014). Trend report. http://trendwatching.
com/x/wpcontent/uploads/2014/04/2014-04-IoCT.pdf

Issarny, V., Georgantas, N., Hachem, S., Zarras, Apostolos, Vassiliadist, P.,
Autili, M., … Hamida, Amira Ben (2011). Service-oriented middleware
for the future internet: State of the art and research directions. Journal
of Internet Services and Applications, 2, 23–45. Doi:10.1007/s13174-
011-0021-3.

Jayaraman, PP., Perera, C., Georgakopoulos, C., & Zaslavsky, A. (2014).
MOSDEN: A scalable mobile collaborative platform for opportunistic
sensing applications. Transactions on Collaborative Computing, 14 1),
1–16, https://arxiv.org/pdf/1405.5867v1.pdf

Jia, X., Feng, Q., Fan, T., & Lei, Q. (2012). RFID technology and
its applications in Internet of Things (IoT). in Proceedings of
International Conference on Consumer Electronics, Communications
and Networks (CECNet) (pp. 1282–1285). Yichang. DOI: 10.1109/
CECNet.2012.6201508

Katasonov, A., Kaykova, O., & Khriyenko, O. (2008). Smart semantic
middleware for the internet of things. In proceedings of the 5th
International Conference on Informatics in Control, Automation and
Robotics (pp. 169-178). Funchal, Madeira, Portugal. http://www.mit.
jyu.fi/ai/papers/ICINCO-2008.pdf

Katasonov, A., & Terziyan, VY. (2008). Semantic Agent Programming
Language (S-APL): A Middleware Platform for the Semantic Web.
Semantic Computing, 2008 IEEE International Conference on Semantic
Computing (pp. 504-511). DOI: 10.1109/ICSC.2008.82

Mohamed A. El-Zawawy received a Ph.D. in
Computer Science from the University of Birmingham
in 2007, an M.Sc. in Computational Sciences in 2002
from Cairo University and a BSc. in Computer Science
in 1999 from Cairo University. Dr .El-Zawawy is an
associate professor of Computer Science Dept. at
Faculty of Science, Cairo University Since 2014.
Currently, Dr. El-Zawawy is on a sabbatical from
Cairo University to College of Computer and

Information Sciences, Al Imam Mohammad Ibn Saud Islamic University
(IMSIU), Riyadh, Kingdom of Saudi Arabia. During the period 2007–
2014 Dr .El-Zawawy held the position of an Assistant Professor of
Computer Science at Faculty of Science, Cairo University. During the
year 2009, he held the position of an extra-ordinary senior research at
the Institute of Cybernetics, Tallinn University of Technology, Estonia,
and worked as a teaching assistant at Cairo University from 1999 to 2003
and later at Birmingham University from 2003 to 2007. Dr. El-Zawawy is
interested in static analysis, shape analysis, type systems, semantics of
programming languages, internet of things, and networks.

References
Alarcon, R., & Wilde, E. (2010). RESTler: Crawling RESTful services. In

proceedings of the 19th International conference on World Wide Web (pp.
1051-1052). Raleigh, North Carolina. DOI: 10.1145/1772690.1772799

Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey.
Computer Networks, 54, 2787–2805. Doi:10.1016/j.comnet.2010.05.010.

Azzara, A., Bocchino, S., Pagano, P., Pellerano, G., & Petracca, M. (2013).
Middleware solutions in WSN: The IoT oriented approach in the ICSI
project. In Proceedings of IEEE International Conference on Software
Telecommunications and Computer Networks (pp. 1-6). DOI: 10.1109/
SoftCOM.2013.6671886

Bandyopadhyay, S., Munmun Sengupta, M., Souvik Maiti, S., & Subhajit
Dutta, S. (2011). Role of middleware for internet of things: A study.
International Journal of Computer Science and Engineering Survey, 2,
94–105. Doi:10.5121/ijcses.2011.2307.

