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ABSTRACT
Particle swarm optimization (PSO) is a population based swarm intelligence algorithm that has been 
deeply studied and widely applied to a variety of problems. However, it is easily trapped into the 
local optima and premature convergence appears when solving complex multimodal problems. To 
address these issues, we present a new particle swarm optimization by introducing chaotic maps (Tent 
and Logistic) and Gaussian mutation mechanism as well as a local re-initialization strategy into the 
standard PSO algorithm. On one hand, the chaotic map is utilized to generate uniformly distributed 
particles to improve the quality of the initial population. On the other hand, Gaussian mutation as 
well as the local re-initialization strategy based on the maximal focus distance is exploited to help 
the algorithm escape from the local optima and make the particles proceed with searching in other 
regions of the solution space. In addition, an auxiliary velocity-position update strategy is exclusively 
used for the global best particle, which can effectively guarantee the convergence of the proposed 
particle swarm optimization. Extensive experiments on eight well-known benchmark functions with 
different dimensions demonstrate that the proposed PSO is superior or highly competitive to several 
state-of-the-art PSO variants in dealing with complex multimodal problems.

1.  Introduction

Particle swarm optimization is a swarm intelligence and 
swarm search algorithm proposed by Kennedy and Eberhart 
(1995). Its development is based on the social behavior of ani-
mals such as bird flocking and fish schooling. PSO is similar 
to other population-based evolutionary algorithms in that it 
is initialized with a population of random solutions, such as 
ant colony optimization (Dorigo & Gambardella, 1997) and 
genetic algorithm (Holland, 1975). It is unlike most of other 
population based evolutionary algorithms in that PSO is moti-
vated by the simulation of social behavior instead of survival 
of the fittest, and each candidate solution is associated with a 
velocity. Due to the convenience of realization and promis-
ing optimization ability, PSO has been paid much attention 
by researchers since its advent, and successfully applied in 
solving various function optimization problems or the prob-
lems that can be transformed into the function optimization 
problems. However, due to the poor exploration of PSO, a cou-
ple of problems remain to be solved. First, both the standard 
PSO and various improved versions of PSO algorithms, such 
as HPSO (Ratnaweera, Halgamuge, & Watson, 2004), AEPSO 
(He, Wang, Wang, Zhou, & Hu, 2005) and other PSO variants, 
behave the characteristics of low stability. One of the reasons, 
just as proved by He et al. (2005), is that the initial popula-
tion is non-uniformly distributed. He et al. (2005) have just 
pointed out the reasons of low stability for PSO, but no specific 
strategies are given to solve it. Furthermore, very few studies 
have focused on the relationship between the initial particle’s 
distribution and the stability of PSO algorithm during the past 

years, which plays a crucial role in PSO for solving complex 
optimization problems. Second, like other evolutionary algo-
rithms, particle swarm optimization also tends to get stuck in 
local optima, especially for solving complicated multimodal 
problems. Fortunately, ever since the birth of PSO, researchers 
have been working hard to resolve this issue, such as studies on 
exploiting mutation strategies (Coelho, 2010; Higashi & Iba, 
2003; Krohling & dos Santos Coelho, 2006; Li, Yang, & Korejo, 
2008; Secrest & Lamont, 2003; Wu, 2011; Wu & Law, 2010) 
and local search algorithms (Gao, Liu, & Huang, 2012; Jiang, 
Kwong, Chen, & Ysim, 2012; Li, Zhou, Kou, & Xiao, 2012; Liu, 
Wang, Jin, Tang, & Huang, 2005; Tang, Zhuang, & Jiang, 2009; 
Wang, Zhou, Lu, Qin, & Wang, 2011; Zhang, Wang, & Ji, 2015), 
etc. However, these methods, as demonstrated in (He et al., 
2005), can hardly achieve ideal solutions due to their intrinsic 
weakness of low stability.

In recent years, a huge number of chaos-based PSO algo-
rithms have been proposed (Alatas, Akin, & Ozer, 2009; 
Chuang, Hsiao, & Yang, 2011; Coelho, 2008; Gao et al., 2012; 
Jiang et al., 2012; Liu et al., 2005; Mendes, Kennedy, & Neves, 
2004; Tang et al., 2009; Tian & Zhao, 2010; Wang et al., 2011), 
and most of them can be roughly classified into three catego-
ries; viz., chaotic sequence based initialization for PSO, chaotic 
sequence based parameters update for PSO and hybrid PSO 
and chaotic search techniques. As the representative work of 
the first category, Tian & Zhao (2010) first exploit two kinds 
of chaotic maps (Tent and Logistic) to attempt to improve the 
initial population of the standard PSO with promising results 
in 2010. Gao et al. (2012) follow similar reasoning employing 
a similar chaotic opposition-based population initialization 
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instead of a pure random initialization for PSO to improve 
its performance. Both of the methods, to some extent, can 
achieve certain success compared to the PSO algorithm with 
usual random initialization under the same conditions. For the 
second category, Coelho (2008) presents a novel quantum-be-
haved PSO by using chaotic mutation operator, the application 
of chaotic sequences based on chaotic Zaslavskii map rather 
than random sequences is a powerful strategy to diversify the 
population and improve the PSO performance in preventing 
premature convergence. Followed by a chaos embedded par-
ticle swarm optimization (CEPSO) is presented by leveraging 
chaotic sequences generated by different chaotic maps for PSO 
parameter adaptation (Alatas et al., 2009). Particularly, eight 
different chaotic maps (Logistic map, Tent map, Sinusoidal iter-
ator, Gauss map, Circle map, Arnold’s cat map, Sinai map and 
Zaslavskii map) are utilized to substitute different parameters 
r1, r2, c1, c2 and w individually or their different combinations 
for PSO algorithm. Subsequently, Chuang et al. (2011) come 
up with an accelerated chaotic particle swarm optimization 
by randomly generating initial particles and substituting the 
random parameters r1 and r2 of PSO with the sequences gen-
erated by the Logistic map, which can be seen as a special case 
of CEPSO. With regards to the third case, the core idea is to 
introduce the chaotic state into optimization variables, and 
then express them as particles applying the cooperation and 
competition for searching. Next, some small disturbance is 
added to each chaotic variable. Finally, the optimal solution 
is searched by iteratively updating the speed and location of 
particles. Representative work includes (Jiang et al., 2012; Liu 
et al., 2005; Mendel, Krohling, & Campos, 2011; Mendes et 
al., 2004; Tang et al., 2009; Wang et al., 2011), among which 
a chaotic particle swarm optimization by combining chaotic 
optimization algorithm with PSO is proposed by Jiang et al. 
(2012). Liu et al. (2005) develop a two-phased iterative strategy 
based chaotic PSO by alternating between PSO to perform 
global exploration and chaotic local search to perform a locally 
oriented search. Similarly, a new version of PSO based on the 
chaos search is put forward in (Tang et al., 2009), which claims 
that it is very efficient in seeking optimal parameters for sup-
port vector regression.

