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ABSTRACT
This paper focuses on the development of a multi-objective lot size–reorder point backorder inventory 
model for a slow moving item. The three objectives are the minimization of (1) the total annual relevant 
cost, (2) the expected number of stocked out units incurred annually and (3) the expected frequency of 
stockout occasions annually. Laplace distribution is used to model the variability of lead time demand. 
The multi-objective Cuckoo Search (MOCS) algorithm is proposed to solve the model. Pareto curves are 
generated between cost and service levels for decision-makers. A numerical problem is considered on 
a slow moving item to illustrate the results. Furthermore, the performance of the MOCS algorithm is 
evaluated in comparison to multi-objective particle swarm optimization (MOPSO) using metrics, such 
as error ratio, maximum spread and spacing.
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1. Introduction

The long-term survival and growth of a firm depends on sound 
inventory management. An inventory is classified by annual 
dollar usage through a two-tier A-B-C classification system. In 
the A-B-C classification system, A refers to the most important 
items, B signifies items that have intermediate importance items 
and C denotes the least important items (Peterson & Silver, 
1979). Furthermore, an inventory can be sub-classified by aver-
age usage during the lead time in terms of fast moving and slow 
moving. A significant portion of a firm’s inventory consists of 
slow moving items. Peterson and Silver (1979) classified slow 
moving items as those with an average demand during the lead 
time below 10 units. They further recommended Poisson or 
Laplace probability distribution for modelling the variability of 
lead time demand for slow moving items. They also suggested 
using Laplace distribution over Poisson for slow moving items, 
when average demand is not reasonably close to the standard 
deviation of forecast errors (i.e., average demand is not within 
10 percent of the standard deviation of forecast errors). Laplace 
distribution (is a double exponential probability distribution) 
was first used by Presutti and Trepp (1970) to model the vari-
ability of lead time demand in a continuous review inventory 
system. Later research by like Archibald, Silver, and Peterson 
(1974); Peterson and Silver (1979); Chang, Chung, and Yang 
(2001); Nahmias (2009); and Muckstadt and Sapra (2009) used 
this approach for slow moving inventory items.

The above authors focused solely on the minimization of 
total relevant inventory cost. Multi-objective optimization is 
preferred over single-objective optimization, as it provides 
more flexibility to an inventory decision-maker in terms of 
choosing from among a number of optimal solutions and 
circumventing erroneous assumptions about shortage cost. 
There are several papers on multi-objective optimization for 

inventory systems, which consider Normal probability dis-
tribution for modelling the variability of lead time demand, 
such as Agrell (1995); Tsou (2008, 2009); Moslemi and Zandieh 
(2011), Park and Kyung (2014), and Srivastav and Agrawal 
(2015a, 2015b, 2016). Normal probability distribution is rec-
ommended for fast moving items (Peterson & Silver, 1979). 
It cannot be used for slow moving items as it has a short tail 
in comparison to Laplace distribution and is not suitable for 
modelling low-volume lead time demand. Thus, the use of 
Normal distribution for a slow moving item can result in sig-
nificant errors. Therefore, in this paper, we have formulated 
the multi-objective inventory model for slow moving items by 
using Laplace distribution to model the variability of lead time 
demand, as well as solved the relevant problematic by using 
Cuckoo Search optimization. The Cuckoo Search algorithm 
was developed by Yang and Deb (2009). They later developed 
the MOCS algorithm to solve design problems (Yang & Deb, 
2013). As per our knowledge, there are very few papers on mul-
ti-objective optimization for an inventory using the Cuckoo 
Search, although Srivastav and Agrawal (2015a) did use this 
approach to solve multi-objective optimization for fast moving 
inventory items.

The above literature survey shows that multi-objective 
inventory models have only been developed and successfully 
applied in relation to fast-moving items. In this paper, to opti-
mize conflicting objectives of cost and service levels, a mul-
ti-objective inventory model is developed for a slow moving 
item. The shortages in the model are considered as complete 
backorders. The MOCS algorithm is proposed as a solution for 
the slow moving multi-objective model. The crowding distance 
is used in the algorithm to rank the non-dominated solutions. 
The external Pareto archive is used to retain the non-dominated 
solutions from the previous iteration.
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The rest of the paper is organized as follows. Section 2 
shows notations and assumptions used in the paper. Section 
3 discusses the development of the multi-objective slow mov-
ing inventory model. Section 4 throws light on the MOCS 
algorithm. Section 5 considers a numerical problem and 
demonstrates the results. Section 6 discusses the performance 
evaluation of the MOCS algorithm in comparison to MOPSO. 
Section 7 concludes the paper.

