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ABSTRACT
Forest biomass is a significant indicator for substance accumulation and forest succession, and can 
provide valuable information for forest management and scientific planning. Accurate estimations of 
forest biomass at a fine resolution are important for a better understanding of the forest productivity 
and carbon cycling dynamics. In this study, considering the low efficiency and accuracy of the existing 
biomass estimation models for remote sensing data, Landsat 8 OLI imagery and field data cooperated 
with the radial basis function artificial neural network (RBF ANN) approach is used to estimate the 
forest Above Ground Biomass (AGB) in the Mount Tai area, Shandong Province of East China. The 
experimental results show that the RBF model produces a relatively accurate biomass estimation 
compared with multivariate linear regression (MLR), k-Nearest Neighbor (KNN), and backpropagation 
artificial neural network (BP ANN) models.
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1.  Introduction

Forests are primary components of terrestrial ecosystems. 
They are extremely rich in biodiversity and provide important 
ecosystem services, such as food, fiber, and water regulation. 
In addition to its role in reducing greenhouse gas emissions, 
reducing emissions from de-forestation in the developing 
countries provides an opportunity to value and safeguard these 
services. Mount Tai is a mountain of historical and cultural 
significance located at north of the city of Tai’an, in Shandong 
province, China. Since forest biomass is an important indica-
tor for evaluating an ecosystem’s productivity and is the basis 
for analyzing the substance circulation in the terrestrial eco-
system, an accurate estimation of forest AGB in the Mount 
Tai is the foundation of the terrestrial ecosystem carbon cycle 
and dynamic carbon analysis, which plays an important role 
in global carbon cycle research on various terrestrial ecosys-
tems (Karin, Uwe, Viktor, & Florian, 2012; Vaglio Laurin et 
al., 2014).

The traditional methods for calculating biomass rely on con-
siderable amounts of in situ measurements, which are inaccu-
rate, time-consuming, costly, laborious and poorly distributed 
in large areas (Vaglio Laurin et al., 2016). With the rapid devel-
opment of remote sensing techniques, remote-sensing-based 
methods have been widely used to predict the AGB over large 
areas; these methods are macro-scale, dynamic, fast, econom-
ical, and convenient for estimating large-scale forest AGB and 
long-term dynamic changes.

Over the past two decades, a large number of researchers 
have contributed to the study of the application of optical 
remotely sensed data (Ene et al., 2016). Based on the rela-
tive forest area within a MODIS pixel, Kumar et al. used four 

regression functions, i.e., linear, logarithmic, exponential and 
power functions to find the best model for estimating the AGB 
in northern Haryana, India (Kumar, Gupta, Singh, Patil, & 
Dhadhwal, 2011). Karlson et al. assessed the utility of Landsat 
8 OLI imagery for mapping tree canopy cover and AGB in a 
Sudano-Sahelian woodland landscape (Martin et al., 2015). 
Dube and Mutanga examined the utility of the Landsat 8 mul-
tispectral sensor for estimating the AGB of forests in uMgeni 
catchment, KwaZulu Natal, South Africa as part of large scale 
monitoring to understand forest contribution to the regional 
carbon cycle (Dube & Mutanga, 2015). However, these mod-
els cannot explain the relevant physical mechanisms or the 
relationships between the parameters; thus, they may poorly 
predict the variable under study when the values are beyond 
the saturation point of the canopy reflectance (Bénié, Kaboré, 
Goïta, & Courel, 2005; Lumbres & Lee, 2014). Combining the 
satellite-derived, climatic, and topographic predictor varia-
bles with the Mexican National Forest Inventory (NFI) data, 
Aguirre-Salado et al. compared four variations in the distance 
metrics of the KNN for the spatially explicit estimation of the 
AGB in an area of the Mexican northern border within the 
intertropical zone (Aguirre-Salado et al., 2014). Seo et al. used 
the KNN method to estimate the AGB of a logged tropical 
forest in Sabah, Malaysia. The field data, the digital number 
and the normalized difference vegetation index (NDVI) from 
the Landsat TM-5 data were used to determine the optimum 
horizontal reference area and the number of reference sample 
plots (k) (Seo, Phua, Ong, Choi, & Lee, 2014). The advantage 
of KNN method is that no assumptions are made about the 
nature of the relationship between AGB and remote sensing 
(Seo et al., 2014). However, the KNN method requires large 
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numbers of widely distributed field plots that cover the com-
plete range of values for the AGB, forest structure and remote 
sensing signals in the study area (Liu, Shen, Zhao, & Xu, 2013; 
Skowronski, Clark, Gallagher, Birdsey, & Hom, 2014). Based 
on the combined use of the Landsat Thematic Mapper (TM) 
and field measurements, linear regression, partial least squares 
(PLS) regression and BP ANN have been used to estimate the 
aboveground carbon (AGC) stock of Moso bamboo in Anji, 
Zhejiang Province, China. The results indicated that the Erf-BP 
model performed the best and the linear regression model per-
formed the poorest (Xu et al., 2011). The textural measures were 
derived using wavelet analysis and Grey Level Co-occurrence 
Matrix methods, which were coupled with multispectral data to 
provide inputs to artificial neural networks trained under four 
different scenarios and validated using biomass measured from 
field plots. Stümer et al. utilized in situ national forest inventory 
data and satellite remote sensing data (Landsat 7 ETM+) to 
apply self-organizing map algorithms (neural networks) for 
the spatially explicit estimation of forest carbon stocks in a test 
region in Thuringia (Germany) (Stümer, Kenter, & Köhl, 2010). 
The strongest relationships between the predicted biomass and 
the measured biomass from the field survey were obtained with 
a neural network that was specifically developed for the site. 
Artificial neural networks are general-purpose computing tools 
that can solve complex non-linear problems and that can obtain 
highly accurate forest biomass.

