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ABSTRACT
In recent years, foodstuff quality has triggered tremendous interest and attention in our society as 
a series of food safety problems. The hyperspectral imaging techniques have been widely applied 
for foodstuff quality. In this study, we were undertaken to explore the possibility of unsound kernel 
detecting (Triticum durum Desf ), which were defined as black germ kernels, moldy kernels and 
broken kernels, by selecting the best band in hyperspectral imaging system. The system possessed 
a wavelength in the range of 400 to 1,000  nm with neighboring bands 2.73  nm apart, acquiring 
images of bulk wheat samples from different wheat varieties. A series of technologies of hyperspectral 
imaging processing and spectral analysis were used to separate unsound kernels from sound kernels, 
including the Principal Component Analysis (PCA), the band ratio, the band difference and the best 
band. According to the selected bands, the best accuracy was 95.6, 96.7 and 98.5% for 710 black germ 
kernels, 627 break kernels and 1,169 healthy kernels，respectively. The result shows that the method 
based on the band selection was feasible.

Abbreviations: CCD: Charge-coupled Device; PC: Personal Computer; PCA: Principal Component 
Analysis; PLSDA: Partial Least Lquares Discriminant Analysis; ANN: Artificial Neural Networks; SVM: 
Support Vector Machine

I. Introduction

Foodstuff safety is now an extremely important issue that con-
cerns everyone in the world. The unsound kernel would affect 
the baking quality of bread, thus lowers the premium paid for 
wheat. It is time consuming to detect the kernel one by one. 
So, the quality assessment of bulk materials becomes more and 
more pressing. The appropriate information about the quality 
of products will be contributed to control the bulk handling 
process or to subdivide products into different quality classes. 
The sales contract often specifies the allowable percentage of 
unsound kernels by weight. The amount of unsound kernels is 
an important quality parameter in grain products. And if the 
amount is big, that will weaken the quality of picked products 
and lead economic losses for the proprietor. There is also a 
health concern due to the possible concomitant production of 
mycotoxin. Unsound kernels, along with other damages, will 
lower the official grade (Delwiche & Kim, 2000).

Cereal researchers have been examining the kernel mor-
phology with digital image analysis more than 30 years since 
1985 (Zayas reported on the use of image analysis to distinguish 
between morphological characteristics of the soft red winter 
wheat kernel for the first time). In many respects, this vision-
based method imitated the actions of the trained inspector to 
examine size, shape, texture, and color of the kernel (Delwiche, 
Yang, & Graybosch, 2013). Most early studies have exploited 
the size and shape characteristics with 2D projections of single 

kernels, whereupon multivariate analysis has been applied to 
get the geometrical parameters. Majumdar et al. (Majumdar & 
Jayas, 2000a, 2000b, 2000c, 2000d) have developed Classification 
models by combining two or three feature sets (morphologi-
cal, colour, textural) to classify individual kernels, the research 
chose different features to test on independent data-sets. 
Vitreous kernels are mostly related to quality, machine vision 
system can determine the percentage of vitreous, starchy, pie-
bald and shrunken kernels, using a trans-illuminated image 
of one layer of non-singulated kernels (in bulk) acquired by 
a digital camera (Venora, Grillo, & Saccone, 2009). Wavelet 
analysis is a popular tool for characterization and classification 
of image texture (Choudhary, Mahesh, Paliwal, & Jayas, 2009; 
Choudhary, Paliwal, & Jayas, 2008; Qing, Tao, et al., 2016), and 
it is a signal processing technique for multi-resolution image 
texture analysis performed by decomposing the images into 
multiple wavelet components using a filter bank as suggested.

