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ABSTRACT
Metaheuristic algorithms are found to be promising for difficult and high dimensional problems. Most 
of these algorithms are inspired by different natural phenomena. Currently, there are hundreds of 
these metaheuristic algorithms introduced and used. The introduction of new algorithm has been one 
of the issues researchers focused in the past fifteen years. However, there is a critic that some of the 
new algorithms are not in fact new in terms of their search behavior. Hence, a comparative study in 
between existing algorithms to highlight their differences and similarity needs to be studied. Apart 
from knowing the similarity and difference in search mechanisms of these algorithms it will also help 
to set criteria on when to use these algorithms. In this paper a comparative study of prey predator 
algorithm and firefly algorithm will be discussed. The discussion will also be supported by simulation 
results on selected twenty benchmark problems with different properties. A statistical analysis called 
Mann—Whitney U 2 test is used to compare the algorithms. The theoretical as well as simulation 
results support that prey predator algorithm is a more generalized search algorithm, whereas firefly 
algorithm falls as a special case of prey predator algorithm by fixing some of the parameters of prey 
predator algorithm to certain values.

1.  Introduction

Many problems in our daily activities involve decision-making 
or optimization. Identifying the shortest route from a city A 
to another city B and on how to minimize the electricity con-
sumption for a house, company, a building or even a city are 
good examples. Optimization is a process of finding a solution 
to a problem, which satisfies certain limitations also called con-
straints, and minimizes or maximizes one or more objectives. 
To solve this kind of problem, many deterministic methods 
have been proposed including integer programming (Wolsey, 
1998), simplex method (Gass, 1985) and dynamic program-
ming (Bellman, 2003). Owing to the complexity of some class 
of problems, finding an exact solution is not always an easy 
task. This in turn gives an idea to the researchers to solve the 
problems heuristically.

Metaheuristic algorithms are algorithms that involve a search 
process based on educated guess and an incorporated stochastic 
search component. Most of these algorithms works based on 
randomly or pseudo randomly generated solutions. In order 
to improve the accuracy of the results and reduce the compu-
tation time of the algorithm, many metaheuristic algorithms 
are developed. Generally, there are three main inspirations that 
influence the development of algorithms for problem-solving 
on digital computers: (i) the human brain (Russel & Norvik, 
2010), (ii) the Darwinian evolution (Ahn, 2006), and (iii) the 
social behavior of insects and other animals (Beekman, Sword, 
& Simpson, 2008). The first source has led to the emergence of 
artificial intelligence (AI), the second to evolutionary compu-
tation (EC), and the third to swarm intelligence (SI).

Different metaheuristic algorithms have been proposed 
in the past twenty years. Introducing a new algorithm  

(Cheng & Prayogo, 2014; Tilahun, Kassa, & Ong, 2012; Yang, 
2010; Yang & Hossein Gandomi, 2012), modifying or hybrid-
izing of existing algorithms (Grosan, Abraham, & Ishibuchi, 
2007; Farook & Raju, 2013; Kao & Zahara, 2008; Talbi & 
Belarbi, 2011; Tilahun & Ong, 2013) and performing analysis  
of these algorithms (Rudolph, 1994; Jin, Yang, & Li, 2012; 
Pal, Jain, & Pandit, 2011; Qinghai, 2010) have been the cen-
tral research issues along with applications (Hamadneh, 
Sathasivam, Tilahun, & Ong, 2012; Ong & Tilahun, 2011, 
Tilahun & Ong, 2012b). Even though different algorithms are 
proposed and successfully used in solving problems, there is 
a critic from the scientific community that some of the algo-
rithms resemble each other and only the scenario they are 
mimicking is different (Sörensen, 2013). Hence, studies need to 
be conducted in this direction on the similarity and also unique 
search behavior of existing algorithms, so that new algorithms 
will be evaluated based on their search behavior, but not on 
what they are inspired of. A detailed analysis needs to be done 
on the search component level when introducing a new algo-
rithm and showing its unique quality or if it is a general case 
for existing algorithms. It should not be acceptable, if a paper 
fails to address this issue while introducing a new algorithm.