Neural networks consist of a large class of different architec-
tures. Multi-Layer Perceptron (MLP) and RBF are two of the 
most widely used neural network architectures for regression 
problems, such as biomass estimation. The RBF neural network 
structure is simple, adaptive, and less adjustable in terms of 
parameters, and it produces an irrelevant correlation between 
the output and initialized weights (Aguirre-Salado et al., 2014; 
Seo, Park, Yim, & Lee, 2012); thus, a remote-sensing-based 
estimation of AGB using the RBF ANN algorithm is proposed. 
This study presents a cross validation method to determine the 
optimal parameter value of the spread, to construct the optimal 
RBF neural network model and to combine the algorithm of 
the MIV for the selection of the variables.

The objective of this study, therefore, is to link biomass 
and field inventory data to Landsat 8 OLI data and to analyze 
their relationships and the potential of Landsat 8 OLI data for 
biomass estimation. The goal is to develop improved biomass 
estimation models, evaluating spectral information, textural 
information and terrain factors.

2.  Materials

2.1.  Study Area

The study area is located in Mount Tai in the center of Shandong 
Province. The area is approximately 24200 ha, extending from 
36°11′N, 116°50′E to 36°31′N,117°12′E (Figure 1). Mount Tai 
has been listed on the World Cultural and Natural Heritage 
site list since 1985. The land cover is fragmented with small 
tourist areas, and the main areas are occupied by forests. Mount 
Tai is a heterogeneous region with complex topography, where 
the elevation ranges from 180 to 1530 m. The climatic factors 
are highly variable throughout the year, with the annual mean 
precipitation in the range of 750–1130 mm. These physical con-
ditions are conducive for forest growth. Mount Tai is typical 
of the broad-leaved forest community in the warm temperate 
zone of China. Forest cover composes 81% and vegetation 

cover composes 90% of the total area. The dominant species 
include pine, oriental arborvitae, oak, Chinese scholar tree, 
poplar, and willow.

2.2.  Field Inventory

The field campaign was performed from May 13 to May 18, 
2013. This period was characterized by high biomass pro-
ductivity. Random sampling was adopted in this study. The 
field data were collected at 48 temporary sample plots, which 
included 6 clustered circular plots (Figure 2a) and 42 circular 
plots (Figure 2b). These plots covered all of the major forest 
types in Mount Tai. The clustered circular plot was sampled via 
3 sub-plots, where each sub-plot area was as large as 200 m2. 
The circular plot had an area of 450 m2.

The geographical locations of the plots were determined by 
non-differential GPS with a positional error of < 15m under 
a canopy. In each sample plot, the diameter of the individual 
living forest trees was measured (at breast height, 1.30m above 
ground, DBH), along with the tree height; each tree species 
was identified. The trees with DBH values below 5 cm were 
not included in the survey. The tree height was measured 
with a laser range finder (OPTI-LOGIC 400LH, Opti-Logic 
Corporation); for trees lower than 3  m, a leveling rod was 

Figure 1. Study Area.
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Figure 2. Sample Plots: (a) Clustered Circular Plot; (b) Circular Plot.
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used. The DBH was measured at a height of 1.3 m using a tape 
measure. The latitude, longitude, and elevation of the forest 
site were measured by a GPS device (HOLUX M-241, Holux 
Technology Inc.).