As briefly reviewed above, most of these approaches can 
achieve encouraging performance and motivate us to better 
explore PSO algorithms with the help of their excellent expe-
riences and knowledge. Hence, in this paper, inspired by our 
previous work (Tian & Zhao, 2010) and the work by He et 
al. (2005) and Gao et al. (2012), we present a unified particle 
swarm optimization framework by introducing chaotic map 
based initialization and Gaussian mutation mechanism as well 
as a local re-initialization strategy. On one hand, the chaotic 
map (Tent or Logistic) is applied to initialize uniformly distrib-
uted particles, which is a simple yet very effective method of 
improving the quality of initial population. On the other hand, 
Gaussian mutation mechanism as well as a local re-initializa-
tion strategy based on the maximal focus distance is adopted 
to help the algorithm jump out of the local optima and make 
the particles proceed with searching until the global optimal or 
the closer-to-optimal solutions can be found. In addition, an 
auxiliary velocity-position update strategy is exclusively used 
for the global best particle, which can effectively guarantee 
the convergence of the proposed particle swarm optimiza-
tion. Experimental results on eight well-known benchmark 
functions demonstrate that the proposed PSO is superior or 
highly competitive to several state-of-the-art PSO algorithms. 

To the best of our knowledge, this study is the first attempt to 
investigate the performance improvement of PSO based on the 
uniformly distributed initial particles generated by two kinds 
of chaotic maps, which markedly distinguishes our work from 
many previous chaos-based PSO algorithms. The ultimate goal 
of this paper is to develop a novel PSO to solve the complicated 
optimization problems as effectively as possible.

The remainder of this paper is organized as follows: Section 
2 outlines the standard PSO briefly. Section 3, two sets of cha-
otic maps, i.e. Tent map and Logistic map, are first introduced, 
and then details how to generate uniformly distributed initial 
particles by the chaotic maps together with their initial per-
formance comparison, respectively. Section 4 elaborates the 
unified particle swarm optimization framework based on the 
chaotic maps. Experiments on eight well-known benchmark 
functions are reported and analyzed in Section 5. Finally, the 
paper is summarized with some important conclusions and 
future work in Section 6.

2.  Standard PSO Algorithm

Particle swarm optimization is inspired by natural concepts 
such as bird flocking and fish schooling. In the PSO system, 
each candidate solution is called a particle, each particle moves 
in the search space with a velocity that is dynamically adjusted 
according to its own experience and the experience of neighbor 
particles. Mathematically, the particles are manipulated by the 
following equations:
 

 

 

where c1 and c2 are positive constants called acceleration coef-
ficients, r1 and r2 are two randomly generated numbers in the 
range [0,1]. ω is the inertia weight defined by Eq. (3), where 
ωmax is the initial weight, ωmin is the final weight, itermax denotes 
the maximum iteration number and itercur is the current itera-
tion number. It has characteristics that are reminiscent of the 
temperature parameter in the simulated annealing (SA). In 
general, a large inertia weight facilitates a global exploration, 
while a small one facilitates a local exploitation. Suppose that 
the i-th particle is represented as Xi=(xi1, xi2,…,xiD). The best 
previous position (the position giving the best fitness value) 
of the i-th particle is recorded pbest and represented as Pi=(pi1, 
pi2,…,piD). The index of the best particle among all the parti-
cles in the population is denoted as gbest and represented by 
Pg=(pg1, pg2,…,pgD). The rate of the position change (velocity) 
for particle i is represented as Vi=(vi1, vi2,…,viD), and the value 
of each dimension of every velocity vector vi is clamped to 
the range [-vmax, vmax] to reduce the likelihood of the particle 
leaving the search space. D represents the dimension of the 
search space. The pseudo-code of standard PSO is succinctly 
shown as follows:

(1)
vid(t + 1) =� × vid(t) + c

1
× r

1

×
[

pid(t) − xid(t)
]

+ c
2
× r

2

×
[

pgd(t) − xid(t)
]

(2)xid(t + 1) = xid(t) + vid(t + 1)