Prey predator algorithm is a metaheuristic algorithm, which 
is inspired by the interaction between a predator and its prey 
(Tilahun & Ong, 2015). It is a swarm based algorithm with 
some similar search behaviors with another metaheuristic algo-
rithm introduced earlier, called firefly algorithm (Yang, 2009), 
which later extended to a more general version called modi-
fied firefly algorithm (Tilahun & Ong, 2012a). In this paper a 
comparative study of these two swarm based algorithms will 
be done to access the relation between the two algorithms. The 
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comparison is done based on detailed theoretical level, based 
on the search components of the algorithm as well as based on 
simulation. In the theoretical comparison study the asymptotic 
behavior of the algorithms per their parametric values will be 
analyzed. In addition to that twenty benchmark problems of 
dimension varying from two to twenty are used to test the two 
algorithms. The algorithm parameters are tuned based on rec-
ommendations previous studies. A non-parametric statistical 
test, namely Mann-Whitney U 2 test (Sheskin, 2004), will be 
used to analyze the simulation result.

In the Section 2, basic concepts including optimization 
problems and introduction to the two algorithms will be dis-
cussed followed by comparison study in Section 3. Section 4 
presents simulation results followed by results and discussion 
in Section 5. In Section 6 a conclusion will be presented.

2.  Preliminaries

2.1.  Optimization Problem

An optimization problem has three components: The objective 
function to optimize, a rule, which is either to maximize or to 
minimize the objective function, and a feasible region or set of 
possible actions to choose from. The aim is to optimize (mini-
mize or maximize) the objective function by choosing a value 
for the variable from the feasible region. The decision variables 
are the variables whose values are under control and influence 
the performance of the system. Constraints are the restrictions 
on the values of decision variables. A standard minimization 
problem can be described as:

A solution x* is the optimal solution if and only if x* ∊ S and z 
(x) ≥ z(x*), for all x in S.

2.2.  Firefly Algorithm

Firefly algorithm is a metaheuristic algorithm for optimiza-
tion problem inspired by the flashing behavior of fireflies. 
Randomly generated solutions are considered as fireflies. To 
update these solutions three rules are used as a construction 
block of the algorithm. These rules are;

i) � All fireflies are unisex, so that one firefly can be attracted 
to any other firefly regardless of its “sex”,

ii) � Attractiveness is directly proportional to brightness 
but inversely to distance. A firefly will move towards a 
brighter firefly and if there is no brighter firefly to fol-
low then it will move randomly,

iii) � The brightness of a firefly is determined based on its 
performance in the objective function.

The attractiveness of a firefly can be calculated as follows:
 

Where A0 is the attractiveness at r = 0, � is the coefficient of light 
absorption of the medium and r is the distance from source or 
distance of a two fireflies.

If there are two fireflies, firefly i and firefly j at xi & xj and 
suppose firefly j is brighter than firefly i, then firefly i will be 
attracted by firefly j (and it will move towards j). The updating 
procedure for firefly i is given by:

Min z(x)

s.t.x ∈ S ⊆ Rn

(1)A(r) =
A

0

e�r
2

 

Where α is a step length and � is a random vector. Yang (2010) 
suggested to assign A0 = 1 for practical usage.

Since the introduction of firefly algorithm, different 
researches are conducted to improve its performance and to 
use firefly algorithm on different applications. Currently, there 
are many variants of firefly algorithm. One of these versions, 
which shows a promising results is modified firefly algorithm 
(Tilahun & Ong, 2012a). In the standard firefly algorithm, the 
brightness of the brightest firefly may decrease through itera-
tion. This in turn gives the algorithm a performance, which is 
not always improving. This is due to the random movement 
of the brightest firefly. To avoid this scenario, in the modified 
firefly algorithm, a modification is proposed by adding a special 
movement for the brightest firefly, as:

 

Where U is the direction chosen among the randomly gener-
ated m unit vectors, which can let the brightness of the brightest 
firefly to increase if the firefly moves in that direction and α is a 
step length. If such direction (a direction, which will improve 
the brightness) does not exist among the randomly generated 
directions then the brightest firefly will remain in the current 
position.

Furthermore, the suggestion given in (Yang, 2010), which 
says “for practical use, A0, was recommended to be set as 1,” 
should be replaced by an expression involving the attractiveness 
or brightness of the fireflies like eI

�

0
−I

0 where I0
′ is the intensity at 

r = 0 for firefly j and I0 is the intensity at r = 0 for firefly i. This 
will allow the attractiveness of the fireflies to be dependent on 
the intensity, which in turn depends on the objective function.