2.3.  Remote Sensing Data and DEM

During the field inventory time, a Landsat 8 OLI image (WRS-
2, Path 122/Row 35) captured the entire study area on May 
21, 2013. The Landsat 8 satellite payload consists of two scien-
tific instruments; the Operational Land Imager (OLI) and the 
Thermal Infrared Sensor (TIRS). The OLI images consist of 
nine spectral bands with a spatial resolution of 30 m for Bands 
1 to 7 and 9. New band 1 (ultra-blue) is useful for coastal and 
aerosol studies. New band 9 is useful for cirrus cloud detection. 
The resolution of Band 8 (panchromatic) is 15 m. The spectral 
ranges of the nine bands are 433–453 nm (B1-coastal aerosol), 
450–515 nm (B2-blue), 525–600 nm (B3-green), 630–680 nm 
(B4-red), 845–885  nm (B5-near infrared), 1560–1660  nm 
(B6-SWIR 1), 2100–2300  nm (B7-SWIR 2), 500–680  nm 
(B8-panchromatic), and 1360–1390 nm (B9-cirrus).

DEM data covering the entire study area is from the 1:50,000 
national fundamental geographic data base in China, which is 
based on 1985 National Height Datum on CGCS2000 ellipsoid.

3.  Methodology

The proposed method is based on the RBF ANN model. First, 
feature extraction is adopted to extract the textural features 

and vegetation indices from the Landsat 8 OLI data. Second, 
to select the non-linear variables rapidly and accurately, the 
method of selecting biomass estimation model parameters for 
the neural network’s mean impact value (MIV) is implemented 
based on the ideology of the MIV. Third, the RBF neural net-
work model is constructed, and the radial based distribu-
tion function “spread” is determined by the cross-validation 
method. The simulation is applied to the study area of Mount 
Tai to estimate the local forest biomass.

3.1.  Overview of the Method

The flow of the proposed method is shown in Figure 3. First, 
image pre-processing and feature extraction are adopted to 
extract the texture features and the vegetation indices from 
the Landsat 8 OLI data, and the terrain factors, such as the 
slope, aspect and height, are analyzed from the DEM. Second, 
for rapid and accurate selection of non-linear variables, the 
selection method for the biomass-estimation model param-
eters for the neural network’s MIV is based on the ideology 
and advantages of the MIV, such as the training capabilities, 
the rapid convergence, and the adaptive fault tolerance of 
the neural network. Third, the RBF neural network model is 
constructed with a good approximation of the data. The RBF 
neural network is a three-layer network that is identified by 
the nodes of each layer. The hidden layer transfer function is a 
Gaussian function, and the output layer transfer function is a 
linear function; after repeated testing, the radial-based distri-
bution function “spread” is determined by the cross-validation 
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Figure 3. The Flow of the Proposed Method.
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correlation, variance, dissimilarity, correlation and second 
moment are the primary textural-feature statistical measures. 
All the spectral information is obtained by a single pixel format. 
In this study, the terrain factors primarily include the slope, 
aspect and height. The calculation of the terrain factors is based 
on the altitude values (grid cells) and the altitude value of the 
direct neighbors (typically, the 8 neighboring cells).

The selection of the variables plays an important role in 
the remote-sensing-based estimation of the AGB. Dombi et 
al. proposed an effective method, called MIV that reflects the 
changes in the weight matrix of the neural network as an eval-
uation of the various independent variables that influence the 
importance of the size of the dependent variable indicators. 
The MIV method can improve the accuracy of the proposed 
model (Dombi, Nandi, Saxe, Ledgerwood, & Lucas, 1995). The 
biomass model parameters of the field plots are selected as the 
initial training set. First, the training set is trained with the 
ANN model. Second, every explanatory variable is increased 
and decreased by a ratio to constitute two new training sets. 
Then, these new training sets and the trained neutral network 
are used to obtain the simulation results. The difference in the 
simulation values of the two training sets and their average 
values, which are the MIV values, are calculated. Finally, the 
variables are sorted based on their absolute values for the varia-
ble selection. The obvious variables of the neural network mod-
eling results are selected as the network input parameters, and 
the other variables are removed. The selected biomass model 
parameters are shown in Table 1.

