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ABSTRACT 
This paper presents a method for 3D pose estimation using visual information 
and a soft-computing algorithm. The algorithm uses quaternions to represent 
rotations, and Particle Swarm Optimization to estimate such quaternion. The 
rotation estimation problem is cast as a minimization problem, which finds the 
best quaternion for the given data using the PSO algorithm. With this 
technique, the algorithm always returns a valid quaternion, and therefore a 
valid rotation.  During the estimation process, the algorithm is able to detect 
and reject outliers. The simulations and experimental results show the 
robustness of algorithm against noise and outliers.  

KEY WORDS:  3D pose estimation, particle swarm optimization. 

1 INTRODUCTION 
POSE estimation is an essential problem in 

robotics applications, it can be defined as an 
optimization problem. Given two consecutive data 
measurements acquired in different robot poses, the 
objective is to estimate the rigid transformation 
between them. An accurate pose estimation is 
fundamental in the development of an autonomous 
robot. This work focuses on mobile robots that require 
a precise position estimation in a GPS denial area. 
There are many environments where the GPS is not 
available in most indoor environments, or 
environments where the GPS signal presents errors 
due to signal arrival time measurements, atmospheric 
effects, etc.  

The pose estimation of a mobile robot with wheels 
can be performed with the use of encoders, which 
provide a measurement of wheels rotations. However, 
these estimations suffer from systematic errors due to 
kinematics imperfections of the mobile robot, errors 
due to wheel slip, or to the environment itself. These 
errors will accumulate and the estimation of the pose 
will not be accurate. In addition, the estimation of the 
odometry from encoders is totally useless when 
dealing with not wheeled robots, like bipedal robots or 

flying unmanned vehicles. To avoid these problems, 
the pose estimation based on visual information is 
proposed, in this way, the relative pose is estimated 
based on what the system is watching at every step 
and thus no measurement errors will accumulate 
(Junmin, Jinge, Wentian, Shiwei, and Zhen, 2013). 

Vision sensors are sensitive to changes in the light 
intensity, it is common to deal with outliers which are 
strange data values that do not belong to the datasets. 
These outliers can be detected and rejected with an 
optimization algorithm such as PSO (Bakar, Hamdan 
and Nazri, 2010). The PSO algorithm was developed 
by (Kennedy and Eberhart, 1995) and is inspired by 
social behavior of bird flocking. The PSO is an 
algorithm that is often used in vision tasks such as 
image classification (Jain, Kasturi, and Schunck, 
1995), trajectory planning (Jin and Wu, 2013), electric 
power (Alanis, Rangel, Rivera and Lopez-Franco, 
2013), image processing (López-Franco, 
Villavicencio, Arana-Daniel, and Alanis, 2014), 
among others optimization problems (Tewolde, 2013), 
(Eiben and Smith, 2008), (Goldberg and Holland, 
1988). 
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1.1 Related work 
In (Welch and Foxlin, 2002), the authors use 

encoders to obtain motion information of a system. 
However, this kind of sensors is not useful in outdoors 
environments where the floor is not uniform and the 
contact of the wheel with the surface is not 
guaranteed. In (Welch and Foxlin, 2002) and (Choi, 
Suh, and Park, 2006) the authors use inertial sensors 
such as gyroscopes and accelerometers, and its 
measurements are fused to estimate the rotation of the 
system. Furthermore, they cannot compute its position 
and they need a specific pattern.  

In (Yang, Dong, Wang, and Zhang, 2002) and 
(Yang, Yu, Wang, and Zhang, 2004) the authors 
propose the use of a Light Detection and Ranging 
(LIDAR) sensor.  However these approaches present 
disadvantages when they are compared with computer 
vision approaches, especially when the robot is limited 
in weight load and power consumption, like in (Tong, 
Liu, and Li, 2012) where a monocular model-based 
approach is used for pose tracking or (Kaempchen, 
Franke, and Ott, 2002) and (Junmin, Jinge, Wentian, 
Shiwei, and Zhen, 2013) where stereo vision approach 
is proposed. These approaches work in an indoor 
environment only, and they do not present a method to 
handle outliers, i.e. when the matching algorithm has 
incorrect matches.  