The Modified Firefly algorithm can be summarized in Table 1.

2.3.  Prey-Predator Algorithm

Prey-Predator algorithm is a new metaheuristic algorithm 
developed by Tilahun and Ong (Tilahun, 2013; Tilahun & 
Ong, 2015) for handling a complex optimization problem. 
It has been compared with other algorithms and used in dif-
ferent applications (Hamadneh et. al., 2013; Tilahun & Ong, 
2014; Bahmani-Firouzi, Sharifinia, Azizipanah-Abarghooee, & 
Niknam, 2015; Dai, Liu, & Chai, 2015; Tilahun & Ngnotchouye, 
2016; Tilahun, Ong, & Ngnotchouye, 2016). With its success to 
continuous problems, it has also been modified and used for 
discrete problems (Tilahun, Goshu, & Ngnotchouye, 2017). 
It is inspired by the interaction between a carnivorous pred-
ator and its prey. The algorithm mimics the ways in which a 

(2)xi ← xi + A
0
e−�r

2

(
xj − xi

)
+ ��

(3)xi ← xi + �U

Table 1. Modified Firefly Algorithm (It will be the standard firefly algorithm if the 
brightest firefly is updated using random neighborhood search).

Algorithm parameter setup
Generate a set of random solution, {x1, x2, . . ., xN}
For Iteration=1:MaximumIteration
  Cal�culate the intensity for each solution, {I1, I2, . . ., IN} and without losing 

generality sort them in brightness from x1 (dimmer) to xN (brightest)
 F or i=1:N-1
  F  or j=i+1:N
   M   ove firefly i towards firefly j using Eq. (2) 
  E  nd
 E nd
 M ove the brightest firefly, xN, in a promising direction using Eq. (3)
End
Return the best result
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predator runs after and hunt its prey where each prey tries to 
stay within the pack, search for a hiding place, and also run 
away from the predator.

In the algorithm, a set of initial feasible solutions will be 
generated and for each solution, xi, a numerical value to show 
its performance in the objective function called survival value 
(SV(x

i
)) is assigned. Better performance in the objective func-

tion implies higher survival value. This means for solutions xi 
and xj, if xi performs better than xj in the objective function, 
SV(xi)> SV(xj). A solution with the smallest survival value will 
be assigned as predator, xpredator, and the rest as prey. Among 
these prey, a prey, say xb, where SV(xb)≥ SV(xi), for all i, is 
called the best prey. This means, the best prey is a prey with 
the highest survival value among the solutions.

Once the prey and the predator are assigned, each prey need 
to escape from the predator and try to follow other prey with 
better survival values or find a hiding place. While, the predator 
hunts the weak prey and scare the others, which contributes 
to the exploration of the solution space. Exploitation is car-
ried out by the prey, especially the best prey, by using a local 
search. The best prey is considered as the one who has found 
a secure place and is safe from the predator. Thus it will only 
focus on conducting a local search to improve its survival value. 
However, the other prey will follow the prey population with 
better surviving values and run away from the predator.

In the updating process of these solutions there are two 
issues to deal with, the direction and the step length.

(a) � Updating direction
In the algorithm, the movement of an ordinary prey (not 

the best prey) depends on an algorithm parameter called the 
probability of follow up (Pf). If the probability of follow up is 
greater than or equal to a randomly generated number between 
zero and one from a uniform distribution, then the prey will 
follow other prey with better survival value and also does a 
local search; otherwise it will randomly run away from the 
predator.

Suppose the probability of follow up larger or equal to a 
random number and there are prey with better survival value 
compared to xi, say x1, x2,..., xs. In reality, mostly a group 
of prey tend to stay in pack and hence it try to be with the 
nearest pack of prey animals therefore the movement of xi is 
highly dependent on the distance between itself and better 
prey. Therefore, the direction of the movement of xi can be 
calculated as follows:

 

Where rij=||xi-xj|| is a distance between xi and xj, and v is an 
algorithm parameter, which plays the role of magnify or dimin-
ish the effect of the survival value over the distance. By assign-
ing different values of v, it is possible to adjust dependency of 
the updating direction on the survival value and the distance. 
If v is too big then the direction favors the performance than 
the distance of the better prey from the solution, this means the 
prey try to catch up with the best pack with little consideration 
how far that pack is. If v is too small, it implies that the prey 
prefer to follow the nearest better pack. Assigning a large or a 
small value for v will affect the jump size of xi. Hence, a unit 
direction will be used to represent the direction as:

 

(4)yi =
∑
j

eSV(xj)
v
−rij (xj − xi)

(5)ui =
yi

||yi||

Moreover, a local search is done by generating q random direc-
tions and taking the best direction, say yl, among these q direc-
tions. In order to choose yl the survival value will be checked if 
the solution moves in the q directions and the direction, which 
results the highest survival value will be taken.