Bazzani, M., Conzon, D., Scalera, A., Spirito, M., & Trainito, C. (2012).
Enabling the IoT paradigm in e-health solutions through the VIRTUS
middleware. IEEE 11th International conference on Trust, Security and
Privacy in Computing and Communications (TrustCom). USA, 1954–
1959, DOI: 10.1109/TrustCom.2012.144

Bellifemine, F., Poggi, A., & Rimassa, G. (2001). Developing multi-agent
systems with a FIPA-compliant agent framework. Software Practice and
Experience, John Wiley and Sons, Ldt., 31, 103–128, http://www.emse.
fr/~boissier/enseignement/maop14/courses/readings/FIPA-JADE.pdf

Botta, A., de Donato, W., Persico, V., & Pescape, A. (2014). On the
integration of cloud computing and internet of things. In 2014
International Conference on Future Internet of Things and Cloud
(FiCloud) (pp. 23–30). DOI: 10.1109/FiCloud.2014.14

Chaqfeh, M., & Mohamed, N. (2012). Challenges in middleware solutions
for the internet of things. In proceedings of The 2012 International
Conference on Collaboration Technologies and Systems (CTS 2012).
Denver, Colorado, USA, https://pdfs.semanticscholar.org/15bc/
ef45aaee19326844a183fea6a4aabd56d0f9.pdf

de Souza, LMS., Spiess, P., Guinard, D., Köhler, M., Karnouskos, S.,
& Savio, D. (2008). SOCRADES: A web service based shop floor
integration infrastructure. In C. Floerkemeier (Ed.), proceedings of
Internet of Things 2008 Conference (pp. 50–67). Zurich, Switzerland.
DOI: 10.1007/978-3-540-78731-0_4

Dillon, T., Wu, C., & Chang, E. (2010). Cloud computing: Issues and
challenges. In the proceedings of the 24th IEEE International Conference
on Advanced Information Networking and Applications (pp. 27-33).
DOI: 10.1109/AINA.2010.187

Domingues, JPO., Damaso, AVL., & Rosa, NS. (2010). WISeMid:
Middleware for integrating wireless sensor networks and the internet,
In proceedings of IFIP International Conference on Distributed
Applications and Interoperable Systems, 70-83, DOI: 10.1007/978-3-
642-13645-0_6.

Eisenhauer,M., Rosengren, P., & Antolin, P. (2009). A development platform
for integrating wireless devices and sensors into ambient intelligence
systems. In proceedings of 6th IEEE Annual Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks
Workshops, (pp. 367-373). DOI: 10.1109/SAHCNW.2009.5172913

http://www.fipa.org/specs/fipa00087/PC00087B.pdf
http://www.fipa.org/specs/fipa00087/PC00087B.pdf
http://dx.doi.org/10.1007/978-3-642-38061-7_36
http://ceur-ws.org/Vol-1099/paper15.pdf
http://dx.doi.org/10.1016/j.comcom.2011.11.003
http://dx.doi.org/10.1016/j.comcom.2011.11.003
http://dx.doi.org/10.3390/s16071069
https://hal.inria.fr/hal-01057530/file/GBC14.pdf
http://dx.doi.org/10.1109/TII.2014.2299233
http://dx.doi.org/10.1109/AINA.2008.34
http://dx.doi.org/10.1109/CSC.2012.10
https://tools.ietf.org/html/rfc6120
https://tools.ietf.org/html/rfc6120
https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc6550
https://tools.ietf.org/html/rfc7252
https://standards.ieee.org/findstds/standard/802.15.4-2006.html
https://standards.ieee.org/findstds/standard/802.15.4-2006.html
http://trendwatching.com/x/wpcontent/uploads/2014/04/2014-04-IoCT.pdf
http://trendwatching.com/x/wpcontent/uploads/2014/04/2014-04-IoCT.pdf
http://dx.doi.org/10.1007/s13174-011-0021-3
http://dx.doi.org/10.1007/s13174-011-0021-3
https://arxiv.org/pdf/1405.5867v1.pdf
http://dx.doi.org/10.1109/CECNet.2012.6201508
http://dx.doi.org/10.1109/CECNet.2012.6201508
http://www.mit.jyu.fi/ai/papers/ICINCO-2008.pdf
http://www.mit.jyu.fi/ai/papers/ICINCO-2008.pdf
http://dx.doi.org/10.1109/ICSC.2008.82
http://dx.doi.org/10.1145/1772690.1772799
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1109/SoftCOM.2013.6671886
http://dx.doi.org/10.1109/SoftCOM.2013.6671886
http://dx.doi.org/10.5121/ijcses.2011.2307
http://dx.doi.org/10.1109/TrustCom.2012.144
http://www.emse.fr/~boissier/enseignement/maop14/courses/readings/FIPA-JADE.pdf
http://www.emse.fr/~boissier/enseignement/maop14/courses/readings/FIPA-JADE.pdf
http://dx.doi.org/10.1109/FiCloud.2014.14
https://pdfs.semanticscholar.org/15bc/ef45aaee19326844a183fea6a4aabd56d0f9.pdf
https://pdfs.semanticscholar.org/15bc/ef45aaee19326844a183fea6a4aabd56d0f9.pdf
http://dx.doi.org/10.1007/978-3-540-78731-0_4
http://dx.doi.org/10.1109/AINA.2010.187
http://dx.doi.org/10.1007/978-3-642-13645-0_6
http://dx.doi.org/10.1007/978-3-642-13645-0_6
http://dx.doi.org/10.1109/SAHCNW.2009.5172913