(3)� = �max −
(�max − �min)

itermax

× itercur
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Algorithm 1: Pseudo-code of Standard PSO Algorithm

1.  Begin
2.    Randomly initialize particle swarm
3.    while (number of iterations or the stopping criterion is not met)
4.   E   valuate fitness of particle swarm
5.      for n=1 to number of particles
6.    F    ind pbest
7.    F    ind gbest
8.        for d=1 to number of dimensions of particle
9.        U    pdate the velocity of particles by Eq. (1)
10.     U     pdate the position of particles by Eq. (2)
11.        next d
12.      next n
13.   U   pdate the inertia weight value by Eq.(3)
14.    next generation until stopping criterion
15.  End

3.  Chaotic Maps

Chaos can be described as a bounded nonlinear system with 
deterministic dynamic behavior that has ergodic and stochas-
tic properties (Schuster & Just, 2006). It is very sensitive to its 
initial conditions and parameters employed. In another words, 
cause and effect of chaos are not proportional to the small 
differences of the initial values, which results in the so-called 
“‘butterfly effect”’, that is, small variations of an initial varia-
ble can lead to huge differences in the solutions after many 
iterations. Moreover, the track of chaotic variables can travel 
ergodically over the whole search space. Mathematically, chaos 
is deterministic and predictable, as it is generated through iter-
ating some deterministic equations, and it also possesses an ele-
ment of regularity. In this paper, two kinds of chaos, Tent and 
Logistic maps are utilized to generate uniformly distributed 
initial particles to enhance the quality of the initial population 
as well as to re-initialize a certain number of particles when the 
population inclines to stagnation. More details of them will be 
described in the following subsections.

3.1.  Tent Map

Tent map (Peitgen, Jürgens, & Saupe, 1992) has been widely 
studied in a nonlinear dynamic system due to its several inter-
esting properties such as chaotic orbits, simple shape, and so 
on. More importantly, Tent map shows its own outstanding 
advantages and has higher iterative speed than Logistic map 
(Steeb, 2005). Its expression is defined by Eq. (4), where x 
denotes the chaotic variable. Through Bernoulli shift trans-
formation, its variant can be expressed by Eq. (5).
 

ww 

Note that Eq. (5) can be compressed into one formula xn+1=g(x-
n)=(2xn) mod 1. For floating-point numbers in the range [0,1], 
when Tent map is iterated on the computer, it actually shifts 
the binary digits of the fractional part of these numbers to 
the left unsigned. This kind of operation makes full use of the 
characteristics of the computer, which is more suitable for large 
orders of magnitude data sequence processing. Furthermore, 
it has been proved that Tent map and Logistic map are top-
ologically conjugate (Shan, Qiang, Li, & Wang, 2005), and 
the iterative speed of Tent map is faster than that of Logistic 

(4)g(x) =

{

2x, 0 ≤ x ≤ 1∕2

2(1 − x), 1∕2 < x ≤ 1

(5)g
�

(x) =

{

2x, 0 ≤ x ≤ 1∕2

2x − 1, 1∕2 < x ≤ 1

map. The bifurcation diagram of it is illustrated in Figure 1(a). 
However, Tent map also shows some limitations. The reason 
is that due to the computer word length is limited, the binary 
digits of the fractional part of floating-point numbers will tend 
to be all-zero after a certain number of unsigned left shift-
ing, viz., plunge into some fixed points, such as the 4-period 
(0.2,0.4,0.8,0.6) as well as some unstable periodic points 0.25, 
0.5 and 0.75, which will make it get stuck at the fixed point 0 
after several steps of iteration. As previously mentioned, the 
pseudo-code of Tent map is described as follows, which can 
generate uniformly distributed data sequence quickly and avoid 
plunging into the small periodic cycles effectively.

3.2.  Logistic Map

As one of the simplest chaos, Logistic map (May, 1976) has 
been paid much attention by researchers over the last few dec-
ades. It can be described as follows:
 

where xn represents the n-th chaotic variable, xn∈(0,1) under 
the conditions that the initial x0∈(0,1) except for some peri-
odic fixed points (0,0.25,0.5,0.75,1). μ is usually a predeter-
mined constant, also called bifurcation coefficient. When μ 
increases from zero, the dynamic system generated by Eq. (6) 
will change from one fixed point to two, and until 2n. A large 
number of multiple periodic components will locate in the 
narrower and narrower intervals of μ as it increases. This phe-
nomenon is obviously free from constraint. But μ has a limit 
value μt=3.569945672. When μ tends to it, the period will be 
infinite or non-periodic. At this time, the whole system evolves 
into chaotic state. When μ is greater than 4, the system becomes 
unstable. Hence the range [μt,4] is generally considered as the 
chaotic region of the whole system. Its bifurcation diagram is 
illustrated in Figure 1(b).

Without loss of generality, the main idea of the Logistic 
based initialization is to generate the same number of chaotic 
variables corresponding to the optimization problem. After 
a preset number of chaotic iterations, these chaotic variables 
are remapped into the optimization space, which will serve 
as the real initial variables for the original optimization prob-
lem. Here, Eq. (6) is chosen as the chaotic signal generator, in 
which μ is set to be 4. Since the procedure of using Logistic 
map to generate uniformly distributed variables is very simi-
lar to that of Tent map so we won’t reiterate it any more here. 
Figure 2 shows the histogram comparison of Tent map, Logistic 
map and random map for 3,000 iterations in the range [0,1], 
respectively.