If using PCA to reduce the huge data of features (Wiwart, 
Suchowilska, Lajszner, & Graban, 2012), the applied method 
may facilitate the identification of hybrids between common 
wheat and other Triticum species, and the selection process 
in creative breeding. Non-destructive quality evaluation of 
agricultural products has become a major area of interest for 
the agricultural processing industry. Researchers have been 
working to find techniques for evaluating internal quality 
attributes of agricultural and food products non-destructively. 
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The availability of advance technology has expanded ave-
nues for nondestructive food quality determination, such 
as chemical composition, mineral content and fatty acid of 
seeds (Gharibzahedi, Mousavi, Jouki, & Ghanderijani, 2012). 
X-ray and computed tomography imaging techniques are two 
of them, which are gaining popularity nowadays in various 
fields of agriculture and food quality evaluation (Kotwaliwale 
et al., 2014). However, the error rate was high (Gorretta et 
al., 2006; Kwon & Nasrabadi, 2007; Wallays, Missotten, De 
Baerdemaeker, & Saeys, 2009).

Current hyperspectral imaging technology cannot be 
directly implemented in the online system for agricultural 
products sorting, because of the extensive time, which is 
caused by image acquisition and subsequent analysis of the 
huge data. However, hyperspectral imaging will be the most 
competitive candidates in our researches for it can not only 
determine important spectral bands, but also be implemented 
in a multispectral imaging system. These spectral bands can 
be obtained with different analysis methods, such as Principal 
Component Analysis (Maganioti et al., 2010). Ridgway et al. 
used the NIR spectra of healthy and insect-damaged wheat 
kernels to select the most important wavelengths to acquire 
NIR images, then according to the differences of the compared 
pictures to detect insect damage (Ridgway, Chambers, & Cowe, 
1999). Singh et al. assessed the potential of shortwave NIR 
hyperspectral imaging for insect damage detection in wheat 
and made a comparison about the performance with colour 
imaging (Singh, Jayas, Paliwal, & White, 2010). Del detected 
toxigenic fungi among different hybrids of maize kernels, 
determined the damage degree using a tabletop reflectance 
hyperspectral imaging system and discriminated maize kernels 
of fungal contamination from healthy kernels with the method 
that combine hyperspectral imaging with multivariate statisti-
cal analysis of the data (Del Fiore et al., 2010). Nakariyakul et 
al. discriminated internally hyperspectral transmission spectra 
of damaged almond nuts from normal ones by only two sets of 
ratio features. However, most of them just analyze the raw data 
without further data analysis (Nakariyakul & Casasent, 2011).

The objective of the research was to detect the unsound ker-
nels of wheat through studying the potential of hyperspectral 
imaging in the spectral region ranging from 400 to 1,000 nm. 
Specific objectives were as follows:

•  To identify the spectral region and/or wavelengths, 
which are the most useful for the detection of unsound 
kernels.

•  To develop the corresponding computer algorithms to 
identify and segregate unsound kernels from the normal 
ones.

•  To verify the efficiency of the most useful band.

II. Materials and Methods

A. Grain Samples

The grain samples used in this study were Xinchun 8# and 
Zhongmai 998# harvested in 2009. These samples were obtained 
from several seed distributors in Xinjiang Uygur Autonomous 
Region and Henan province. Each group was a composite sam-
ples derived from many farms. Wheat category samples with 
different locations were mixed to obtain composite category 
samples. These samples were stored in closed plastic bags in 
a refrigerator to keep the material fresh and retain the initial 

moisture content. The moisture content of the samples was not 
measured, but it varied considerably, because the samples were 
collected at different stages of the season and different times 
of the day. To prepare the samples for hyperspectral meas-
urements, unsound kernels were separated from the normal 
kernels. However, there were insufficient quantities available 
from unclean commercial samples; with the permission of the 
experimentation, these samples were handmade of kernels 
from normal samples in the laboratory (Mohammad, Emam-
Djomeh, & Khazaei, 2012). Unsound kernels were visually 
selected and stored at the same temperature, but in relative 
different humidity conditions prior to imaging. To prepare the 
samples for image analysis, those kernel samples were selected 
from the bulk samples on the basis of visual judgment accord-
ing to National standard of GB/T 21124-2007 and GB 1351-
2008 (Chinese National Standard). Moreover, 710 black germ 
kernels, 627 break kernels and 1,169 healthy kernels were used 
to verify the efficiency of the most useful band.