If the probability of follow up is smaller than a random 
number, then the prey will randomly run way from the pred-
ator. This is done by generating a random direction yrand and 
comparing the distance between the predator and the prey if 
it moves in yrand or -yrand, and the direction, which will be take 
the prey away the predator will be taken.

Unlike the other ordinary prey, the movement of the best 
prey will perform only to do a local search. It will only move 
toward the direction, which can improve its survival value, 
from a randomly generated q directions or stays in its cur-
rent position if no such direction exist among these q unit 
directions.

In the algorithm, the main task of the predator is to motivate 
the prey for exploring the solution space and it also does the 
exploration of the solution spaces. Thus, it will chase after the 
prey with the least survival value and also moves randomly in 
the solution space. Hence the movement direction will have 
two components; random direction as well as towards the weak 
prey, x’.

(b) � Step length
Step length is the other issue related to updating of solu-

tions. In the carnivorous predation, a prey, which is nearer 
to the predator running faster than the other prey? A similar 
concept is mimicked in PPA, in such a way that a prey with 
small survival value runs faster than larger survival valued 
prey. Therefore, a prey has a step length λ that is inversely pro-
portional to its survival value. This can be expressed as the 
following formulation:

 

Where rand is a random number from a uniform distribution, 
0 ≤ rand ≤ 1 and �max represents the size of the maximum jump 
of a prey. Parameter w influences the dependency of the step 
length on the relative survival value. However, for the practical 
purpose it is also possible to omit the effect of the survival value 
in assigning the maximum jump, which eliminates the further 
study of changes in survival values to choose the parameter w 
(Tilahun & Ong, 2014; Tilahun & Ngnotchouye, 2016; Tilahun 
et. al. 2016). Hence, we can simply have;

 

Furthermore, another step length is a step length for local 
search or exploitation purpose and it is denoted by �min. The 
step length for the exploitation purpose should be smaller than 
the exploration step length, i.e. 𝜆max > 𝜆min.

Summarizing all the points discussed; the movement of the 
ordinary prey, the best prey and the predator can be summa-
rized as follows:

Movement of an ordinary prey:

i) � If the probability of follow up is larger or equal to a ran-
dom number,

 

(6)� =
�maxrand

|SV(
xi
)
− SV

(
xpredator

)
|w

(7)� = �maxrand

(8)xi ← xi +

(
yi

||||yi||||

)
�maxrand +

(
yl

||||yl||||

)
�minrand
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xi will move towards xj, if the probability of follow up is met, 
according to:

 

Where rand is a random number between 0 and 1 from a uni-
form distribution, ul is a vector chosen from q randomly gener-
ated unit vectors for local search, υ is a parameter to balance the 
influence of the distance and survival value (SV) in the updat-
ing process, �maxand �min are step lengths for the follow up and 
for the local search, respectively. However, if the probability 
of follow up is not met, which means if a randomly generated 
number is greater than probability of follow-up, then xi will not 
follow xj, but moves randomly away from the worst solution.

If the probability of follow up is set to be one in PPA, then 
any solution will follow the better solutions. Suppose that is the 
case and let us look at Eqs. (12) and (13). The last term of Eq. 
(12) tells us that the solution will move in a random direction ε 
with a step length α, and in the last term of Eq. (13), ul is a unit 
vector chosen from q random unit vectors and �min is the step 
length. Hence if q is set to be 1 and since ul rand is a random 
direction, then the last term of Eq. (13) is a random move with 
a step length �min. The second term of the equations is to follow 
up for better solutions and is serving the same purpose in the 
both algorithms.

There is an expression for the term to be dependent on the 
distance between the solutions, which is in e−r

M
ij form, and with 

setting �max=1 the brightness at the initial point of the solution 
can be computed using � = eSV

v

. The only difference between 
the two terms will be the expression of rand in Eq. (9), but the 
solutions will behave in similar fashion. Hence, with the prob-
ability of follow up being 1, �max being 1 and q = 1 an ordinary 
prey will update itself in a similar way as an ordinary firefly. 
Therefore, PPA will resemble MFFA and also FFA in terms 
of ordinary solutions under the tuning of the parameters as 
described.