3.5.  RBF ANN Algorithm

In 1985, radial-basis functions were introduced by Powell to 
solve the real multivariate interpolation problem (Musavi, 
Ahmed, Chan, Faris, & Hummels, 1992). Broomhead and Lowe 
were the first to use the radial-basis functions in the design of 
neural networks in 1988 (Webb & Lowe, 1990). The RBF neural 
network is based on supervised learning, which is designed as 
a solution to the approximation problem in multidimensional 
spaces. The RBF neural network is good at modeling nonlinear 
data, it can be trained in one stage rather than using an iterative 
process (as in MLP), and it can learn the given application 
quickly (Seo et al., 2014; Yilmaz & Kaynar, 2011). The output 
of the network is a linear combination of radial basis functions 
of the inputs and the neuron parameters. Radial basis function 
networks have many uses, including function approximation, 
time series prediction, egression, classification, and system 
control.

In this study, the Matlab 8.3 (2014) software is used in the 
analyses of a three-layer feed-forward neural network that 
consists of an input layer (7 neurons), one hidden layer with 
a non-linear RBF activation function (12 neurons for RBF) 
and a linear output layer (Figure 4). The seven neurons in the 
input layer are the variance in the NIR band, the variance in 

method. The RBF neural network is trained with the known 
field samples, and the simulation is applied to the study area 
to estimate the forest biomass.

3.2.  Field Biomass Calculation

The calculation of the biomass of the individual trees is com-
monly based on the species, DBH and height. In our study, 
the forest-field AGB is calculated from equations based on the 
destructive techniques proposed by Fernández-Manso et al. 
(Fernández-Manso, Fernández-Manso, & Quintano, 2014), as 
follows:
 

 

where Wfield is the AGB of the individual trees, a and b are the 
regression parameters, d is the diameter at breast height, s is 
the standard error of the estimation, and c is the correction 
factor, which enabled the calculation of Wfield in all of the plots, 
e is the Euler number. Within each of the 48 plots, the AGB 
is calculated for each individual tree and is then averaged to a 
plot value. Subsequently, the AGB results are converted to tons 
per hectare (t/ha).

3.3.  Satellite Image Preprocessing

The image pre-processing includes all of the common steps 
of multispectral remote sensing data treatment, such as radi-
ometric, geometric and atmospheric corrections and conver-
sion of digital numbers to reflectance values (Cutler, Boyd, 
Foody, & Vetrivel, 2012). For Landsat 8, a full computation of 
the reflectivity in each band is performed. As an initial step, 
the radiance values of Landsat 8 are computed from the DN 
values. Generally, the Landsat 8 OLI data are inappropriate for 
quantitative analyses and comparisons; therefore, a particular 
form of radiometric calibration or normalization is required. 
Consequently, an atmospheric correction is performed by 
the FLAASH (Fast Line-of-sight Atmospheric Analysis of 
Spectral Hypercubes) algorithm. Subsequently, the image is 
geometrically transformed and registered to the UTM projec-
tion to facilitate the linkage with the ground data. Based on 
the C-correction algorithm (Fan, Koukal, & Weisberg, 2014), 
the topographic correction is tested with the DEM, which is 
arranged as a regular grid of elevation points with 10 m spacing.

3.4.  Selection of Variables

The biomass model parameters can be generally divided into 
the following four categories: Single band information, veg-
etation indices, texture features and terrain factors. There 
are eight individual bands [coastal aerosol, blue, green, red 
(R), near-infrared (NIR), cirrus, and two shortwave infrared 
(SWIR) bands]. The vegetation indices and the textural fea-
tures are calculated from the individual bands as independent 
variables. The vegetation indices include the normalized differ-
ence vegetation index (NDVI), the difference vegetation index 
(DVI), the ratio vegetation index (RVI), the soil and atmos-
pherically resistant vegetation index (SARVI), the transformed 
soil atmospherically resistant vegetation index (TSARVI), the 
multi vegetation index (MVI), and the perpendicular vegeta-
tion index (PVI). The entropy, contrast, homogeneity, means, 

(1)W
field

= eadbc

(2)c = es
2∕2

Table 1. The MIV values of the selected variables.