B. Hyperspectral Imaging System

Figure 1 is the schematic of the hyper-spectral imaging system. 
It consist of a charge coupled device (CCD) camera system, 
Spectra Video Camera from HAMAMATSU, Inc. (Hamamatsu 
C8484–05G, Japan), equipped with an imaging spectrograph 
ImSpector V10E from Spectral Imaging Ltd. (Oulu, Finland). 
The ImSpector had a fixed-size internal slit to define the field 
of view for the spatial line and a prism/grating/prism system 
for the separation of the spectra along with the spatial line. 
To improve the spatial resolution of the hyperspectral images, 
an external adjustable slit was placed between the sample and 
the camera optical set. The image acquisition and recording 
were performed with a Pentium-based PC using a general 
purpose imaging software, SpectralCube 2.75b from Spectral 
Imaging, Inc. (Spectral Imaging Ltd., Finland.). A C-mount set 
with a focus lens and an aperture diaphragm allows focusing 
and aperture adjustments, for which the circular aperture was 
opened to its maximum and the external slit was adjusted with 
micrometer actuators to optimize light flow and resolution. The 
light source consisted of two 21 V, 150 W halogen lamps pow-
ered with a regulated DC voltage power supply from SCHOTT 

Figure 1.  Schematic of the Hyper-spectral Imaging System (I) optical Sensor 
module; (II) light Source module; (III) Sampling module (1) CCD; (2) lens; (3) uV 
light; (4) Visible and near-infrared light; (5) extension Cable; (6) line Source; (7) 
mobile platform; (8) Stepper motor; (9) pC.
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North America, Inc. (SCHOTT, USA). The light was remote 
controllable using built-in integrated RS232 interface. The 
samples were placed on a controllable move platform (Zolix, 
TSA200B, China) with an adjustable speed AC motor control 
speed master from Beijing Zolix Instrument Co., Ltd. (Zolix, 
SC300,China). The samples were scanned line by line with an 
adjustable scanning rate, illuminated by the two line sources 
as it passed through the camera’s field of view.

C. Spectral Calibration

Dark current measurements were made with a lens cap cov-
ering the camera lens and turning off the lamps. The meas-
urement data, based on the reflection principle, was collected 
from a slab of Spectral and placed in the same location as the 
wheat samples moving. The operation sequences consist of the 
acquisitions of dark current, the reflectance from a stationary 
reference target and reflectance from the sample. To correct 
inherent spatial non-uniformities due to the light intensity on 
the target area, the sample reflectance (Ri�) at an individual 
pixel (i) and a given wavelength (�) was calculated as follows:
 

where I represents a sample intensity, DC is the dark current, 
REF is the reference intensity, and RC is the correction factor 
for the reference slab. A value of RC = 1.0 at all wavelengths 
was used for the matter of simplification, due to Spectralon’s 
flat response across the wavelength region and its high absolute 
reflectance (0.99).

D. Image Acquisition Method

For each wheat sample, normal kernels and unsound kernels 
were selected through the appearances. Kernels were placed on 
a black cloth (if possible, chose unreflecting black background) 
in alternating rows with unsound and normal kernels. The gap 
between neighboring rows was random.

The spectral line acquisition was performed at a room with 
the temperature of 20 °C. The exposure and acquisition time 
was set 15  ms for reflectance. The size of the hyperspectral 
image cube was 1,344 (length) ×600 (width) ×1024 (height). 
The proper speed of platform was 1.1 mm/s. After dark cur-
rent correction at each pixel, monochromatic images were con-
verted into percent reflectance using the commercial software 
package ENVI 5.0 from Research Systems, Inc. (Boulder, CO, 
USA).