2. Notations and Assumptions

The notations used in this paper are:
C(Q, z0)  Total relevant cost (Summation of annual ordering 

and holding cost)

E(Q, z0)  Expected number of units stocked out annually
N(Q, z0) Expected frequency of stockout occasions annually
A Fixed ordering cost per order
D Average annual demand
h Holding cost per unit per unit time
B2 Specified for fractional charge per unit short
r Inventory carrying charge, in $/$/year
v Unit variable cost, in $/unit
Q Order quantity
σx  Standard deviation of demand during lead time 

which follows Laplace distribution
z0 Safety stock factor
s Reorder point

Assumptions:

(1)     A single item is considered.
(2)     Demand is stochastic with average demand rate 

changes very little with time.
(3)     Unfilled demand is completely backlogged.
(4)     The lead time is known and constant.
(5)     Replenishment of size Q occurs when the inven-

tory position drops to reorder point s.
(6)     Demand during lead time follows Laplace 

distribution.

3. Multi-objective Inventory Model for a Slow 
Moving Item

Motivated by the work of Chang et al. (2001) on a single-ob-
jective model for a slow moving item, a tri-objective inventory 
model is developed. The three objectives of the slow moving 
model are as follows: The first objective is the minimization 
of the total annual relevant cost, which is formulated in order 
to minimize ordering and holding cost (Equation (1)). The 
second objective is the minimization of the expected number 
of stocked-out units incurred annually (Equation (2)). The 
third objective is the minimization of the expected frequency 
of stockout occasions annually (Equation (3)).
Proposition 1: The total annual relevant cost C

(
Q, z0

)
, which is 

the sum of ordering and holding cost is convex (see Appendix).
 

Proposition 2: The expected number of stocked out units 
incurred annually E

(
Q, z0

)
 is convex (see Appendix).

(1)Minimize C
(
Q, z0

)
=

AD

Q
+ h

(
Q

2
+ z0�x

)

 

Proposition 3: The expected frequency of stockout occasions 
annually N

(
Q, z0

)
 is convex (see Appendix).

 

Equation (4) ensures that the order quantity will be non-neg-
ative and not in excess of annual demand, while Equation (5) 
ensures that the safety stock will be positive and not greater 
than average annual demand.
 

 

4. Multi-objective Cuckoo Search Algorithm

The Cuckoo Search is a stochastic search evolutionary algorithm. 
The Cuckoo Search algorithm was first proposed by Yang and 
Deb (2009). It is inspired by cuckoo breeding behaviour. The 
cuckoo lays eggs in the nests of other species with the intention 
that the host will look after the cuckoo’s eggs as if they were the 
host’s own. Each egg in a nest signifies a solution. A cuckoo’s egg 
signifies a new solution. The objective is to use new and possibly 
superior solutions to replace an inferior solution in the nests. The 
probability that the host identifies the cuckoo’s eggs and aban-
dons the nests is denoted by pa. For generating a new solution, 
the cuckoo search approach exhibits Levy flight distribution.

The Cuckoo Search has been extended by Yang and Deb 
(2013) to solve multi-objective problems, in which each nest 
has multiple eggs to represent a set of solutions. In this work, 
we have used the following rules for the MOCS algorithm, as 
presented by Yang and Deb (2013):

(1)     Each cuckoo lays K eggs at a time and puts each egg 
in the randomly chosen nest. Egg K corresponds to 
the solution to the Kth objective.

(2)     The best nests with high-quality eggs are used to 
produce the next generation.

(3)     The host bird discovers the eggs laid by a cuckoo 
with a probability pa (0, 1). In this case, the host 
birds either throw the eggs out or simply abandon 
the nest, such that the fraction pa of n host nests is 
replaced by new nests.

Deb (2001) described that a solution (Q1, z01) dominates 
another solution (Q2, z02) when it satisfies the following two 
conditions.

First condition of dominance concept is that the solu-
tion (Q1, z01) is not worse than (Q2, z02) in all objectives, 

i.e.,C1
(
Q1, z01

)
≤ C2

(
Q2, z02

)
, E1

(
Q1, z01

)
≤ E2

(
Q2, z02

)
 and 

N1
(
Q1, z01

)
≤ N2

(
Q2, z02

)
.