It should be noted that the histograms of Tent map and 
Logistic map are depicted under the same conditions that 

(6)xn+1 = f (�, xn) = �xn(1 − xn), n = 0, 1, 2,⋯

Algorithm 2: Pseudo-code of Tent Map for Initialization

1.  Begin
2.    Randomly initialize chaotic variables
3.    while (number of maximal iterations is not met)
4.   �   if chaotic variable plunges into the fixed points or the small 

periodic cycles
5.        Implement a very small positive random perturbation
6.    M    ap them by Eq.(5)
7.      else
8.    U    pdate the variables by Eq.(5) directly
9.      end
10.    next generation until stopping criterion
11.    Remap the chaotic variables into the optimization problem space
12.  End
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population. On the other hand, Gaussian mutation as well as 
the local re-initialization strategy based on the maximal focus 
distance is utilized to help the algorithm break away from the 
local optima when stagnation happens, which is able to make 
the particle swarm optimization proceed with searching in 
other regions of the solution space. Note that Gaussian muta-
tion is a widely used strategy in PSO algorithm to discourage 
the intrinsic premature convergence (Coelho, 2010; Higashi 
& Iba, 2003; Krohling & dos Santos Coelho, 2006; Li et al., 
2008; Secrest & Lamont, 2003; Wu, 2011; Wu & Law, 2010). 
It is mainly used in two ways; one is based on the particle’s 
position and the other is based on the particle’s velocity. The 
former is by far the most common technique found in the 
literature. As the recent typical work, Li et al. (2008) exploit 
three different mutation operators (Gaussian, Cauchy and Levy 
mutation) based on an adaptive mechanism to help PSO jump 
out of the local optima. Experimental results validate its global 
search capability without loss of convergence property. Wu and 
Law develop an adaptive Gaussian particle swarm optimiza-
tion (Wu & Law, 2010) and a Gaussian PSO based on Cauchy 
mutation (Wu, 2011) for complex system fault diagnosis and 
parameters selection of support vector machine, respectively. 
Therefore, without loss of generality, Gaussian mutation rather 
than Cauchy, Levy and other mutation operators is applied here 

both their initial values and the number of iterations are set to 
0.4567 and 3,000, respectively. By comparing the histograms 
illustrated above, it can be clearly observed that in Tent map, 
the maximal frequency is 81 while the minimal frequency is 14, 
corresponding to 42 and 19 in random map as well as 216 and 
11 in Logistic map. In addition, the overall average frequency 
of Tent map is about 30, whereas it approximates 30 in the 
range [0.2,0.8] for Logistic map and 27 between [0.3,0.5] for 
random map. At first glance, it seems that the histogram trend 
of Tent map is not smoother than that of Logistic map plotted 
in Figure 2(b) especially for the middle part of the histogram. 
But its whole performance is still better than that of Logistic 
map, which is fully consistent with the conclusions obtained 
in literature (Shan et al., 2005). Certainly, the histogram trend 
of Logistic map is obviously superior to that of random map, 
which can be easily validated by the empirical cumulative dis-
tribution function in case they are stochastically ordered.

4.  PSO with Chaos-based Initialization and 
Gaussian Mutation Strategy

For the PSO algorithm proposed in this paper, the chaotic map 
(Tent or Logistic), on one hand, is employed to generate uni-
formly distributed particles to improve the quality of the initial 
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Figure 1. Bifurcation Diagrams of Tent Map and Logistic Map.



INTELLIGENT AUTOMATION & SOFT COMPUTING﻿    5

 

 

where � denotes the index of the global best particle, –x
�d(t) 

resets the particle’s position to the global best position pgd(t), 
wv

�d(t) indicates the current search direction, ρ(t)(l-2r2d(t)) 
generates a random sample from a sample space with side 
lengths 2ρ(t). Note that ρ is a scaling factor defined below, 
which determines the size of an area surrounding the global 
best position to proceed with searching.
 

where #successes and #failures denote the numbers of con-
secutive successes and failures, respectively. Here, a failure is 
defined as f(pg(t))=f(pg(t-1)), whereas a success is just the oppo-
site, sc and fc are preset thresholds. In common cases a default 
initial value ρ(0)=1.0 has been found empirically to produce 
encouraging results.

Based on the above description, the unified particle swarm 
optimization framework proposed in this paper is given below:

5.  Experimental Results and Analysis

5.1.  Experimental Settings

To validate the effectiveness of the proposed approach, we con-
duct experiments on eight well-known benchmark functions. 
Note that the test functions employed here are divided into two 
groups. The first group is mainly utilized to evaluate the perfor-
mance of each PSO algorithm in the low dimensional solution 
space, whereas the second one is exploited to further demon-
strate its performance in a much higher dimensional solution 
space along with comparison to several other state-of-the-art 

(8)v
�d(t + 1) = −x

�d(t) + pgd(t) + wv
�d(t) + �(t)(1 − 2r2d(t))

(9)
x
�d(t + 1) = x

�d(t) + v
�d(t + 1)

= pgd(t) + wv
�d(t) + �(t)(1 − 2r

2d(t))

(10)𝜌(t + 1) =

⎧

⎪

⎨

⎪

⎩

2𝜌(t), if #successes > sc
0.5𝜌(t), if #failures > fc

𝜌(t), otherwise

to maintain the population diversity. Meanwhile, motivated by 
Li, Liu, and Sun (2004), to decide whether the PSO proposed 
in this paper plunges into the local optima or not, we define 
the maximal focus distance (MFD) as follows:
 

where m is the number of neighborhood particles, pld is the 
previous best position, and xid denotes the sub-vector of the 
d-th dimension of the i-th particle in the search space.

