
Intelligent Automation And Soft Computing, 2018
Copyright © 2018, TSI® Press
Vol. 24, no. 2, 421–430

CONTACT Imed KACEM imed.kacem@univ-lorraine.fr
© 2018 TSI® Press

A clustering-based approach for balancing and scheduling bicycle-sharing
systems

Imed Kacem, Ahmed Kadri, Pierre Laroche
LCOMS EA 7306, Université de Lorraine, Metz, FRANCE
Email: {imed.kacem; ahmed-abdelmoumene.kadri; pierre.laroche}@univ-lorraine.fr

KEY WORDS: Combinatorial optimization, Scheduling problems, Clustering problems, Genetic algorithms,
Greedy search algorithm, Branch-and-bound algorithm, K-Means algorithm.

1 INTRODUCTION
PUBLIC Bike Sharing Systems (BSS) have been

recently implemented in many big cities around the
world. They are one of the solutions to face some
public transportation problems, including traffic
congestion, air pollution, oil prices and global
warming. Obviously, the exploitation and
management of BSS imply crucial operational
challenges, where the balancing of stations is the most
important issue for their operational efficiency and
economic viability. Thus, the system requires constant
control to balance the network. The monitoring system
dispatches motorized redistribution vehicles to balance
bicycles between empty and fully overloaded stations.
Raviv, et.al. (2013) notice that the balancing problems
have similarities with other known routing problems
in the literature such as the Pick-up and Delivery
Problem (PDP). Indeed, the basic operations
performed during balancing are pickup and delivery of
identical items (bicycles). According to the literature,
this operation can be performed in two different
modes as noted in Callé, et.al. (2009):
• Static mode: In this mode, the balancing operation

can be performed during the night when the
utilization rate of the system is very low. The

balancing operation is done according to the state
of the stations just before starting the operation
and taking into account the expected demand for
the next day.

• Dynamic mode: The operation is performed
during the day when the usage rate of the system is
substantial. In this case, the bicycle balancing
operation is carried out according to real-time
states of stations as well as aggregate statistics
indicating the station’s usage patterns in order to
forecast future demands.
The static balancing problem is addressed in

several works in literature. Some of studies apply
Mixed Integer Programming (MIP) techniques. In
Chemla, et.al. (2013), authors assume that each station
can be visited several times during an operation with
the aim of minimizing the total travelled distance by
the vehicle. They propose a branch-and-cut algorithm
combined with a relaxed mixed integer linear
programming (R-MIP) model and a Tabu search
technique in order to obtain upper bounds. Benchimol,
et.al. (2011) study the single vehicle routing problem
and assume hard constraints for the balancing
operation. They present in their study several lower
bounds, approximation algorithms as well as a
polynomial algorithm for special cases. In Raviv, et.al.

ABSTRACT
This paper addresses an inventory regulation problem in bicycle sharing-
systems. The problem is to balance a network consisting of a set of stations by
using a single vehicle, with the aim of minimizing the weighted sum of the
waiting times during which some stations remain imbalanced. Motivated by the
complexity of this problem, we propose a two-stage procedure based on
decomposition. First, the network is divided into multiple zones by using two
different clustering strategies. Then, the balancing problem is solved in each
zone. Finally, the order in which the zones must be visited is defined. To solve
these problems, different algorithms based on approximate, greedy and exact
methods are developed. The numerical results show the effectiveness of the
proposed regulation methodology.

422 IMED KACEM, AHMED KADRI AND PIERRE LAROCHE

(2013), the balancing problem is addressed by
considering multiple vehicles. Authors use mixed
integer programming approaches with a convex
penalty objective function. The objective is to
maximize the users’ satisfaction by neglecting the cost
of the operation (i.e., the total distances travelled by
vehicles as well as the number of loading operations).
Similar problem settings are addressed in Di Gaspero,
et.al. (2013), Rainer-Harbach, et.al. (2013) and
Papazek, et.al. (2014). The main objectives are
minimization of gaps between the target balancing
levels and the states of stations after performing the
balancing operation, as well as the total operational
time and the number of operations.