Second, the solution 
(
Q1, z01

)
 is strictly better than 

(
Q2, z02

)
 

in at least one objective, i.e., C1
(
Q1, z01

)
< C2

(
Q2, z02

)
 or/and 

E1
(
Q1, z01

)
< E2

(
Q2, z02

)
 or/and N1

(
Q1, z01

)
< N2

(
Q2, z02

)
.

Motivated by Yang and Deb (2013), a MOCS algorithm is 
proposed to solve the multi-objective inventory problem. The 
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algorithm is developed considering the dominance concept. An 
external archive is considered to store the non-dominated solu-
tions. Crowding distance criteria is used to rank the non-dom-
inated solutions. It increases the diversity among solutions and 
avoids the convergence of solutions to a single solution. The 
results are implemented in MATLAB 8.1. The number of nests 
is considered as 50. The maximum generations are considered 
as 2000. The pseudo code of MOCS is presented in Figure 1:

5. Results and Discussions

This section includes a numerical example to demonstrate 
the above results. The inventory problem is considered with 
the given data of a slow moving item. D = 104, A = $20, r = 
0.24$/$/year,v = $350, B2 = 0.2, lead time is two weeks and σx 
= 1. (Chang et al., 2001, p.393, example 1).

MOCS is used to solve the multi-objective inventory model 
and generate the Pareto curves. Figure 2(a) shows the Pareto 
curve in relation to a trade-off between cost (Equation (1)) 
and stockout units (Equation (2)). Figure 2(b) is generated for 
easy use by practitioners, so that they can choose the expedient 
combination of cost (Equation (1)) and fill rate (computed by 
Equation (2)).

Figure 2(b) also shows the comparison of results obtained 
by the MOCS algorithm following Chang et al., 2001; p. 393, 
(example 1). Chang et al. (2001) considered a single-objective 
cost minimization slow moving inventory model and deter-
mined the cost to be $844.09 using a simultaneous approach. 
The sub-components of cost are ordering cost, holding cost 
and shortage cost, which equal $292.76, $545.69 and $5.64, 
respectively. The limitation of the single-objective model is that 
inventory managers have to assume the shortage (backorder) 
cost in order to calculate inventory cost. In the numerical prob-
lem, Chang et al. (2001) assumed the backorder cost to be B2 
= 0.2, i.e., $70 per unit short.

The multi-objective inventory model does not require the 
erroneous assumption of backorder cost. Therefore, to com-
pare the simultaneous approach results with the proposed 
MOCS evolutionary algorithm, the shortage cost component 
in the total cost obtained by Chang et al. (2001) is ignored. 
The cost considered for comparison with Chang et al. (2001) 
comprise ordering and holding cost. In Chang et al. (2001) 
example 1, the combination of ordering and holding cost was 
equal to $838.45. The Pareto curve (Figure 2(b)) shows the 
total annual relevant cost (comprising ordering and holding 
cost) on the horizontal axis and the fill rate on the vertical 
axis. The value corresponding to $838.45 (total annual relevant 
cost) on the vertical axis is 0.99 (fill rate). This suggests that 

by using MOCS a much higher fill rate (0.99) is obtained in 
comparison to the simultaneous approach, which estimated 
the fill rate to be 0.94.

Another noteworthy difference between the Chang et al. 
(2001) single-objective cost model and the proposed multi-
objective inventory model concerns a number of optimal 
solutions. In comparison to the Chang et al. (2001) single 
solution model, the large number of optimal solutions 
obtained by optimization of the multi-objective inventory 
model, via the MOCS algorithm, offers flexibility to inventory 
managers when choosing an expedient combination of cost 
and fill rate.

Figure 3(a) shows the Pareto curve in relation to a trade-off 
between cost (Equation (1)) and frequency of stockout situa-
tions (Equation (3)). Figure 3(b) is generated for easy use by 
practitioners, so that they can choose the expedient combina-
tion of cost (Equation (1)) and order service level (computed 
by Equation (2)). Pareto curves (Figure 3a, 3b) are applicable 
when shortages are measured by an event (or when the number 
of inventory cycles is short).