Besides, the other set of velocity-position update strategy 
is also exclusively used to keep the global best particle moving 
until it reaches a local minimum under the assumption of min-
imization (Bergh & Engelbrecht, 2002), which can effectively 
guarantee the convergence of the proposed PSO algorithm. The 
corresponding update strategy is defined below:

(7)MFD = max
i=1⋯m

⎛

⎜

⎜

⎝

�

�

�
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D
�

d=1
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Figure 2. Histograms of 3,000 Observations for Tent, Logistic and Random Maps.

Algorithm 3: Pseudo-code of the Proposed PSO Algorithm

1.  Begin
2. � Randomly initialize the velocity of the particles and employ chaotic map 

to initialize the position of the particles, let fi denote the fitness of each 
particle, t-MFD denote the preset threshold of MFD, fave  
presents the average fitness of the whole swarm.

3.    while (number of maximal iterations is not met)
4.      for n=1 to number of particle
5.    F    ind pbest
6.    F    ind gbest
7.        Calculate MFD by Eq.(7)
8.        if MFD ≤ t-MFD
9.          Calculate fi and fave
10.          if fi ≤ fave
11.      �      execute Gaussian mutation for the position of the particles 

whose fitness is less than or equal to the average fitness of 
the whole swarm

12.          else
13.            reinitialize the same number of particles using the chaotic map
14.          end
15.        else
16.     �U     pdate the velocity and position of the global best particle by 

Eqs.(8) and (9)
17.     �U     pdate the velocity and position of the other particles by Eqs.

(1) and (2)
18.        end
19.      next n
20.    next generation until stopping criterion
21.  End
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of neighborhood particles m=15, the fixed inertia weight ω=1, 
the linearly decreasing inertia weight ωmax=0.9, ωmin=0.4 and 
the acceleration coefficients c1=c2=2. The success threshold 
sc=15 and the failure fc=5, which implies that the algorithm is 
quicker to punish a poor ρ setting than it is to reward a suc-
cessful ρ value to produce acceptable results. In addition, the 
threshold of maximal focus distance (denoted as t-MFD) is 
predetermined to be 0.28 by trial and error. Each algorithm is 
run 30 times on every test function with 800 iterations for each 
run, and the stopping criterion is set as reaching the maximal 
iteration numbers. For the sake of comprehensive comparison, 
different combinations for PSO with an initial population of 
random map, Tent map or Logistic map and a constant inertia 
weight or a linearly decreasing inertia weight are exploited. To 
improve the readability, acronyms PSORC, PSORL, PSOTC, 
PSOTL, PSOLC and PSOLL are specified in Table 2.

Figure 3 depicts the graphical shows for the 1st group test 
functions with 2-dimensional decision variables, respectively.

5.2.  Experimental Results on 1st Group Test Functions

Table 3 shows the best solutions and the standard deviations 
of the experimental results for the benchmark functions with 
dimension n=10 except for Schaffer function with n=2. Note 
that before the PSO algorithm running, the initial position 
of the particle is generated by the chaotic maps (Tent and 
Logistic) and stored as .txt format files in the current direc-
tory of the disk. Besides, the average running time (seconds) 
is also leveraged as a metric to evaluate the efficacy of the pro-
posed PSO algorithm. Here we apply Microsoft Visual Studio 
2008 to implement the proposed various PSO algorithms. The 
experiments are carried out on the platform of 3.20 GHz Intel 
Core i7 CPU computer with 16.0G memory running Win 10 
professional.

From Table 3, it is easy to see that the PSO with an initial 
population of Logistic map solutions is evidently superior to 
that of the random ones, which means that the distribution of 
initial particles can be improved by Logistic map. At the same 
time, the premature convergence of particles can be effectively 
prevented by adopting the strategies of Gaussian mutation and 
local re-initialization based on the maximal focus distance 
among particles. By this way, the performance of the stand-
ard PSO can be improved to a certain extent. Alternatively, it 
is important to note that the PSO with an initial population 
of Tent map solutions proposed in this paper, especially the 
PSOTL, outperforms all the others. As can be seen from Table 
3, its standard deviations are consistently smaller than those 
of other algorithms, which implies that the PSO with an ini-
tial population of Tent map solutions can alleviate its inherent 
defects of low stability. In another words, this further illustrates 
the importance of the uniformly distributed initial particles to 
the convergent performance of PSO and the linearly decreasing 
inertia weight to the trade-off of exploration and exploitation. 
In addition, it is to be noted that the average running time of 

PSO algorithms. All the test functions are shown as follows, 
and the dimension, search range and global optimum function 
value of each test function are listed in Table 1, respectively.