No. Model parameters Absolute MIV value 
1 Variance in the NIR band 2.93
2 Variance in the SWIR-2 band 1.60
3 Contrast in the NIR band 1.25
4 Homogeneity in the blue band 1.20
5 Entropy in the SWIR-1 band 1.14
6 Slope 1.10
7 Homogeneity in the SWIR-1 band 0.76
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estimated and observed values. The RMSE is defined according 
to the following equation:

 

where n is the total number of the sample plots, yi is the meas-
ured biomass at the ith plot, and y′i is the predicted biomass 
at the ith plot.

In statistics, MAPE values, which are a measure of the 
accuracy of a method for constructing a fitted time series, are 
used for comparing the prediction performances of the models 
(Yilmaz & Kaynar, 2011). This value typically expresses accu-
racy as a percentage and is defined by the following formula:

 

Lower RMSE values and lower MAPE values indicate less resid-
ual variance. An excellent biomass estimation model should 
achieve a low RMSE and a low MAPE value.

We perform a leave-one-out cross-validation to obtain 
RMSE and MAPE values, where in each trial we left one partic-
ipant’s data out for training the method, and tested the resulting 
method on the left out participant.

4.2.  Comparison of Different Values of the Spread

One of the most important parameters of the newrb function 
is the spread, which is the distribution density of the RBF 
function. The spread can greatly affect the performance of the 
network. A larger spread indicates a smoother function approx-
imation. An excessively large spread indicates that many neu-
rons are required to fit a fast-changing function. An excessively 
small spread indicates that many neurons are required to fit a 
smooth function, and the network might not generalize well. 
Therefore, the network must find the best value of the spread 
to reach the ideal accuracy during the network design. The 
spread is set to 0.8, 0.9, 1.0, 1.1, 1.2 and 1.3.

The network mean square error is 0.0001, the maximum 
number of neurons is 7, and the number of neurons to add 
between the displays is 1. As shown in Figure 5, a ratio shows 
the relative sizes of the training samples and the total samples. 
Figures 5a and 5b show that the red dotted line with a spread 
of 1.1 has the best performance, and the black solid line with a 
spread of 0.8 has the largest error. Therefore, this study chooses 
the optimal spread value of 1.1, which is used in the compari-
son of the four algorithms. Overall, as the ratio of the training 

(4)RMSE =

√
1

n

∑n

i=1
(yi − y�i )

2

(5)MAPE =
100%

n

∑n

i=1

|||
||

yi − y�i
yi

|||
||

the SWIR-2 band, the contrast in the NIR band, the homoge-
neity in the blue band, the entropy in the SWIR-1 band, the 
slope, and the homogeneity of the SWIR-1 band. The neuron 
numbers in the hidden layers are selected from a series of trial 
runs of the networks with 1 neuron to 25 neurons to obtain the 
neuron number in the network with minimal error. The radius 
(also called the spread) of the radial basis function is selected 
by the cross validation method from a series of trial runs of 
the networks, which output values of 0.8 to 1.3 to obtain the 
spread in the network with minimal error.

This study uses training samples from the plot vegetation 
indices, textural features, and terrain factors as the input and 
the plot biomass as the output, using the newrb function in 
the MATLAB artificial neural network toolbox to train the 
network with the samples.

The radial basis network is iteratively created by the newrb 
function. Initially, the number of hidden-layer neurons is zero. 
Then, the hidden layer increases by one neuron in each itera-
tion. The network simulates and determines the input sample 
vector corresponding to the maximum output error. Next, a 
neuron is added to the hidden layer, and the input vector is 
set as the weight vector. Finally, the weights of the linear layer 
are modified until the sum of the squared error is less than 
the error threshold or until a maximum number of neurons 
are reached. The newrb function calls the variables as follows:

The default parameters are shown in Table 2.

4.  Results and Discussion

To evaluate the performance of the multivariate linear regres-
sion (MLR), KNN, and BP ANN models in predicting the AGB 
in Mount Tai, experiments and comparisons are performed 
as follows:

4.1.  Validation and Assessment of the Prediction 
Techniques

To compare the different AGB estimation approaches, the fol-
lowing two aspects of the estimation accuracy are measured 
to control the model performance of the prediction capacity; 
the root-mean-square error (RMSE) and the mean absolute 
percentage error (MAPE).

The RMSE is a frequently used measure of the differences 
between the values estimated by a model and the observed val-
ues (Yilmaz & Kaynar, 2011). Generally, the RMSE represents 
the sample standard deviation of the differences between the 

(3)net = newrb
(
P,T , goal, spread,MN ,DF

)

variance

contrast

slope

1

2

3

n

Hidden layerInput layer:
selected variables

Output layer:
biomass

biomass

Figure 4. Architecture of an RBF ANN.