E. Analysis Methods

MATLAB (The Math Works Inc., Natick, MA, USA) programs 
including Image Processing and Statistics Toolbox together 
with SPSS and HALCON were used for hyperspectral images 
processing and analyzing, such as, image segmentation, image 
classification and data analysis.

a. Feature Extraction

There are several methods for features extraction. With intu-
itive properties and simplicity of implementation, image 
thresholding enjoys a central position in applications of 
image segmentation. In this study, we use thresholding and 

(1)Ri� = RC
�

Ii� − DCi�

REFi� − DCi�

morphological operation to extract the contour of kernels. 
According to thresholding, we extracted the object part, thin 
gulfs and small holes were gotten rid of using morphological 
operation.

b. Data Analysis

Data analysis is a fundamental task due to the great quantity 
of analytical information. Supervised pattern recognition aims 
to establish a classification model based on the experimental 
data, which was used to assign unknown samples to a previ-
ously defined sample class that based on its pattern of meas-
ured features. In this study, several kinds of pattern recognition 
methods have been applied to data analysis. They are Partial 
Least Lquares Discriminant Analysis (PLS-DA), Principal 
Component Analysis—Artificial Neural Networks (PCA-
ANN) and Support Vector Machine Discriminant Nnalysis 
(SVM-DA).The detail you would see at the next section.

Partial Least Squares modeling is a multivariate projection 
method for modeling a relationship between dependent var-
iables Y and independent variables X (Flood, Connolly, et al., 
2016). The principle of PLS is used to find the components in 
the input matrix X that describe the relevant variations as much 
as possible and has a great correlation with the target value 
Y, then gives less weight to the variations that are irrelevant. 
Therefore, PLS models both X and Y simultaneously to find the 
latent variables (LVs) in X that will predict the latent variables 
in Y. PLS maximizes the co-variance between matrices X and Y.

SVM is a supervised learning technique, based on the sta-
tistical learning theory (Cortes & Vapnik, 1995). It is applica-
ble to cope with both classification and regression problems. 
In the case of classification, SVM is a method for obtaining 
the “optimal” boundary of two classes in a vector space inde-
pendently on the probabilistic distributions of training vec-
tors in the data-set. If the two classes are linearly separated, 
the aim of SVM is to find the “optimal” hyperplane boundary, 
which exactly separates them, classifying not only the train-
ing set but also unknown samples. The “optimal” boundary is 
defined as a hyperplane has the maximum distance from both 
sets. Although the distribution of the sets is not known, this 
boundary is expected to be the optimal classification of the 
sets, since this boundary is the most isolated one from both 
sets. The training vectors closest to the boundary are called 
support vectors. The margin is the minimal distance between 
the separating hyperplane and the closest data points. So, SVM 
learning machine seeks for an optimal separating hyperplane 
where the margin is maximal.

In artificial neural network (Hopfield, 1982), the most ver-
satile and widely used type of networks is the back-propagation 
ANNs(BPNN). The term back-propagation refers to the way 
the error computed at the output side is propagated backward 
from the output layer to the hidden layer and finally to the 
input layer. In back-propagation ANNs, the data is fed for-
ward into the network without feedback, and the neurons can 
be fully or partially interconnected. The learning strategy of 
back-propagation is based on an algorithm that corrects the 
weights within each layer in proportion to the error obtained 
from the previous layer.

III. Results

Figure 2 shows the mean spectra reflectance value of normal 
and unsound kernel tissue in the range from 400 to1,000 nm. 
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features from PC2. The second principal component alone was 
sufficient to distinguish the unsound kernels from the normal 
ones so that it was chosen. The corresponding spectral contri-
butions for the features were reported in Figure 4.

Although it was easy to extract features from the unsound 
kernel, the computation of the second principal component 
consists of all spectral images for a spectral region. For real 
time applications, it was more desirable to use fewer (two or 
three) wavelengths in order to accelerate the speed of image 
acquisition and analysis.

B. Difference and Ratio of Two Wavelengths

Followed by image segmentations, difference or ratio of two 
wavelengths was used in this study. According to the band 
contributor of PC2, two extreme wavelengths were 617 and 
925 nm, certainly, there is a fluctuating range at this extreme 
wavelength, but the range should be evaluated.