Table 1 shows the comparison of service levels (fill rate and 
order service level) determined for the same cost (combination 
of ordering and holding cost) using MOCS, as obtained through 
the simultaneous method by Chang et al. (2001). The results 
show that using MOCS, in place of the simultaneous method, 
increases the fill rate by 5.64%. Chang et al. (2001) only com-
puted the fill rate in their work. For our study, we also determined 
the order service level for a single objective (cost optimization) 
using the simultaneous approach. The findings shows that order 
service level were almost identical in both approaches.

It is noteworthy that there are no multi-objective inventory 
systems for slow moving inventory items that have been 
reported in literatures. Therefore, a comparison is made 
between single objective and multi-objective inventory models. 
Moreover, prominent difference between single and multi-
objective inventory models is the assumption of backorder 
cost, which is required for solving single objective inventory 
model. So, to make it a balance comparison between single 
and multi-objective inventory model, we have compared cost 
in both models by considering summation of ordering and 
holding cost.

6. Performance Evaluation of the MOCS Algorithm

The performance metrics used to evaluate the performance 
of the Pareto curve are error ratio, spacing and maximum 
spread. The performance of the MOCS algorithm is compared 
to another popular evolutionary algorithm, namely, MOPSO.

Figure 1. pseudo Code of multi-objective Cuckoo Search.
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6.2. Spacing

Spacing is the relative distance measure between the consecu-
tive solutions in the non-dominated set (Schott, 1995). Okabe, 
Jin, and Sendhoff (2003) gave below expression for the spacing 
metric.
 

 

d̄ is the mean of the di values; Ã is the non-dominated set; 
M is number of objective functions; f im is the fitness of ith 
solution of mth objective; f jm is the fitness of jth solution of 
mth objective.

(7)Spacing =

√√√√√ 1
||Ã||

|Ã|∑

i=1

(
di − d̄

)2

(8)di = minimumj∈Ã∧j≠i

M∑

m=1

(
di − d̄

)2|||f
i
m − f

j
m
|||

6.1. Error ratio

Error ratio is defined as is ratio of a number of non-dominated 
solutions, which are not members of Pareto optimal set, P* 
to the total number of non-dominated solutions (Veldhuizen, 
1999).
 

Ã is the non-dominated set

(6)Error ratio =

∑�Ã�
i=1

ei
��Ã��

�
ei = 1, if i ∉ P∗

ei = 0, otherwise
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Figure 2. (a) pareto exchange Curve between total Cost and units stocked out. (b) pareto exchange Curve between total Cost and fill Rate.

Table 1. Comparison of Service levels (fill Rate and order Service level) using 
moCS and Simultaneous method.

Single objective 
(Simultaneous 

method)
Multi-Objective 
Cuckoo Search

Percentage 
change

fill Rate 0.9458 0.9992  5.64%
order Service 

level 
0.9922 0.9920 −0.02%
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the non-dominated solutions in MOCS are lying on the Pareto 
front. The low values of spacing suggest that solutions are uni-
formly distributed in MOCS. The large value for the maximum 
spread metric value signifies the diversity among the solutions 
using MOCS.

6.3. Maximum Spread

Maximum Spread is the distance between the extreme function 
values in the non-dominated set (Zitzler, 1999).
 

Ã is the non-dominated set; M is number of objective func-
tions; max

|Ã|
i=1

f im is the maximum fitness among set of non-dom-
inated solutions of mth objective; min

|Ã|
i=1

f im is the minimum 
fitness among set of non-dominated solutions of mth objective.

Table 2 shows the comparison between the performance of 
the MOCS algorithm and MOPSO using error ratio, spacing 
and maximum spread metrics. The results indicate that low 
values of MOCS, in comparison to MOPSO, suggest most of 

(9)Maximum spread =

√√√√
M∑

m=1

(
max

|Ã|
i=1

f im −min
|Ã|
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Figure 3. (a) pareto exchange Curve between total Cost and frequency of stockout occasions. (b) pareto exchange Curve between total Cost and order Service level.

Table 2. Comparison of moCS with mopSo.