 1st group:

(1) � �  Sphere function

(2) � �  Rastrigin’s function

(3) � �  Griewank function

(4) � �  Schaffer function

 2nd group:

(5) � �  Noncontinuous Rastrigin function

f5(x)=
n
∑

i=1

(y2i − 10 cos(2�yi) + 10), where yi =
{

xi,
|

|

xi
|

|

< 0.5
round(2xi)

2
, |
|

xi
|

|

≥ 0.5

(6) � �  Ackley function

(7) � �  Rotated Griewank function

f7(x) =
1

4,000

n
∑

i=1

y2i −
n
∏

i=1

cos(
yi
√

i
) + 1, where Y = X − O

(8) � �  Penalized function

f8(x)=
�

n

{

10 sin2(�y1) +

n−1
∑

i=1

(yi − 1)2[1 + 10 sin2(�yi+1)]

+(yn − 1)2
}

+

n
∑

i=1

u(xi, 10, 100, 4)

, 

where yi = 1+
1

4
(xi+1), u(xi, a, k,m) =

⎧

⎪

⎨

⎪

⎩

k(xi − a)m, xi > a

0,−a ≤ xi ≤ a

k(−xi − a)m, xi < −a

For the 1st group test functions, the experimental condi-
tions are set as follows: The population size=40, the number 

f1(x) =

n
∑

i=1

x2i

f2(x) =

n
∑

i=1

(x2i − 10 cos(2�xi) + 10)

f3(x) =
1

4, 000

n
�

i=1

x2i −

n
�

i=1

cos

�

xi
√

i

�

+ 1

f4(x) = 0.5 +
sin2

√

x21 + x22 − 0.5

(1.0 + 0.001(x21 + x22))
2

f6(x) = −20exp(−0.2

√

√

√

√

1

n

n
∑

i=1

x2i ) − exp(
1

n

n
∑

i=1

cos(2�xi)) + 20 + e

Table 2. Each Acronym and Corresponding PSO Algorithm.

Initialization method Inertia weight Acronym
random map constant inertia weight PSORC

linearly decreasing inertia weight PSORL
tent map constant inertia weight PSOTC

linearly decreasing inertia weight PSOTL
logistic map constant inertia weight PSOLC

linearly decreasing inertia weight PSOLL

Table 1. Dimensions, Search Ranges and Global Optimum Function Values of Test 
Functions.

Test function Dimensions (n) Search range Global optimum
f1(x) 10 [-100,100]n 0
f2(x) 10 [-5.12,5.12]n 0
f3(x) 10 [-600,600]n 0
f4(x) 10 [-100,100] 0
f5(x) 30 [-5.12,5.12]n 0
f6(x) 30 [-32,32]n 0
f7(x) 30 [-600,600]n 0
f8(x) 30 [-50,50]n 0
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algorithm corresponding to each curve shown in Figure 4(a) 
is run for 800 iterations.

As seen from Figure 4, at the points where the curves of 
PSOTL decrease rapidly imply that particles tend to trap into 
the local optima. Then Gaussian mutation as well as the local 
re-initialization strategy is employed in time to help PSO 
escape from the local optima and make the particles proceed 
with searching in other regions of the solution space. In par-
ticular, the introduced velocity-position update strategy for 
the global best particle, which can keep the search proceed-
ing and effectively guarantee the convergence of the proposed 
PSO algorithm. By comparison, the curves of PSOLL decrease 
slowly as the search proceeds and the curves of PSOTC and 
PSOLC decrease more slowly with the increase of iteration. To 
be specific, in Figure 4(a) and Figure 4(b), the maximal focus 
distance of PSOTC descends faster than that of PSOLC for 
Sphere function and Rastrigin function, respectively. As for 

PSORL is less than that of other PSO algorithms for each test 
function. In contrast, PSOTL takes the most computing time 
in each case. The running time needed by other PSO algo-
rithms lies between these two values. It is not hard to find 
that the additional computational cost is heavily dependent 
on the calculating of the linearly decreasing inertia weight and 
the possible Gaussian mutation as well as the Tent map based 
re-initialization. However, the experimental results, especially 
the best solution and standard deviation listed above, demon-
strate that a slight additional computational cost substantially 
improves the accuracy and stability of PSO algorithm.

Figure 4 graphs the evolution curves of the MFD in each 
algorithm for the 1st group test functions. To show the evo-
lutionary processes clearly, here, the y axes adopt the fitness 
logarithm values, especially in Figure 4(a), the former part 
is specially scaled up to a certain degree so as to show the 
curve variation tendencies more clearly, but in actual fact, each 

(a) Sphere function (b) Rastrigin function

(c) Griewank function (d) Schaffer function

Figure 3. Graphical Shows for 1st Group Test Functions.
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the curves of MFD for Griewank and Schaffer functions, they 
behave to be interwoven with each other. On the whole, the 
curves of the maximal focus distance corresponding to vari-
ous PSO and test functions take on downtrend, which further 
demonstrates the fact that PSO tends to trap into the local 
optima especially in the later stage of the evolutionary pro-
cess. In the meantime, it shows the necessity of adopting other 
strategies to help the algorithm escape from the local optima.

In addition, the evolution curves of the best convergent 
solutions for the 1st group test functions are illustrated in 
Figure 5. Again, it can be easily observed that PSOTL con-
stantly keeps fast speed of convergence and finally converges 
to the global optima effectively. More specifically, taking Figure 
5(c) for example, the curve of PSOTL keeps falling almost for 
the first 400 iterations, which benefits from the uniformly dis-
tributed particles generated by Tent map, Gaussian mutation as 
well as the local re-initialization strategy based on the maximal 
focus distance. All these can help the algorithm escape from 
the local optima and make the particles proceed with searching 
until the convergence condition is satisfied.

Figure 4. The Evolution Curves of the MFD on 1st Group Test Functions.

Table 3. Optimization Results of 1st Group Test Functions.