Kadri, et.al. (2016) study the single vehicle routing
problem in BSS by considering the static case with the
aim of minimizing the weighted time during which
some stations remain unbalanced. Many lower and
upper bounds are developed and incorporated in a
branch-and-bound algorithm. As an extension of this
work, Kadri, et.al. (2016) addressed the balancing
problem by considering multiple vehicles. They
propose different strategies to solve the assignment
problem, and they develop a memetic algorithm to
solve the vehicle routing problem. Di Gaspero, et.al.
(2016) address the balancing problem by means of
constraint programming techniques and a large
neighborhood search approach. Kloimüllner, et.al.
(2015) propose an exact algorithm based on Benders
decomposition where they first solve the assignment
problem as the master problem, and therefore the
vehicle routing problem as sub-problems. Their
algorithm is able to solve instances with up to 60
stations.

In practice, the balancing operations are performed
by districts, especially, when the network size is large
as the Velib' BSS in Paris. From this point of view,
Kacem, et.al. (2016) propose a two-step procedure for
solving the vehicle routing problem. The idea is to
decompose a network into multiple zones by
considering a fixed length and width of zones. Thus,
the vehicle routing problem is solved by using a
genetic algorithm and a nearest neighbour search
algorithm. The addressed work in this paper extends
our previous work in Kacem, et.al. (2016). In addition
to the presented decomposition strategy, we propose
another efficient decomposition strategy based on the
K-Means clustering algorithm. Moreover, we propose
other algorithms to solve the vehicle routing problem
including the greedy search algorithm, the combined
method and the branch-and-bound algorithm.

In the remainder of the paper we use the
abbreviation SZ-VRP to denote our problem. This
paper is organized as follows. In Section 2, we
describe the problem and the associated mathematical
formulation. In Section 3, we present the proposed
solving methods including the genetic algorithm, the
nearest neighbour search algorithm, the greedy search
method, the combined algorithm and the branch-and

bound algorithm. In Section 4, we test and compare
performances of the proposed algorithms as well as
the decomposition strategies on a large set of
instances. Finally, we conclude the paper with some
perspectives for future research.

2 PROBLEM DESCRIPTION AND
MATHEMATICAL FORMULATION

2.1 Problem description
THE static balancing problem in a BSS consists in

finding a schedule that the balancing vehicle must
follow such that one or multiple objectives are
minimized or maximized, and under some constraints.
A vehicle starts always a tour at a deposit, and visits
the unbalanced stations in a specific order. In this
work, the aim is to minimize the weighted sum of the
waiting times during which the stations remain
imbalanced until the arrival of the balancing vehicle.
As shown by Figure 1, the imbalance is measured as a
gap between the current state (Ei) of station i and its
fixed threshold Ri (can be Ri

- or Ri
+).

This problem is strongly NP-hard (see Kadri, et.al.
(2016)), and its complexity increases proportionally to
the network size. In real situations, the balancing
operations for large networks are performed by
decomposing a network into multiple zones (clusters).
Many works in literature deal with the travelling
salesman problem (TSP) by using clustering
techniques. Ding, et.al. (2007) address the large scale
TSP, and propose a two-level genetic algorithm for the
clustered TSP. In (Helsgaun, 2014), the author
considers the Clustered Travelling Salesman Problem
(CTSP) as an extension of the standard TSP, and
solves the CTSP by using the Lin-Kernighan-
Helsgaun algorithm. Karapetyan, et.al. (2011) address
the generalized TSP and propose an adaptation of the
Lin-Kernighan algorithm. The adapted algorithm is
able to solve instances with large size and provides
suboptimal solutions in a reasonable amount of time.
With this motivation, we propose an approach based
on the decomposition of the solution process into two
steps (see Figure 2).
• Step 1 (Zoning): We determine a set of zones,

where each zone is represented by a single point
in the routing step of the algorithm. We propose
two strategies for partitioning the network into
multiple zones as follows:

– Strategy 1 (ST1): the network is decomposed
into multiple zones by considering fixed length
and width of zones. Each zone includes a
virtual local deposit, where its coordinates
represent the center of gravity calculated from
the coordinates of stations present in that zone
(see Figure 2.b and 2.c).

– Strategy 2 (ST2): the decomposition of the
network is done by using the K-Means
algorithm. This algorithm is one of the

INTELLIGENT AUTOMATION AND SOFT COMPUTING 423

simplest algorithms that solve the well-known
clustering problem. The procedure follows a
simple and easy way to divide a given set of
stations into a number of clusters (m) fixed a
priori. The algorithm starts by generating m
random centroids representing the local
deposits of zones, then forms (m) clusters by
assigning a subset of stations to each centroid
according to their positions (closest to
centroid). When all stations are assigned, the
positions of centroids are recalculated based on
the assigned stations. This process is repeated
until the coordinates of centroid become stable
or a maximal number of iterations is reached
(See Figure 2.e).