Now consider the best solutions in MFFA and PPA. In the 
case of standard FFA, the brightest firefly will move randomly. 
However in the case of PPA and MFFA, q unit directions will 
be generated and a direction will be chosen if it improves the 
performance of the solution. If such direction doesn’t exist 
among the q random unit directions, the solution will remain 
in its current position.

In addition to these, the predator in PPA can be considered 
as a solution, which will follow only the immediate better prey, 
which is a prey with least performance. However, this role can 
be omitted in the analysis as FFA and MFFA do not take the 
least performing solution into account.

Hence, based on the parametric discussion given, PPA will 
perform in similar fashion as the MFFA when the probability of 
follow up is one, �max being one, q = 1 for the ordinary solution 
and number of predator is zero. In addition if the number of 
best prey is zero, PPA will work a similar search behavior with 
the standard firefly algorithm.

A recently extension of prey predator algorithm based on 
the group hunting scenario is introduced (Tilahun et. al., 2012). 
It is the same algorithm, but multiple numbers of predators 
and best prey. It is named as nm-PPA, where n is the number 
of predators and m being the number of best prey. Hence, in 
addition to the discussion and analysis given above the stand-
ard firefly algorithm will resemble 00-PPA, for n = 0 and m = 0.

(13)xi ← xi +
eSV(xj)

v

erij
�maxr and

(
xj − xi

)
+ ul�minr and

ii) � If the probability of follow up is smaller than a random 
number,

 

Movement of the best prey:
 

Movement of predator:
 

The Prey-Predator algorithm steps are summarized in Table 2.

3.  Comparison of Firefly Algorithm and Prey 
Predator Algorithm

The updating process for an ordinary firefly, excluding the 
brightest one, in the standard firefly algorithm is the same 
as in the modified firefly algorithm (Tilahun & Ong, 2012a). 
Suppose a firefly xi is attracted by another firefly xj. Then xi will 
update its location as follows:

 

Where α is an algorithm parameter to control the step length 
of a random direction ɛ, β is the brightness of the firefly j at 
the location of firefly i and can be computed by � = �

0
e−�r

M
ij  

for M ≥ 1 and β0 is the brightness of the firefly j at its current 
position and rij is the distance between the two fireflies. In 
most cases M = 2, but it should be noted that M can be taken 
as any value greater or equal to one (Yang, 2010). This results 
show that the brightness will be inversely proportional to the 
distance (Yang, 2010).

Now consider the updating process of an ordinary prey, a 
prey, which is not the best prey, in prey predator algorithm. 
Suppose the survival value of prey j is better than prey i. Then 

(9)xi ← xi +

(
yr

||||yr||||

)
�maxrand

(10)xb ← xb +

(
yl

||||yl||||

)
�minrand

(11)
xpredator ← xpredator +

�
yr

����yr����

�
�maxrand

+

⎛⎜⎜⎝
x�i − xpredator

���
���x

�

i − xpredator
���
���

⎞
⎟⎟⎠
�minrand

(12)xi ← xi + �

(
xj − xi

)
+ ��

Table 2. Prey Predator Algorithm.

Algorithm parameter setup
Generate a set of random solution, {x1, x2, . . ., xN}
For Iteration=1:MaximumIteration
  Cal�culate the survival value for each solution, {SV1, SV2, . . ., SVN} and without 

losing generality sort them in such a way that SV
i
≤ SV

i+1
 for all i

 U pdate the predator x1 using Eq. (11)
 F or i=2:N-1
    If Pf≤ rand
   F   or j=i+1:N 
    M    ove solution i towards solution j using Eq. (8) 
   E   nd
  E  lse
      Move solution j using Eq.(9) 
  E  nd
 E nd
 M ove the best solution, xN, in a promising direction using Eq. (10)
End
Return the best result
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PPA are equal. We wish to test the following null hypothesis 
at α = 0.05 (95% confidence level):

 

The steps for the calculation of the rank sum statistics are as 
follow:

i. � Arrange all the data values for both samples from the 
smallest to the largest.