Functions Methods
Best solu-

tions
Standard 

deviations
Average 

running time
Sphere PSORC 1.49e-001 2.32e-001 6.56

PSORL 7.74e-005 6.20e-005 6.37
PSOTC 2.95e-038 1.69e-038 14.87
PSOTL 1.46e-168 1.18e-165 15.62
PSOLC 2.34e-032 1.58e-032 13.85
PSOLL 4.39e-168 9.72e-166 14.21

Rastrigin PSORC 1.24e+001 3.63e-001 12.05
PSORL 1.91e+001 1.19e-001 12.03
PSOTC 0 8.30e-168 19.82
PSOTL 0 0 21.82
PSOLC 0 9.30e-165 15.97
PSOLL 0 0 21.08

Griewank PSORC 3.15e+001 5.49e-001 8.59
PSORL 2.12e+001 3.36e-001 8.46
PSOTC 0 2.99e-062 13.24
PSOTL 0 0 16.56
PSOLC 0 5.33e-062 13.03
PSOLL 0 0 15.94

Schaffer PSORC 1.72e-015 1.41e-001 1.15
PSORL 0 6.94e-001 1.08
PSOTC 0 8.33e-132 1.94
PSOTL 0 0 2.35
PSOLC 0 2.06e-132 1.51
PSOLL 0 6.76e-138 2.28
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(SD) and average running time (T) of each algorithm for each 
test function with dimension n=10 (except for Schaffer with 
dimension 2) are summarized in Table 4.

From Table 4, there exist three aspects that can be easily 
observed. First, the best solution of each algorithm for each 
test function has been consistently obtained by PSOTL. In 
comparison, PSOTL-G-R has gotten the worst convergence 
values except for the Schaffer function. In particular, from 
the optimization results of Sphere function, it can be easily 
seen that the PSO algorithm, which applying either Gaussian 
mutation or re-initialization strategy alone will produce 

To better understand the effectiveness of Gaussian mutation 
mechanism and the local re-initialization strategy introduced 
into our algorithm, we take PSOTL as an example to illustrate 
its performance in Table 4. Here, three different cases are dis-
cussed as follows: The first one is PSOTL without Gaussian 
mutation and local re-initialization (denoted as PSOTL-G-R), 
the second one is PSOTL without Gaussian mutation, but with 
local re-initialization (denoted as PSOTL-G) and the third 
one is just opposite to the second case, that is, PSOTL without 
local re-initialization, but with Gaussian mutation (denoted as 
PSOTL-R). Similarly, the best solution (BS), standard deviation 

Figure 5. The Evolution Curves of the Best Solutions for each PSO on 1st Group Test Functions.

Table 4. Optimization Results Comparison among PSOTL, PSOTL-R, PSOTL-G and PSOTL-G-R on 1st Group Test Functions.

Function Methods BS SD T(seconds) Function Methods BS SD T(seconds)
f1(x) PSOTL-G-R 2.06e-021 9.47e-011 11.26 f2(x) PSOTL-G-R 4.63e-021 5.26e-014 17.95

PSOTL-G 2.84e-034 1.02e-013 14.18 PSOTL-G 0 4.32e-016 20.13
PSOTL-R 5.82e-035 1.31e-013 13.87 PSOTL-R 0 1.19e-016 19.08
PSOTL 1.46e-168 1.18e-165 15.62 PSOTL 0 0 21.82

f3(x) PSOTL-G-R 3.29e-024 3.51e-018 12.12 f4(x) PSOTL-G-R 0 8.02e-032 1.22
PSOTL-G 6.15e-033 2.12e-019 15.68 PSOTL-G 0 1.49e-038 2.14
PSOTL-R 0 2.08e-019 14.87 PSOTL-R 0 1.78e-038 1.86
PSOTL 0 0 16.56 PSOTL 0 0 2.35
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functions, except for the function dimension n=30 instead of 
n=10, and the failure threshold fc=3.

Tables 5-6 list the experimental results of the 2nd group test 
functions together with those by HPSO-TVAC (Ratnaweera 
et al., 2004), CSPSO (Gao et al., 2012), FIPS (Mendes et al., 
2004), LPSO (Kennedy & Mendes, 2002), DMS-PSO (Liang 
& Suganthan, 2005), OLPSO-L (Zhan, Zhang, Li, & Shi, 
2011), OPSO (Ho, Lin, Liauh, & Ho, 2008), VPSO (Kennedy 
& Mendes, 2006), CLPSO (Liang, Qin, Suganthan, & Baskar, 
2006) and GPSO (Shi & Eberhart, 1998), respectively. The com-
putational results of these algorithms are directly excerpted 
from (Gao et al., 2012; Wu, 2011) to be compared with PSOTL 
proposed in this paper. And the best results among these algo-
rithms are shown in bold numbers in these tables.

Note that “-” in Tables 5-6 denotes no presence of opti-
mization results exploiting the corresponding algorithms 
on the test functions. As listed in Table 5, it is apparent that 
PSOTL significantly outperforms the first three PSO methods. 
Compared with OLPSO-L and CSPSO, our method can also get 
a comparable overall performance. Taking the test function f8 
for example, even though the mean of PSOTL is greater than 
those of OLPSO-L and CSPSO, its standard deviation is one 
order of magnitude smaller than theirs. As a result, it implies 
that PSOTL has relatively higher stability than OLPSO-L and 
CSPSO, which further accounts for the effectiveness of uni-
formly distributed initial particles generated by the Tent map. It 
also can be observed that the experimental result of PSOTL in 
Table 6 outperforms those of all the other PSO variants. All the 
experimental results, on the other hand, demonstrate the scal-
ability and robustness of the proposed PSOTL for high dimen-
sional multimodal function optimization. Furthermore, based 
on the classic literature (Derrac, García, Molina, & Herrera, 
2011), we have also verified the effectiveness of it from the 
perspective of statistical analysis (paired and unpaired t-tests). 
We argue that the better performance of the proposed PSOTL 
algorithm is largely ascribed to all of its components, includ-
ing the uniformly distributed particles generated by Tent map, 
Gaussian mutation, the local re-initialization strategy based 
on the maximal focus distance, two sets of velocity-position 
update strategies and the linearly decreasing inertia weight. In 
sum, our method is superior or highly competitive to several 
state-of-the-art existing PSO algorithms.