For the difference of two wavelengths, we tried to calculate 
by Equation (2) to extrude unsound kernel features:

where R925 nm and R617 nm are relative reflectance value at 925 
and 617 nm, respectively. Th617 nm was the result of gray-level 
image segmentation with the method of optimal global and 
adaptive thresholding.

The ratio between two wavelengths not only decreased the 
effect of light source, but also increased the difference between 
different bands, as calculated by Equation (3)

 

where BVi,j,k, BVi,j,l were the relative reflectance’s of the same 
pixel at k and l band, respectively. The ratio algorithm for two 
extreme wavelengths was found by using correlation analysis 
among all possible wavelengths. According to the correlation 
analysis of all wavelengths between 452 nm to 930 nm, wave-
lengths 453 nm and 902 nm were found to own the minimum 
correlation coefficient. After performance by Eq. (3), the result 
showed the normal aspect of kernel, including sound kernels 
and normal aspects of unsound kernels. So it should be cal-
culated by another algorithm to get the unsound features. 
Compared with the difference of two wavelengths, the ratio 
algorithm was unfit.

C. Unsound Kernel Detection Based on Extreme Band

The high-level band obtained from above indicators analysis 
was 617 nm, which was a more effective wavelength to extract 
unsound kernel features than other wavelengths. Here, we can 
extract the abnormal area from the kernel by thresholding. 
First of all, it was easy to find the thresholding (T1) to extract 
wheat region from the background and the thresholding (T2) 
to extract wheat normal regions, but, the area of normal wheat 
was different with the difference of thresholding, because the 
pixel value was gradient between the normal region and the 
background region. To solve the problem, erosion, the sim-
plest solutions, was chosen to shrink the large area by proper 
structuring element; those algorithms can be realized by math-
ematical morphology. At last, the unsound kernel features can 
be extracted by performing an exclusive OR operation on the 
corresponding image.

(2)Rt = R
925 nm

− R
617 nm

− Th
617 nm

（3）BVi,j,r = BVi,j,k∕BVi,j,l

The mean spectra were calculated based on pixels of the region 
of interest (ROIs) from all wheat samples. Here, we selected 
4 pixels as the region of interest (ROI) with a squire contain-
ing 2*2 and calculated its average value, because 4 pixels are 
enough to get the useful information, otherwise it will take up 
more time to calculate. The mean reflectance of unsound ker-
nels’ tissue was consistently lower than that of normal kernels’ 
tissue except the range from 400 to 500 nm, where considerable 
spectral overlapping was observed from four types of tissue. 
Moreover, generally not all ranges of high spectral were neces-
sary for the purpose of discrimination. In this study, no image 
appeared below the band of 452 nm. The biggest difference of 
the reflectance value between normal and unsound kernels 
was ranging from 930 to 1000  nm, and further analyses to 
find greater difference does not necessarily yield for higher 
detecting accuracies. What’s more, this range provided a low 
signal-to-noise ratio. So the spectral range of our research was 
selected from 452 to 930 nm.

A. Principal Component Analysis on Hyperspectral Cube 
Data

In order to minimize the hyperspectral images’ data to be pro-
cessed, it was desirable to find an optimal bandwidth without 
sacrificing detection results at the same time. PCA on hyper-
spectral images was performed to reduce spectral dimension-
ality and enhance image features. An optimal threshold value 
was chosen to segregate unsound kernels from the normal 
ones based on the principal component images (Ariana, Lu, 
& Guyer, 2006).