ii. � Assign number 1 to the smallest data value and G 
(total number of observations from both samples) to 
the largest. These assigned values are the ranks of the 
observations.

iii. � If there exists a tie observation, the ranks for the obser-
vation is the average rank for the observations.

iv. � Let T denote the sum of ranks for the observation 
from population 1 (MFFA)Under the null hypothesis, 
the sampling distribution of T has mean and variance 
given by:

 

H
0
:MedMFFA = MedPPA

(14)H
1
:MedMFFA ≠ MedPPA

(15)
�T =

n
1

(
n
1
+ n

2
+ 1

)
2

4.  Simulation

Simulation is also done to check and validate the assumption 
made in a earlier section, which states that the PPA will per-
form in a similar fashion as the MFFA when number of preda-
tor is zero, the probability of follow up is one, exploration step 
length being one and q is one for the ordinary solution. It is 
mentioned that MFFA works in a similar search behavior with 
standard FFA if in addition the number of best prey is zero 
(Tilahun & Ong, 2012a; Tilahun, 2013), hence the simulation 
is done only to compare PPA with MFFA. Twenty benchmark 
problems of different properties are selected for simulation 
(Jamil & Yang, 2013). These test functions include multimodal, 
unimodal, continuous, discontinuous and stochastic problems. 
For each test problem, the same randomly generated initial 
solution set is used for both algorithms and the same number 
of iterations for both algorithms is used. A statistical hypoth-
esis testing is then conducted based on the result generated by 
both algorithms.

4.1.  Benchmark Problems

For uniformity purposes, all the problems considered are 
minimization problems taken from Jamil and Yang (2013). 
Table 3 shows the list of the benchmark problems and their 
properties.

4.2.  Mann-Whitney U 2 Sample Test (Also Known As 
Wilcoxon Rank Sum Test)

The parametric test such as 2 independent t-tests cannot 
be conducted when the assumptions relating to the level of 
measurement, sample size, normality or equality of variance 
are not valid (Ott & Longnecker, 2010). Thus, we need to 
use a non-parametric test. The Mann Whitney test is a non-
parametric test, which is useful to study the difference between 
the magnitudes of the variables in two independent sets of data 
(Ott & Longnecker, 2010; Sheskin, 2004). The test assumes the 
two independent samples from two different populations and 
the samples have the same shape and spread, though they don’t 
have to be symmetric. The Mann-Whitney procedure is a sta-
tistical test of the difference between the two medians. Under 
the null hypothesis, they are equal i.e. the median of the sample 
results from MFFA and the median of the sample result from 

Table 3. Benchmark Problems and their Properties According to (Jamil & Yang, 2013).

Test Function Function Name Properties of Function
1 Bird Function Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal
2 Camel Function- Six Hump Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal
3 Deckkers–Aarts Function Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal
4 Giunta Function Continuous, Differentiable, Separable, Scalable, Multimodal
5 Jennrich-Sampson Function Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal
6 Mishra 3 Function Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal
7 Mishra 6 Function Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal
8 Quadratic Function Continuous, Differentiable, Non-Separable, Non-Scalable
9 Bartels Conn Function Continuous, Non-differentiable, Non-Separable, Non-Scalable, Multimodal
10 Ackley 2 Function Continuous, Differentiable, Non-Separable, Non-Scalable, Unimodal
11 Miele Cantrell Function Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal
12 Easom Function Continuous, Differentiable, Separable, Non-Scalable, Multimodal
13 Egg Crate Function Continuous, Separable, Non- Scalable
14 Price 2 Function Continuous, Differentiable, Non-Separable, Non-Scalable, Multimodal
15 Stepint Function Discontinuous, Non-Differentiable, Separable, Unimodal
16 Salomon Function Continuous, Differentiable, Non-Separable, Scalable, Multimodal
17 Sargan Function Continuous, Differentiable, Non-Separable, Scalable, Multimodal
18 Trigonometric 1 Function Continuous, Differentiable, Non-Separable, Scalable, Multimodal
19 Xin-She Yang (Function 1)  Separable, non-differentiable, Scalable, Stochastic
20 Zakharov Function Continuous, Differentiable, Non-Separable, Scalable, Multimodal

Table 4. Parameter Setting.