disappointing results. However, all of these results are better 
than that of PSOTL-G-R. For this reason we cannot apply 
Gaussian mutation or re-initialization strategy individually 
to solve complex multimodal functions directly. Instead, the 
combination of them can achieve the best performance, which 
shares the advantages from each other and presents a consistent 
improvement. Second, as expected, the experimental results 
show that PSOTL yields the best stability performance whereas 
PSOTL-G-R obtains the worst. We think this is largely ascribed 
to the benefit from embedding Gaussian mutation mecha-
nism and using re-initialization strategy to timely replenish 
the diversity of the particle swarm, which is able to help the 
algorithm proceed to search in wider regions of the solution 
space. Alternatively, what is interesting shown in the table is 
that almost the same SD can be achieved by PSOTL-G and 
PSOTL-R for each test function respectively. Third, Table 4 also 
shows the average running time of various PSO. It is noticeable 
that the slightly much time is taken by PSOTL than those of 
other algorithms, but a slight additional computational cost 
substantially improves the accuracy and stability of PSO algo-
rithm. In sum, the Gaussian mutation mechanism and local 
re-initialization strategy, to some extent, play a complementary 
role each other in the optimization process and should be used 
together for good optimization performance.

5.3.  Experimental Results on the 2nd Group Test 
Functions

From experimental results on the 1st group test functions 
shown above, it is easy to see that PSOTL is remarkably supe-
rior to the others. As a consequence, we conduct our exper-
iments on the 2nd group test functions only based on the 
PSOTL. To make a fair comparison with several state-of-the-
art PSO algorithms, we only provide the means and standard 
deviations of the experimental results for the 2nd group test 
functions. Likewise, each algorithm is run 30 times on every 
test function with 800 iterations for each run, and the stopping 
criterion is set as reaching the maximal iteration number. Note 
that the mean of solutions indicates the solution quality of the 
algorithms, while the standard deviation represents the stability 
of the algorithms. Besides, it’s worth noting that all the exper-
imental parameters are the same as those in the 1st group test 

Table 5. Optimization Results Comparison among PSOs on 2nd Group Test Functions.

Function Metric LPSO FIPS DMS-PSO OLPSO-L CSPSO PSOTL
f5 Mean 30.40 35.97 32.8 – 0 0

SD 9.23 9.49 6.49 – 0 0
f6 Mean 8.20e-008 2.33e-014 1.84e-014 4.28e-015 2.57e-014 9.21e-015

SD 8.73e-008 7.19e-016 4.35e-015 7.11e-016 1.77e-015 8.86e-016
f7 Mean 1.68e-003 1.28e-008 1.02e-002 4.19e-008 – 5.93e-008

SD 3.47e-003 4.29e-008 1.24e-002 2.06e-007 – 1.66e-007
f8 Mean 8.10e-016 1.96e-015 2.51e-030 1.57e-032 1.57e-032 5.03e-032

SD 1.07e-015 1.11e-015 1.02e-029 2.79e-048 2.73e-048 8.15e-049

Table 6. Optimization Results Comparison among PSOs on 2nd Group Test Functions.

Function Metric VPSO CLPSO OPSO HPSO-TVAC GPSO PSOTL
f5 Mean 21.33 1.67e-001 – – 15.50 0

SD 9.46 3.79e-001 – – 7.40 0
f6 Mean 1.40e-014 5.91e-005 1.49e-008 9.29 1.93 9.21e-015

SD 3.48e-015 6.46e-005 6.36e-009 2.07 9.60e-001 8.86e-016
f7 Mean – 7.96e-005 1.28e-003 9.26e-003 1.80e-002 5.93e-008

SD – 7.66e-005 3.70e-003 8.80e-003 2.41e-002 1.66e-007
f8 Mean 3.46e-003 6.45e-014 1.56e-019 2.71e-029 2.23e-031 5.03e-032

SD 1.89e-002 3.70e-014 1.67e-019 1.88e-029 7.07e-031 8.15e-049
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6.  Conclusions and Future Work

In this paper, we have proposed a new particle swarm opti-
mization algorithm by introducing two sets of chaotic maps 
(Tent and Logistic) and Gaussian mutation mechanism as well 
as re-initialization strategy based on the maximal focus dis-
tance, which can generate uniformly distributed initial particles 
to improve the low stability and help the PSO algorithm to 
proceed with searching in other regions of the solution space 
effectively. Moreover, an auxiliary velocity-position update 
strategy is exclusively leveraged for the global best particle to 
guarantee the convergence of the PSO algorithm. Compared 
with several state-of-the-art existing PSO approaches on multi-
modal function optimization, the simulation results show that 
PSOTL performs better in terms of its stability, the quality of 
the final solutions and the convergence speed.

As for future work, we plan to introduce this approach 
into other real-world research fields, such as integrated cir-
cuit design, media semantic understanding and engineering 
optimization scheduling, etc. Lastly, and arguably most impor-
tantly, the qualitative relationship between the initial particle’s 
distribution and the convergence of PSO algorithm, from the 
perspective of mathematics, will be elaborated and proved 
comprehensively.
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