• Step 2 (Routing): This step determines the
sequence of the balancing vehicle in each zone
starting from its local deposit. First, it calculates
for each zone the sequence linking the stations
belonging to (i.e., it constructs the intra-zones
paths), then it calculates a sequence linking the
zones (i.e., it constructs the inter-zones path). To
solve the routing problem, we propose in Section
3 many algorithms based on exact and heuristic
methods.

Figure 1. The min-max balancing levels in a station

2.2 Mathematical formulation
LET us consider a set N containing the network

stations (0, ... , n). We consider the Euclidean case
where all nodes including stations and deposits are
characterized by their (x, y) coordinates. The vehicle
starts a tour from the central depot at time t0 = 0 and
moves between zones according to a planned
sequence. Each station must be visited only one time
in a tour. The aim is to define the order of visits of the
network stations such that their remaining time in an
imbalanced state is minimized. To model this
problem, we introduce the following notations,
variables, and parameters:
N: A set of nodes including the stations indexed by i =
1,...,n, and the central depot (i = 0)
Ei: Current number of bicycles at station i before the
repositioning operation starts
Ri

-: Minimal level of the required number of bicycles
at station i
Ri

+: Maximal level of the required number of bicycles
at station i
di,j: Travelling time from station i to station j
ti: Arrival time of the vehicle to station i
wi: Gap between Ei and the confidence level of Ri,
where its value is equal to:

Ri
- − Ei if Ei < Ri

-
Ei − Ri

+ if Ei > Ri
+

0 otherwise
The model can be described as follows:

 1
Minimize

n

i i
i

t w
=
∑

 (1)

 0,
1

1
n

j
j

x
=

=∑ (2)

 0 0t = (3)

 , , ,(1).j i i j i j i jt t x d x M≥ + + −

 , , i j i j N∀ ≠ ∈ (4)

,

0
1

n

i j
i

x
=

=∑
 j N∀ ∈ (5)

,

0
1

n

j i
i

x
=

=∑
 j N∀ ∈ (6)

 { }, 0,1i jx ∈ (7)

The objective function in Equation 1 minimizes the
sum of times, weighted with the values of imbalances
wi. The value ti-t0 represents the time where a station i
remains outside the confidence level until the arrival
of the balancing vehicle. Constraint (3) forces the
departure of the vehicle from the central depot.
Constraint (2) represents the departure time of the
vehicle from the central depot (initialized to 0), and
the set of constraints (4) insure the necessary time
required for the displacement of the vehicle from
station i to station j. We associate to these constraints
the Big M method. Constraints (5) and (6) are the
vehicle conservation equations, i.e., a station can be
visited only one time by a vehicle in a tour. Finally,
the constraints (7) are the binary constraints, i.e.,
xi,j=1 if the vehicle travels from station i to station j,
and it equals 0 otherwise.

3 SOLVING METHODS
IN this section, we present the developed

algorithms for solving the vehicle routing problem.
These algorithms include heuristics and exact methods
as detailed in the next subsections. The common factor
between these algorithms is that they calculate first for
each zone a sequence linking stations, then it links
zones.

424 IMED KACEM, AHMED KADRI AND PIERRE LAROCHE

3.1 Genetic algorithm
Genetic algorithms are promising techniques for

many optimization problems. They have been widely
used and are well-known for giving good
approximations to complex NP-hard problems
(Kacem, 2013) as the SZ-VRP. A solution for the SZ-

VRP must identify the order in which the zones and
the stations of each of these zones must be visited.
Hence, a suitable presentation is done by using two
chromosomes. The first chromosome includes the
solution linking zones, and the second one gives the
order in which the stations must be visited in a given
zone. Figure 3 illustrates the encoding of solutions.

Figure 2. Solution process

Figure 3. Solution representation

(a) Area including all nodes

Area width

(c) Solving the VRP for each zone (Decomposition strategy 1)

(f) Link the zones (Decomposition strategy 2)

(d) Link the zones (Decomposition strategy 1)

(e) Solving the VRP for each zone (Decomposition strategy 2)

Zo
ne

 le
ng

th

A
re

a
le

ng
th

(b) Decomposition strategy 1

Station Local deposit Area deposit

INTELLIGENT AUTOMATION AND SOFT COMPUTING 425

The Genetic Algorithm (GA) starts by computing
the intra-zone sequence to link the stations in each
zone. Then, it calculates the inter-zones sequence to
link the zones. The representation of an inter-zones
solution is done by means of chromosome, where each
gene includes a zone number. Similarly, the
representation of an intra-zone solution is done by
means of another chromosome, where each gene
includes a station number. Thus, the final inter-zones
and intra-zone solutions are merged in one
chromosome, such that each gene in the inter-zones
chromosome is replaced by its corresponding intra-
zone chromosome.