In our case, we use a stereo vision sensor due to the 
large amount of information that these sensors can 
provide, in addition to its light weight and low power 
consumption. Visual features are detected using 
Speeded-Up Robust Features (SURF) (Steder, Grisetti, 
Grzonka, Stachniss, Rottmann, and Burgard, 2007). It 
is important to note that visual sensors are noisy and 
susceptible to changes in illumination, this can cause 
mismatching errors and therefore errors in the pose 
estimation.  

1.2 Main contribution 
IN this work, we propose an algorithm to solve the 

pose estimation problem based on visual data. The 
proposed approach uses quaternions to represent 
rotation due to their advantages over rotation matrices 
(Salamin, 1979). 

To estimate the quaternion we propose to use a 
soft-computing algorithm, in particular, the Particle 
Swarm Optimization (PSO) algorithm. The 
advantages of our approach are that the solution is 
always a quaternion, and therefore a valid rotation. In 
contrast, the SVD approach (Arun et al., 1987) can 
obtain solutions that minimize the objective function, 
but the solution matrix may not be a valid rotation 
matrix, i.e. det(R)=1. 

In addition, the proposed approach is able to detect 
and remove outliers. We propose the use of support 
features for each possible quaternion and select the 
solution with more supporting features. 

This paper is organized as follows: In section 2, the 
pose estimation problem is introduced. Then, in 
section 3, the PSO paradigm is briefly discussed. 
Later, in section 4 the proposed approach for pose 
estimation is presented. The simulations and 
experimental results are presented in section 5 and 6. 
Finally, the conclusions are given in section 7. 

2 POSE ESTIMATION PROBLEM 
THE pose estimation problem consists in 

determining the rotation and translation of an agent. 
To estimate the pose of the agent we need a sensor 
attached to it, for example, a range sensor. In this 
work, we use an image sensor, which can return 3D 
information like a stereo vision sensor or an RGB-D 
sensor. 

The pose estimation problem can be defined as the 
estimation of the translation and rotation of an agent 
moving through the environment by using images 
taken at discrete time instants, see Fig. 1. Given two 
camera poses at adjacent time instants i-1 and i are 
related by a rigid body transformation matrix of the 
form 
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1 R t
T

0 1

i i
i i i

i

− −
−  

=  
  (1) 

where 𝑅𝑅𝑖𝑖 ∈ 𝑆𝑆𝑆𝑆(3)𝑖𝑖−1  is a rotation matrix and 𝑡𝑡𝑖𝑖𝑖𝑖−1  is a 
translation vector. The set � 𝑇𝑇10 , 𝑇𝑇21 , … , 𝑇𝑇𝑛𝑛𝑛𝑛−1 � 
represents all the motions of the camera. The main 
goal of pose estimation is to compute the relative 
transformation 𝑇𝑇i𝑖𝑖−1   using visual information. The 
current camera pose at the instant m, can be computed 
with the concatenation of the transformations
T ( 0 )i i m=  , that is
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1
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In (Arun, Huang, and Blostein, 1987) the authors 
present an algorithm for finding the least-squares 
solution R and t that minimize (3). They propose to 
compute the translation part as the difference of the 
centroids of the 3D features and the rotation part using 
Singular Value Decomposition (SVD). 

Figure 1. Pose estimation problem. 
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In this work, we focus on 3D features, and thus the 
problem can be described as finding the 𝑇𝑇i𝑖𝑖−1  that 
minimizes 

21 1

T 1
arg min X T X

i

N
i i i

j i j
j

− −

=

−∑ (3) 

where the subscript j denotes the j feature, and the 
superscript denotes the frame where the point is 
defined. The points with uppercase letters denote that 
they are expressed in homogeneous coordinates of 3D 
points i.e. [ ]P= , , ,1x y z •

3 PARTICLE SWARM OPTIMIZATIONA 
SOFT-computing algorithms are stochastic search 

methods inspired by biological behavior. In (Elbeltagi, 
Hegazy, and Grierson, 2005), the authors present a 
comparison study between: genetic algorithms 
(Holland, 1975), memetic algorithms (Merz, and 
Freisleben, 1997), particle swarm optimization 
(Kennedy and Eberhart, 1995), ant-colony 
optimization (Dorigo, Maniezzo, and Colorni, 1996), 
and shuffled frog leaping algorithm (Eusuff, and 
Lansey, 2003); they conclude that the Particle Swarm 
Optimization algorithm performs better in general, 
with respect to the quality of the solution and the 
success rate. 