Benchmark 
Function Feasible region

Problem 
dimension (�

min
)

1 [-2π, 2 π] 2 4π/5
2 [-5, 5] 2 2
3 [-20, 20] 2 8
4 [-1, 1] 2 0.4
5 [-1, 1] 2 0.4
6 [-20, 20] 2 8
7 [-5, 5] 2 2
8 [-10, 10] 2 4
9 [-500, 500] 3 225
10 [-32, 32] 4 15
11 [-1, 1] 4 0.5
12 [-100, 100] 5 50
13 [-5, 5] 6 4
14 [-10, 10] 8 6
15 [-5.12, 5.12] 10 3
16 [-100, 100] 12 40
17 [-100, 100] 14 50
18 [0, π] 15 π/4
19 [-5, 5] 17 2.5
20 [-5, 10] 20 3.5
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solutions for both algorithms for each of the problems were 
taken the same random solutions. The algorithm runs with 
the algorithm parameters fixed based on the discussion in 
Section 3 and recommendations from literature (Tilahun, 
2013; Tilahun & Ong, 2015; Yang, 2010). This means, for 
PPA the probability of follow up is one, q = 1 and �max=1, 
v = 0, number of predator = 0 and number of best prey = 0. 
Furthermore, α in MFFA is set to be equal to �min in PPA and 
given in Table 4.

The termination criterion was set to be maximum number 
of iterations, which is set to be 30. The experiment was run 30 
times with average final results as presented in Table 5.

To check the normality assumption for the data obtained for 
simulation, Minitab is used and the generated result is shown 
in Figure 1. From Figure 1, it is clear to see that that proba-
bility plot failed to adequately fit the data obtained for MFFA 
and PPA. Furthermore, the Anderson-Darling test (Dodson, 
2006) shown with p-values is less than 0.005, which indicate 
that the hypothesis, which is “the data is normal” is rejected 
at 95% of confidence level for both MFFA and PPA. Hence, 
Mann-Whitney test is suitable for this data.

From Figure 2, the statistical software (Minitab) output 
provides P-Value is 1.00 for the Mann-Whitney test. Thus at 
95% confidence level, the null hypothesis stated in Section 
4.2, Mann-Whitney U 2 Sample Test (H0:MedMFFA = MedPPA), 
is accepted with the given confidence level. This means that 
under the given confidence level, the claim, which says the 
median of the two experiments are equal is accepted. Hence, 
there is no significant difference in between the median results 
based on the functional values of the two algorithms. Hence, 
the simulated result supports the claim that the performance 
of MFFA and PPA under the given parametric adjustment is 
the same.

The simulation result along with the statistical analysis 
shows that there is no significant difference on the performance 
of the modified firefly algorithm and prey predator algorithm 

Where n1 is the number of observations from population 1 
and n2 is the number of observation from population 2. If T 
is smaller or larger than μT, we have evidence that the null 
hypothesis is not acceptable under the given confidence inter-
val. In this paper, we use statistical software called MINITAB 
16 to carry out the hypothesis testing.

5.  Results and Discussions

The simulation is done using MATLAB R2011b on Intel® 
Core™ i5-2,400 CPU @ 3.10  GHz with 32 bit operating 
system desktop machine. As mentioned earlier, the initial 

�2

T =
n
1
n
2
(n

1
+ n

2
+ 1)

12

Table 5. Simulation Results.

Benchmark 
Functions

Exact optimum 
solution

Optimum  
solution gener-
ated by MFFA

Optimum  
solution gener-

ated by PPA
1 −106.761537 −106.787718 −106.787730
2 −1.031628 −1.031617 −1.031629
3 -24777.000000 -24776.073041 -24776.518212
4 0.064470 0.064471 0.064470
5 124.361200 124.363321 124.362192
6 −0.184670 −0.184780 −0.184699
7 −2.283950 −2.283946 −2.283950
8 -3873.724300 -3873.724141 -3873.724182
9 1.000000 1.000091 1.000011
10 −200.000000 −199.998555 −199.999837
11 0.000000 0.000000 0.000000
12 −1.000000 −0.999970 −1.000000
13 0.000000 0.000019 0.000001
14 0.900000 0.900000 0.900000
15 0.000000 0.000000 0.000000
16 0.000000 0.000019 0.000014
17 0.000000 0.000000 0.000000
18 0.000000 0.000018 0.000002
19 0.000000 0.000000 0.000000
20 0.000000 0.000001 0.000000

Figure 1. Statistical Software (Minitab) Output: Normality Test.
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