3.2 Nearest Neighbour Search algorithm
The Nearest Neighbour Search (NNS) is an

optimization algorithm, which starts by an initial
solution calculated by choosing at each step the point
that minimizes the partial objective function. Once
calculated, the initial solution is improved by
performing some moves within the solution until
reaching a limited number of iterations. As in the GA,
the final solution is calculated in two steps: we
calculate first intra-zone sequences to link the stations
in each zone, and then we link the zones.

3.3 Greedy Search algorithm
Greedy programming techniques use some general

principles or common sense knowledge to generate a
sequence of sub-optimum that hopefully converges to
an optimum value. Greedy algorithms look for simple,
easy-to-implement solutions to complex, multi-step
problems by deciding which next step will provide the
most obvious benefit (Bendall and Margot, 2006). The
developed Greedy Search algorithm (GS) is based on
an efficient Depth-First Strategy and a Branch-and-
Bound algorithm. In this case, the Branch-and-bound
does not require the initialization of the initial upper
bound. At each level of the tree, the node giving the
best lower bound is explored, and the remaining nodes
are ignored and removed immediately. The search is
done in depth until obtaining a leaf (feasible solution).
The used branch-and-bound algorithm is described in
the next sub-section. More details about the used
lower bounds can be found in Kadri, et.al. (2016).

3.4 Branch-and-bound algorithm
The developed Branch-and-Bound algorithm (BB)

uses a search tree. It consists initially of only the root
node, which is developed in a dynamical way during
the process. The value of the upper bound is initialized
with the value of the best feasible solution from GA,
NNS, GS and CS (here, CS denotes the Combined
Strategy described in §3.5). The selection consists in
choosing a node for exploration from the group of live
nodes corresponding to unexplored feasible sub-
problems by using a selection strategy. The selection
is basically based on the value of the lower bound of
the node, which represents a partial schedule of the

vehicle. The branching scheme consists in assigning a
new task after a partial schedule. The selected node is
then explored, and the children of the node
(unscheduled stations (resp. zones) in the sequence of
stations (resp. zones)) are constructed. In this way the
subspace is divided into other sub-spaces. Then, for
each sub-space a lower bound is calculated. If the
value of such a lower bound is equal or greater than
the upper bound, then the sub-problem is eliminated,
as any feasible solution of the sub-problem cannot be
better than the best known solution. The search tree is
explored by using Depth-First Search strategy (DFS),
which allows us a fast update of the upper bound
when possible, and therefore an elimination of nodes
when the value of their lower bounds are equal or
greater than the value of the best upper bound. More
details about the used branch-and-bound algorithm
and its associated lower bounds can be found in Kadri,
et.al. (2016).

3.5 Combined strategy
We developed a combined method (CS), which

uses the greedy search and the branch-and-bound
algorithms. The choice of the optimization method
depends on the size of problem (respectively sub-
problems) i.e., the number of zones (respectively the
number of stations in each zone). Indeed, the branch-
and-bound is able to solve problems with up to 15
nodes in a short computation time. Therefore, in order
to avoid long computation times, we limit the use of
the branch-and-bound method only for problems with
size up to 15 nodes. Otherwise, we use GS algorithm,
which is able to solve problems with larger size in a
very short computation time.

4 RESULTS

4.1 Test environment
IN this section, we outline the numerical

experiments performed in order to evaluate our
algorithms. All developed algorithms are implemented
in the C++ Language and tested on an Intel Core i7
2.7 GHz processor with 8 GB of RAM, and under
Windows 10 environment. Due to the unavailability of
real BSS data, and in order to test our algorithms on a
large set of instances by taking into account different
combinations of parameters, we generate randomly
our instances as follows. The network size n was
chosen in 20, 40, 60 and 80, the grid coordinates (x,y)
(resp. (x',y')) denoting the grid limits were fixed to (0,
0) (resp. (200, 200)). As we consider the symmetric
Euclidean case, the coordinates (x, y) of stations and
deposits were generated in the grid limits, and the
distances between stations were calculated by using
the Euclidean distance formula. The weights
representing the imbalances of stations were chosen in
the interval [1, 10]. For the decomposition strategy 1,
we consider five combinations of parameters as

426 IMED KACEM, AHMED KADRI AND PIERRE LAROCHE

reported in Table 1. In order to compare the results
provided by the decomposition strategies, we consider
the same number of zones for ST1 and ST2. In order to
obtain a reliable statistical average, we consider 8
groups for each combination of parameters n and m,
where each group measures the average result of 10
instances.