Error Ratio Spacing Maximum Spread

MOCS MOPSO MOCS MOPSO MOCS MOPSO
Best Value 0.0000 0.0100 0.0015 0.0023 0.5220 0.4611
Worst 

Value
0.0300 0.0500 0.0139 0.0052 0.4105 0.3336

Average 0.0180 0.0320 0.0051 0.0037 0.4553 0.4006
median 0.0200 0.0400 0.0032 0.0034 0.4352 0.4084
Std. Devi-

ation
0.0130 0.0164 0.0051 0.0011 0.0494 0.0477
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7. Conclusion

In this paper, a multi-objective backorder inventory model is 
developed to simultaneously optimize the conflicting objectives 
of cost and service levels for a slow moving item. The MOCS 
algorithm is used to solve a tri-objective backorder inventory 
model and generate Pareto exchange curves. The first exchange 
curve is drawn between total cost and fill rate, which provide 
practitioners the flexibility to function at expedient operating 
conditions when shortages are calculated, as per unit short. The 
second exchange curve occurs between total cost and order ser-
vice level, which is appropriate when shortages are calculated 
by the number of cycles short.

It is observed that MOCS optimization shows a 5.64% 
increase in the fill rate, compared to single-objective optimi-
zation (simultaneous approach). The findings after computing 
the order service level are almost identical for both approaches. 
Given the number of items involved in any industry, an increase 
in the fill rate by 5.64% for a single item can substantially 
decrease cost and increase profitability in the multi-item sce-
nario. The performance of the MOCS algorithm for optimizing 
a multi-objective slow moving backorder inventory model is 
evaluated in comparison to MOPSO, using metrics such as 
error ratio, spacing and maximum spread. The results show 
that MOCS performs well in comparison to MOPSO.

The advantage of the MOCS approach is that it can determine 
several non-dominated policies in a single run and generate 
trade-off solutions, which may be overlooked by the single-ob-
jective simultaneous method. The contribution of the work, in 
theory, is the development of a multi-objective inventory model 
for a slow moving item, along with its optimization using MOCS.

It is hopeful that the adoption of this present work on a mul-
ti-objective inventory system for a slow moving item will sig-
nificantly improve existing inventory optimization. The MOCS 
algorithm can be used for solving combinatorial optimization 
location-inventory problems. The proposed multi-objective 
inventory model is applicable for the inventory optimization 
of spare parts.

There are several avenues for future work. This research 
could be developed in relation to a multi-item inventory 
system. Another possible area of research is to explore the 
multi-echelon supply chain. There may be other kinds of dis-
tribution that could be considered for the purpose of studying 
slow moving items.
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The expected number of stocked out units incurred annually E
(
Q, z

0

)

(Equation (2)) is represented as per Equation A.2.
 

To prove the convexity of Equation (A.2)

H =

||||||

�
2
E(Q,z

0
)

�Q
2

�
2
E(Q,z

0
)

�Q�Z
0

�
2
E(Q,z
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)

�Q�z
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2
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Alternatively, H =
D

2
�
2

x e
−2

√
2z0

4Q
2  is a positive quantity, and Hessian is a posi-

tive definite, thereby proving the Equation A.2 is convex.
Part (iii) is related to the third objective of the multi-objective inventory 
system and presents proof of convexity for Equation 3.

(iii)  Convexity of the expected frequency of stockout 
occasions (Equation (3)) is convex.

The expected frequency of stockout occasions annually N
(
Q, z

0

)
 (Equa-

tion (3)) is represented as per Equation A.3.
 

Alternatively, H =

�
1 −

1√
2

�
D

2
e
−2

√
2z0

Q
4  is a positive quantity, and Hessian 

is a positive definite, thereby proving the Equation A.3 is convex.
The convexities of the three objective functions are proven, confirms that 
they have a convex Pareto front, while all solutions lying on the Pareto 
front are global optimum (minimum) solutions.
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Appendix 1
Convexity of multi-objective slow moving inventory system is proven 
below:
Part (i) is related to the first objective of the multi-objective inventory 
system and presents proof of convexity for Equation (1).

(i)  Convexity of the total annual relevant cost (Equation 
(1)) is proven.

The total annual relevant cost C
(
Q, z

0

)
, which is the sum of ordering and 

holding cost (Equation (1)), is represented as per Equation A.1.
 

The sum of ordering and holding cost, as shown in Equation A.1, is con-
vex (Hadley & Whitin, 1963).
Part (ii) is related to the second objective of the multi-objective invento-
ry system and presents proof of convexity for Equation 2.

(ii)  Convexity of the expected number of stocked out 
units incurred annually (Equation (2)) is proven.

(A.1)C
(
Q, z

0

)
=

AD

Q
+ h

(
Q

2
+ z

0
�
x

)
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