Particle swarm optimization (PSO) is a population-
based optimization technique inspired by the social 
behavior of bird flock (Kennedy and Eberhart, 1995). 
The PSO algorithm starts with a population of 
particles whose positions represent the potential 
solutions for the given problem. The optimal solution 
is found by updating the particles positions in each 
generation, with 

( ) ( )1 ( )i i ix k x k v k= − + (4) 

where the velocities of the particles are 

( ) ( ) ( )( )
( )( )

0 1

2

1 1

1
i i i

g i

v k v k c p x k

c p x k

αφ φ

φ

= − + − −

+ − −
(5) 

where k is the number of iteration, xi is each particle, vi 
the velocity of the particle, α is an inertia factor, it 
makes the particle to keep its direction if this value is 
big. The terms ϕ0, ϕ1, ϕ2 represent random values. The 
values pi and pg represent the best position of the 
particle and the best global position, respectively; 
these values are determined by the evaluation of some 
defined fitness measure. A review of PSO algorithm 
and its modification can be found in (Yuhui 2004). 

Figure 2 shows an example of the algorithm 
evolution. As it can be seen, the particles, which 
represent solutions of the fitness function, converge to 
the desired minimum. 

Figure 2. PSO evolution. Particles represent solutions of a 
particular fitness function.   

4 POSE ESTIMATION USING PSO 
IN this section, we explain the proposed approach 

to solving the pose estimation problem using PSO. 
The camera motion Ti can be computed by 
determining the aligning transformation of two 3D 
feature sets. Let  𝑝𝑝𝑗𝑗 = 𝑥𝑥𝑗𝑗𝑖𝑖  denote the j-th feature 
defined at pose i, and let 𝑝𝑝𝑗𝑗′ = 𝑥𝑥𝑗𝑗𝑖𝑖−1   denote the j-th 
feature defined at pose i-1. 

The transformation between the features pj  and p’j 
can be defined as 

( ) 2

R,t 1
arg min p' Rp t

N

j j
j=

− +∑ (6) 

In (Arun et al., 1987), the authors showed that the 
rotation in (6) can be solved by translating the features 
pj  and p’j with respect to their centroids and solve the 
following 

( ) 2

R 1
arg min r' Rr

N

j
j=

−∑ (7) 

where 𝑟𝑟𝑗𝑗 = 𝑝𝑝𝑗𝑗 − 𝑝̅𝑝𝑗𝑗, 𝑟𝑟′𝑗𝑗 = 𝑝𝑝′𝑗𝑗 − 𝑝̅𝑝′𝑗𝑗 , and where 𝑝̅𝑝𝑗𝑗 , 𝑝̅𝑝′𝑗𝑗 
denote the centroid of the features 𝑝𝑝𝑗𝑗  and  
𝑝𝑝′𝑗𝑗respectively. 

The translation part can be computed as [3], that is 

p ' pj jt R= − (8) 

To solve this problem we use quaternions to 
represent rotations (Hu, Dixon, Gupta, and Fitz-Coy, 
2006). Unit quaternions can be defined as 

𝐪𝐪 ≜ [𝑞𝑞0  𝐪𝐪𝑣𝑣] (9) 

where 
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and where [ ]v 1 2 3q ( ) ( ) ( ) ( )t q t q t q t
• , 

( ) 0, ,3i iq t ∈ ∀ =  and the following constraint 
must be satisfied 

𝐪𝐪𝑇𝑇𝐪𝐪 = 1 (11) 
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Given a unit vector k(t) and the angle θ(t), the 
rotation matrix R(t) can be calculated with the 
Rodrigues formula (Ma, 2004) and can be expressed 
as 
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The PSO fitness function is defined as follows 

21( ) ( )j jf q r qr q−′= − (13) 

The expression
1

jqr q−
, can be evaluated as

suggested by (Jia, 2008) and (Salamin, 1979), that is 
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where [ ]k x y z= •  and θ  are the arguments of
the quaternion. 

It is important to note that each quaternion has 
three degrees of freedom due to the constraint (11). 
Therefore, since each PSO particle represents a 
feasible quaternion it should minimize a vector of 
dimension three. 