Table 2. Default newrb parameter settings.

Parameter name Parameter value Description
P 7 × 48 matrix of plot 

parameters
Input vectors

T 1 × 48 matrix of plot 
biomass data

Target vectors

goal 0.0001 Mean squared error 
goal

spread 1 Spread of the radial 
basis functions

MN 7 Maximum number 
of neurons

DF 1 Number of neurons 
to add between 
displays
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local minima. In addition, the performance of the BP ANN 
depends on the learning rate parameter and the complexity 
of the problem. The RBF network retains training speeds that 
are comparable to the BP networks, with the advantages of 
requiring a smaller number of units to cover high-dimensional 
input spaces and producing high approximation accuracy. In 
addition, the RBF networks have several advantages over the 
BP networks, including a faster learning rate and resistance to 
problems, such as paralysis and local minima. Therefore, the 
RBF ANN model exhibits more reliable predictions compared 
with the BP ANN model.

5.  Conclusions

This study proposes a remote sensing-based estimation method 
for AGB in the Mount Tai area using the RBF ANN algorithm. 
In this study, the performance of the RBF ANN algorithm is 
largely influenced by the spread parameter. The RBF ANN 
with two layers and a spread of 1.1 is the best model for the 
biomass estimation by a test trial based on MAPE and RMSE. 
The experimental results clearly indicate that the RBF model 
possesses a relatively accurate biomass estimation compared 
with MLR, KNN and BP ANN. The results also show that 
the designed model addresses the characteristics of biomass 
estimation and accurately reflects the conditions of the AGB 
in Mount Tai. The combination of remote sensing and forest 
field-inventory data is a practical and effective technique for 
estimating the AGB distribution required for regional carbon 
stock assessments.

The limitations of the RBF model are that it is more sensitive 
to dimensionality and that it has greater difficulties when the 
number of units is large. Further studies are required to ascer-
tain whether a mixed sigmoid–RBF network can effectively 
extrapolate to unknown biomass regions without losing the 
predictive accuracy within the known field biomass regions. 
Additional research is required to estimate forest biomass based 
on very-high-resolution satellite data.

Disclosure statement
No potential conflict of interest was reported by the authors

data increases, there is a general downward trend in the MAPE 
and RMSE values.

4.3.  Comparison of the Four Algorithms

In the following analyses, the optimal value for k is 8, and the 
optimal spread is 1.1. The BP ANN network parameters of 
the learning rate and the momentum are set to 0.01 and 0.95, 
respectively. The variable learning rate with the momentum 
(trainbfg) as the networks training function and tansig as an 
activation (transfer) function for all of the layers are used.

With the same sample-plot data-set, the biomass estima-
tion model is run using the MLR, KNN, BP ANN and RBF 
ANN approaches. The RMSE, MAPE and coefficient of corre-
lation (R2) values are shown in Table 3. For the estimation of 
the forest biomass, the MAPE values of the estimated values 
are less than 16.5%, the RMSE values of the estimated values 
are less than 19.77, and the R2 values of the estimated values 
are more than 0.882. Compared with the MLR, KNN and BP 
ANN approaches, the RBF ANN method has more applicable 
advantages: the MAPE is 9.5%, the RMSE is 9.87, and the R2 
is 0.936. Therefore, the RBF ANN method has significantly 
higher accuracy.

The above comparison of the RMSE, MAPE and R2 values 
in predicting the AGB demonstrates that the prediction per-
formance of the RBF ANN model is higher than that of BP 
ANN, MLR and KNN. Because the KNN model and the MLR 
model require field plot data distributions to address particu-
lar substitution (e.g., linearity, normality, equal variance, or 
independence), remote sensing information is insufficiently 
used; as a result, these models are less effective. In the BP ANN 
method, the weights are adjusted in the steepest descent direc-
tion (negative of the gradient). However, BP ANN has a slow 
learning convergent velocity, and it may be trapped within 

(a) (b)

Figure 5. Error Curves with Different Spread Values: (a) MAPE; (b) RMSE.

Table 3. Accuracy of the four different methods.

Methods MAPE (%) R2 RMSE
MLR 16.5 0.905 19.77
KNN 21.4 0.882 22.64
BP ANN 11.2 0.928 18.22
RBF ANN 9.5 0.936 9.87
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