INTELLIGENT AUTOMATION & SOFT COMPUTING 9

Souto, E., Guimarães, G., Vasconcelos, G., Vieira, M., Rosa, Nelson, &
Ferraz, C. (2006). Mires, a publish/subscribe middleware for sensor
networks. Personal and Ubiquitous Computing, 10, 37–44. Doi:10.1007/
s00779-005-0038-3.

Suciu, G., Vulpe, A., Todoran, G., Cropotova, J., & Suciu, V. (2013).
Cloud computing and internet of things for smart city deployments.
In proceedings of the 7th International Conference Challenges of the
Knowledge Society (CKS 2013) (pp. 1409–1416).

Teixeira, T., Hachem, S., Issarny, V., & Georgantas, N. (2011). Service
oriented middleware for the internet of things: A perspective.
ServiceWave ’11, LNCS, 6994, 220–229.

The Internet of Things: making the most of the Second Digital Revolution.
(2014). UK government chief scientific adviser, (Ref: GS/14/1230).

Vermesan, O., & Friess, P. (2013). Internet of things -converging
technologies for smart environments and integrated ecosystems.
Aalborg, Denmark: River Publisher. ISBN: 978-87-92982-73-5.

W3C. (1997). Web Interface Definition Language (WIDL). http://www.
w3.org/TR/NOTE-widl

W3C. (2014). Efficient XML interchange (EXI) format. http://www.
w3.org/TR/exi/

Yang, Y., Wang, Z., Liu, Q., & Wang, L. (2012). Building a pervasive SOA
based IOT communication middleware using runtime compilation and
reflection. Journal of Computational Information Systems, 8, 643–654.

Zarghami, S. (2013). Middleware for internet of things (Master Thesis).
University of Twenty.

Zhang, W., & Hansen, KM. (2008). An OWL/SWRL based diagnosis
approach in a pervasive middleware. In proceedings of the 20th
International Conference on Software Engineering and Knowledge
Engineering (SEKE’2008) (pp. 893-898) http://www.hydramiddleware.
eu/hydra_papers/An_OWL-SWRL_based_Diagnosis_Approach_
in_a_Pervasive_Middleware.pdf

Zhou, M., Fan, H., & Ma, Y. (2013). Semantic annotation method of IOT
middleware. In proceedings of the International Conference on Intelligent
Control and Information Processing (ICICIP) (pp. 495-498). China.
DOI: 10.1109/ICICIP.2013.6568125

Kopetz, H. (2011). Real-time systems: Design principles for distributed
embedded applications. Boston, USA: Springer. ISBN-13: 978–
1441982360

Li, F., Vögler, M., Claessens, M., & Dustdar, S. (2013). Efficient and
scalable IoT service delivery on cloud. IEEE CLOUD, 2013, 740–747.
Doi:10.1109/CLOUD.2013.64.