The advantage of the PSO approach with respect to 
the pure SVD (Arun et al., 1987), is that the former 
always generates a valid quaternion and thus a valid 
rotation, whereas the later can obtain a solution that 
minimizes the fitness function, but the resulting matrix 
is not a valid rotation matrix, i.e. det(R)=1. 

A diagram of the proposed approach is shown in 
Figure 3. The steps are (a) image capture, (b) feature 
extraction, c) the robots moves to another position, d) 
the disparity image can be computed, e) with the two 
sets of points the outliers are detected and removed 
using the PSO. Once the outliers are removed the rigid 
transformation can be computed. 

5 OUTLIER REJECTION WITH PSO 
THE SVD algorithm (Arun et al., 1987) is not 

robust to the presence of outliers. To overcome this 

Figure 3. Diagram of the algorithm. a) Image capture. b) 
Feature extraction. c) 3D information obtained with stereo 
vision. d) Two sets of points, due to cameras movement. e) 
Outlier rejection with PSO. f) Pose estimation with SVD. 

problem we introduce the concept of supporting 
features in our PSO approach. 

A pair of corresponding features rj and r’j will be 
considered a support vector for a given quaternion q 
using the following function 

211 ( )( , )
0

j j
j j

r qr qs r r δ− ′ − <′ = 


if

otherwise
(15) 

where δ is a threshold value. This value should be 
stored by the PSO particles, and thus the best particle 
would be chosen as the particle with more support 
features which minimizes the fitness function. At the 
end of the PSO algorithm, all the features that do not 
support features are considered as outliers, and they 
are removed from the final refinement step. It is also 
important to see that the numbers of support features 
must be greater than three, otherwise, features will be 
collinear or coplanar and SVD could compute a 
reflection matrix instead of a rotation matrix. Four 
features are the minimum necessary to ensure a 
rotation matrix after SVD (Arun et al., 1987). The 
process is shown in Figure 4. 

6 SIMULATIONS 
IN the simulation experiments we generate a set of 

3D points, then the camera was moved in the scene. 
Therefore, the points are not moving but the camera, 
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Figure 4. Outlier rejection with PSO, n must be greater than 3, 
otherwise, SVD cannot ensure a rotation matrix as described 
in section 4.1. 

and thus the camera motion will produce the two sets 
of points 𝑝𝑝𝑗𝑗  and 𝑝̅𝑝𝑗𝑗 . Since the pose of the camera is 
known we can project the points into their respective 
coordinate frame, and this will provide the two sets of 
3D features as depicted in Figure 5. 

6.1 Simulation setup 
In Figure 5, we can see vector t, which can be 

computed with (8). To find R, both data sets will be 
taken to the origin and the SVD algorithm will be used 
to compute rotation only. If the algorithm fails, PSO 
will compute the rotation matrix. 

Additionally, noise will be randomly added to the 
second set of data and the camera projection matrix P 
will be applied with (16) to both sets such that only 
the points that are visible will be part of the 
minimization. A point X in 3D space will be projected 
with 

x PX=  (17) 

where 

1 0 0 0
P K 0 1 0 0

0 0 1 0

 
 =  
    

(18) 

and where 

0
K 0

0 0 1

x x

y y

c
c

α
α

 
 =  
  

(19) 

represents the calibration matrix with αx  and αy the 
focal length of the camera and cx and cy the image 
center. 

Figure 5. Inverse transformations applied to cameras and sets 
of points. T1 and T2 are transformations of the form Rx+t 
where R is a 3x3 matrix and t is a 3x1 vector. 

In the simulation, we test if the 3D features are 
projected into the boundaries of the image, this allows 
us to test if a feature is visible. 

6.2 Simulation results 
In the first simulation, each algorithm runs 50 

times. The combination PSO-SVD was compared with 
the SVD and de M-estimator Sample Consensus 
(MSAC) algorithm for a different number of outliers. 
MSAC is a variation of the Random Sample 
Consensus (RANSAC) and According to (Torr and 
Zisserman, 2000); the implementation of this new 
method yields a benefit to all robust estimations with 
no computational burden and hence, there is no reason 
to use RANSAC in preference to this method. 