To get PCA images, all of selected image bands are as input 
data, and then the output image bands are ranked by eigen-
value, which is the result based on PCA algorithm. The first 
principal component (Figure 3a) covered 96.2% of the image 
variation across the wavebands, but no clear features appeared. 
Only specific damage and mildewed were visible in the region, 
black germs were difficult to distinguish. Compared with other 
principal components (Figure 3), the second PC(Figure 3b) 
enhanced the contrast between the normal and abnormal por-
tions of the wheat. And it was more apparent between black 
germs and mildewed. It was also easy to extract abnormal 

Figure 2.  Representative RoIs Averaged Reflectance Spectra of normal and 
unsound Kernel.
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kernels, break kernels and healthy kernels, although the red 
band is not the best one, from the view of economic, it can 
reduce unnecessary spending and complex steps. A software 
package was developed to extract various morphological fea-
tures in red band, which were listed in the Table 1. The per-
formance of wheat class discrimination models was developed 
by the methods of PLSDA, SVMDA and PCA-ANN; those 
algorithms are combination between feature extraction and 
pattern recognition.

The samples of each category were split into 2 subsets at ran-
dom in order to avoid man-made interference. Sixty percent of 
the samples were used to train and the other parts (40%) were 
used for testing. The percentage of sample correctly classified 
were 91.3%, 92.5%, 94.1% (black germ kernel, break kernel and 
healthy kernel, respectively) for PLSDA, 95.6%, 96.7%, 98.5% 
for SVMDA and 90.3%, 91.6%, 93.5% for PCA-ANN.

IV. Discussion

As we know, the data of hyperspectral was so huge that it was 
difficult to be analysed online. So, it was vital to find the best 
band. In this study, according to the contributing factor after 
PCA analysis for hyperspectral data, the best band was 617 nm, 
of course, there is a fluctuating range at this band, and the range 
should be assessed based on actual situation. The number of 
principal components is less than or equal to the number of 
original variables. This transformation is defined in such a way 
that the first principal component has the largest possible vari-
ance, and each succeeding component in turn has the highest 
variance possible under the constraint that it is orthogonal to 
the preceding components. In this study, the second Principal 
Component (PC2), as Figure 3(b), the component can show 
flaw clearly, also, it’s easy to extract features after image process-
ing, therefore, PC2 is much better than others. For PC2, dif-
ferent hyperspectral bands have different contributions, which 
can be measured by the contributing factor (Figure 4); those 
useful bands were similar to red band in RGB. Therefore, we 
selected the red band as the best band to identify black germ 

Figure 3. the pC Images of pCA on Different Spectral Regions of 400 to 1,000 nm (a) principal Component 1(a), 2(b), 3(c) and 4(d).

Figure 4.  Spectral Range Contribution for the feature of the Second principal 
Component.

Table 1. extracted features of Individual Wheat Kernels.

note: Where I(x,y) is intensity expressed in grey level, μi is the ith central moment 
of the intensity distribution.

Morphological Features

No. Code Feature explanation Formula
1 A Area of kernel 1

2

∑r−1

i=0

�
xiyi+1 − xi+1yi

�
2 W Width of kernel ⎛⎜⎜⎝

2

�
�2,0+�0,2+

√
(�2,0−�0,2)

2
+4�

2
1,2

�

�0,0

⎞⎟⎟⎠

1

2

3 l length of kernel ⎛⎜⎜⎝
2

�
�2,0+�0,2−

√
(�2,0−�0,2)

2
+4�

2
1,2

�

�0,0

⎞⎟⎟⎠

1

2

4 fc Roundness factor P
2

4�A

5 Rl Diameter ratio L

W

6 p perimeter ∑r−1

i=0

��
xi+1 − xi

�2
+
�
yi+1 − yi

�2
7 Ra Rectangular ratio A

L∗W

texture features

8–15 energy 4 level wavelet energy 
of R 

1

A

∑N

x=1

∑M

y=1 �I(x , y)�2

16–23 entropy 4 level wavelet entropy 
of R

1

A

∑N

x=1

∑M

y=1 �I(x , y)�2 log �I(x , y)�2
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Another method is to use wider spectral data to analysis this 
data, so as to get a variety of explanations for the kernel detec-
tion, such as ultraviolet rays, near-infrared and fluorescence.