Madden, S., Hellerstein, J., & Hong, W. (2003). Tinydb: In-network query
processing in tinyos. Technical report. http://telegraph.cs.berkeley.edu/
tinydb/tinydb.pdf

Milagaia, R. (2008). DPWS middleware to support agent-based
manufacturing control and simulation. Robotics and integrated
manufacturing (Master thesis). Monte de Caparica, Universidade
Nova de Lisboa.

Mulligan, G. (2007). The 6LoWPAN architecture. In Proceedings of
the 4th workshop on Embedded Networked Sensors (pp. 78-82).
10.1145/1278972.1278992

Nagy, M., Katasonov, A., Khriyenko O., Nikitin, S., Szydlowski, M., &
Terziyan, V. (2009). Chapter 14 in automation & control - theory and
practice (247–273), challenges of middleware for the internet of things,
ISBN 978-953-307-039-1, DOI: 10.5772/7869

OSGi Alliance. (2007). About the OSGi service platform, technical
whitepaper. http://www.osgi.org/documents/collateral/
OSGiTechnicalWhitePaper.pdf.

Perera, C., Zaslavsky, AB., Christen, P., & Georgakopoulos, D. (2014).
Context aware computing for the internet of things: A survey. IEEE
Communications Surveys & Tutorials, 16, 414–454. Doi:10.1109/
SURV.2013.042313.00197.

Reetz, ES., Kümper, D., Lehmann, A., & Tönjes, R. (2012). Test
driven life cycle management for internet of things based services:
A semantic approach. In proceedings of the 4th International
Conference on Advances in System Testing and Validation Lifecycle
(pp. 21–27). Lisbon. https://pdfs.semanticscholar.org/2e75/
f816f2c73929504d1107581175ceecdb5450.pdf

Song, Z., Cárdenas, AA., & Masuoka. R. (2010). Semantic middleware
for the Internet of Things. In Proceedings of Internet of things –IoT (pp.
1-8). DOI: 10.1109/IOT.2010.5678448

http://dx.doi.org/10.1007/s00779-005-0038-3
http://dx.doi.org/10.1007/s00779-005-0038-3
http://www.w3.org/TR/NOTE-widl
http://www.w3.org/TR/NOTE-widl
http://www.w3.org/TR/exi/
http://www.w3.org/TR/exi/
http://www.hydramiddleware.eu/hydra_papers/An_OWL-SWRL_based_Diagnosis_Approach_in_a_Pervasive_Middleware.pdf
http://www.hydramiddleware.eu/hydra_papers/An_OWL-SWRL_based_Diagnosis_Approach_in_a_Pervasive_Middleware.pdf
http://www.hydramiddleware.eu/hydra_papers/An_OWL-SWRL_based_Diagnosis_Approach_in_a_Pervasive_Middleware.pdf
http://dx.doi.org/10.1109/ICICIP.2013.6568125
http://dx.doi.org/10.1109/CLOUD.2013.64
http://telegraph.cs.berkeley.edu/tinydb/tinydb.pdf
http://telegraph.cs.berkeley.edu/tinydb/tinydb.pdf
http://dx.doi.org/10.1145/1278972.1278992
http://dx.doi.org/10.5772/7869
http://www.osgi.org/documents/collateral/OSGiTechnicalWhitePaper.pdf
http://www.osgi.org/documents/collateral/OSGiTechnicalWhitePaper.pdf
http://dx.doi.org/10.1109/SURV.2013.042313.00197
http://dx.doi.org/10.1109/SURV.2013.042313.00197
https://pdfs.semanticscholar.org/2e75/f816f2c73929504d1107581175ceecdb5450.pdf
https://pdfs.semanticscholar.org/2e75/f816f2c73929504d1107581175ceecdb5450.pdf
http://dx.doi.org/10.1109/IOT.2010.5678448

	Abstract
	1. Introduction
	2. IoT Concepts
	3. Middleware for IoT
	3.1. Service-oriented IoT Middleware
	3.2. Agent-oriented IoT Middleware

	4. Challenges
	5. Conclusion
	Disclosure Statement
	Notes on contributors
	References