The error in position (in meters) for a different 
number of outliers is plotted and shown in figure 6 
with a different noise level for the three algorithms. In 
Figure 7, the processing time for PSO/SVD and 
MSAC is shown for a different number of outliers and 
with a different noise level for both algorithms. 

7 EXPERIMENTS 
FOR the real tests, a set of consecutive images 

were taken with the Bumblebee XB3® stereo camera, 
see Fig. 8. In the first experiment, a smooth translation 
in the z-axis was performed with no rotation. 

The feature extraction was performed with 
intensity data. There are many feature extraction 
algorithms, one of the most used methods is the 
computation of gradients in order to locate the points 
in the image with high textural derivatives (Gedik and 
Alatan, 2013). In our case, the features detection and 
description were performed with the SURF algorithm 
(Bay, Ess, Tuytelaars, and Van Gool, 2008; Bay, 
Tuytelaars, and Van Gool, 2006), and the result of 
applying SURF for two consecutive images is shown 
in Figure 9. The location x and y of every corner 
detected with the algorithm will have a value in z 
provided by the stereo camera. 
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Figure 6. Error in position with different noise levels. 

It can be seen in Fig. 9 and Fig. 10 that the SURF 
algorithm provides some incorrect matches among the 
points. Both MSAC (Figure 11) and PSO (Figure 12) 
algorithms were implemented and compared with 
these images in order to test their ability to reject 
outliers.   

In the second experiment, a smooth rotation was 
applied to get 31 different orientations; some of them 
are shown in Figure 13. In this case, the orientation 
provided by MSAC and PSO/SVD algorithms will be 
compared with an Inertial Measurement Unit (IMU) 
because of its high precision. The IMU used in this 
experiment is the Xsens® MTi-G-700-2A5G4. 

Figure 7. Processing time with different noise levels. 

The error in the experiments was computed with 
T

IMU F
I R R− (20) 

where I represent the identity matrix of 3x3, RIMU the 
rotation provided by the IMU and RT the rotation 
matrix calculated with either MSAC or PSO/SVD.  

Figure 14 shows five rows of images, every row 
shows a subset of images that correspond to different 
experiments, including the experiments in Figure 8 
and 13. In Table, 1, RMS errors of each experiment 
are shown. 

In the third experiment, the camera was mounted 
on a KUKA©  youBot robot and the position 
computed by the algorithm was compared with the 
pose computed by the robot using its encoders. The 
configuration is shown in Figure 15. The images of 
this experiment are shown in Figure 16. 
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Figure 8. Set of consecutive images. A smooth translation in the z-axis is performed with no rotation. 

Figure 9. SURF applied to consecutive images of Figure 5. 

Figure 17 shows the comparison between the 
algorithms. The lines represent the trajectory of the 
robot on the XY plane and each point represents the 
place where the image was captured. 

8 CONCLUSIONS 
IN this paper, the authors have presented a PSO 

approach for pose estimation using visual information. 
The proposed approach uses a quaternion in the fitness 
function to find the best rotation between two data 
sets. The concept of support features is introduced to 
select the PSO particle with more features that support 
the given quaternion, and therefore the approach is 
able to reject outliers. Finally the results show that the 
performance of the proposed approach is not affected 
by the outliers. It is also shown that even when the 
correspondences are correct in 2D is necessary to 
implement the PSO approach because of the 
inaccuracies present in stereo vision. Furthermore, the 
proposed approach always generates a valid 
quaternion and therefore a valid rotation. 

Figure 10. a) Original and b) rotated data sets. 
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Figure 11. a) Original and b) rotated data sets after MSAC. 
Figure 12. a) Original and b) rotated data sets after PSO. 

Figure 13. Set of consecutive images for experiment 5. Rotation only. The complete experiment consists of 31 images. 
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Figure 14. Subset of images for every experiment performed. Every row represent a different experiment. 

Table I. Error comparison between algorithms for each 
experiment 

Experiment Images RMSMSAC RMSPSO/SVD 
1 19 0.7092 0.1067 
2 9 0.8644 0.1284 
3 18 0.5501 0.0280 
4 17 0.5739 0.1330 
5 31 0.4475 0.1591 

Figure 15. Bumblebee XB3 mounted on the KUKA©  youBot 
for position experiments. 

Figure 16. Set of images for the position experiment. 
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Figure 17. Trajectories computed by odometry and the two 
algorithms. 
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