V. Conclusion

In the spectral region ranging from 452 nm to 930 nm, the 
reflectance of hyperspectral image from unsound tissue was 
generally lower than that from normal tissue. The second 
principal component images received by principal component 
analysis of the wheat kernel samples were useful. Although the 
accuracy of PC2 was high enough for detection, this method 
was incredible as the data was too huge for real-time applica-
tion; it was desirable to use fewer wavelengths for rapid image 
acquisition and processing. From waveband contributor of 
PC2, two extreme wavelengths were 617 nm and 925 nm. As 
for the method of features extraction at wavelength 617 nm, 
it will be readily seen that the method of image segmentation 
was easy to realize, and the best detection accuracy can reach 
95.6%, 96.7% and 98.5% for 710 black germ kernels (BGK), 627 
break kernels (BK) and 1169 healthy kernels (HK), respectively. 
The general detection performance analysis demonstrated that 
the wavelength of 617 nm can be implemented effectively in 
the machine vision system.
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The statistical parameters of the results obtained from 
the studied models for test set were summarized in Table 2. 
According to the result, SVMDA proved to be the most efficient 
method. And the band selection based on hyperspectral image 
system is feasible in this study.

Sensitivity and specificity are statistical measures to evalu-
ate the performance of a binary classifier, in statistics they are 
known as performance parameters. Sensitivity (also called the 
true positive rate or the recall rate in some fields) measures the 
proportion of actual positive, which is correctly identified, such 
as, the percentage of sick people who are correctly identified as 
meeting the conditions. Specificity (sometimes called the true 
negative rate) measures the proportion of negatives, which is 
correctly identified, such as, the percentage of healthy people 
who are correctly identified as not meeting the conditions. 
These two measures are closely related to the concepts of type 
I and type II errors. We also got the Sensitivity and specificity, 
which can be get using different PLS components. The princi-
ple of PLS is used to find the components in the input matrix 
X that describes the relevant variations as much as possible 
and has a great correlation with the target value Y, then gives 
less weight to the variations that are irrelevant. We can see the 
results from Table 3, which shows the value of specificity and 
sensitivity with different PLS component. This method is also 
a way to choose the number of PLS.

Those methods are reference for durum kernel online detec-
tion, of course, there are several methods to detect kernel or 
something like those, different research has their own advan-
tages. The goal of hyperspectral imaging in this paper is to 
obtain the spectrum for each pixel in the image of durum ker-
nel, with the purpose of finding the flaws of kernel, identifying 
the defects of durum kernel.

Further research: We should try other combined methods 
to test the accuracy for unsound kernel identification. Also, we 
should make some further experiments to verify the efficiency: 
1) wheat variety “A” vs. wheat variety “B”, 2) commercial wheat 
class “A” vs. commercial wheat class “B”, 3) wheat seed vs. other 
component of wheat plant, 4) wheat seed vs. other seed species, 
5) seed vs. stone, 6) wheat damaged kernel (heat, frost, mold, 
etc.) vs. sound kernel, 7) wheat diseased kernel (scab, black tip, 
etc.) vs. healthy kernel, and so on.

Table 2. the Accuracy Comparison between Different models.

Discriminate 
analysis

Black germ 
kernel (%)

Break kernel 
(%)

Healthy kernel 
(%)

plSDA 91.3 92.5 94.1
SVmDA 95.6 96.7 98.5
pCA-Ann 90.3 91.6 93.5

Table 3. the Sensitivity and Specificity of Different Categories.

note: Bold values represent the optimum lVS selection.

LVs

Sensitivity (prediction) Specificity (prediction)

BGK BK HK BGK BK HK
1 0.039 0.760 0.697 0.742 0.461 0.821
2 0.064 0.888 0.718 0.854 0.853 0.852
3 0.811 0.840 0.803 0.918 0.883 0.980
4 0.910 0.848 0.803 0.925 0.912 0.989
5 0.910 0.920 0.972 0.925 0.957 0.994
6 0.906 0.936 0.979 0.966 0.973 0.994
7 0.893 0.944 0.958 0.985 0.968 0.994
8 0.897 0.944 0.972 0.978 0.981 0.997
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