Table 1. Combinations used for decomposition

Number of zones
(m)

Grid cutting

LGrid HGrid LZone HZone

1 200 200 200 200
2 200 200 200 100
4 200 200 100 100
8 200 200 100 50

16 200 200 50 50

For an easy analysis, we denote by NnMm the

average result of the 8 groups, where each group
measures the average results obtained from 10
instances when using n stations and m zones. The
developed algorithms are tested on each instance by
considering the two proposed decomposition
strategies. We denote by AST1 (resp. AST2) the algorithm
A using the decomposition strategy ST1 (resp. ST2).
We set the following parameters for our algorithms:

– GA: we perform one-point crossover and we
fix the rates of crossovers (resp. mutations)
to 0.9 (resp. 0.2). The number of iterations is
limited to 200.

– NNS: We limit the number of iterations to
200, otherwise, the algorithm stops if no
improvement is recorded during 20
iterations.

– GS: there is no specific requirement for this
algorithm. We simply perform a DFS search
until reaching a leaf node.

– BB: the algorithm starts from the root node
and explores all developed nodes by using
the DFS strategy, until an optimal solution is
found.

– CS: this method combines the GS and BB
algorithms. Due to the uncertainty of the
computation time of the branch-and-bound
algorithm, we limit the use of the BB
algorithm for problems with n or m up to 15
stations. Otherwise, we use the GS
algorithm.

4.2 Results analysis
WE analyze the obtained results according to two

criteria: i) we test the impact of zoning on the quality
of solutions including the number of zones and the
chosen decomposition strategy, and ii) we compare
the performances of the developed algorithms. Tables
2-5 provide the average results obtained, where the

best solutions and their associated CPU times are
highlighted in bold black, and the second solutions
and their associated CPU times are reported in bold
green.

4.3 Impact of decomposition
Figures 5 and 6 summarize the results reported in

Table 2 and Table 4, and show that performing the
balancing operations by splitting the network into
multiple zones provides better results than when
considering only a single area. However, from a given
number of decompositions (m = 2 for n = 20, and m
=16 for n = 40, 60 and 80), the solutions quality
deteriorate. Indeed, the number of decompositions
depends on the total number of stations and their
locations. Moreover, Table 2 and Table 4 show that
the zoning strategy has an impact on the quality of
solutions. From Figure 6 (left side), we observe that
BB and CS algorithms using the zoning strategies ST1
and ST2 provide very close results. In addition, the
other algorithms using the zoning strategy 2, which is
based on the K-Means algorithm, provide at the most
of cases better results compared to algorithms that use
ST1. This is due to the assignment strategy used in ST2,
which assigns stations to the nearest local deposit. In
contrast, the zoning strategy 1 forces stations to
belong to a given zone even if some of these stations
are close to a local deposit of an adjacent zone as
illustrated by Figure 4.

Figure 4. An example of assignment of stations with strategies
ST1 and ST2

Figure 5. Impact of network decomposition (Average results
from 8 groups of 10 instances)

Z

Z Z

Z

a) Decomposition strategy 1 b) Decomposition strategy 2

INTELLIGENT AUTOMATION AND SOFT COMPUTING 427

4.4 Performances of algorithms
Figure 6 and Tables 2-3 show that GA is not able to

provide good results for large size problems and sub-
problems, and requires longer CPU times compared to
GS and CS algorithms in particular when m = 1.
Otherwise, GA provides close results compared to
NNS, GS or CS algorithms when the problems' and
sub-problems' sizes are small (i.e., when the size of m
increases, the number of stations decreases per zone).
This is due to the small size of the search space and to
the efficiency of the genetic operators (crossovers,
mutations).

Kadri, et.al. (2016) solved the Lagrangian
relaxation of the presented mathematical formulation
in order to obtain a valid lower bound. In the new
model, the vehicle flow constraints are relaxed and
included in the objective function. Despite that the
relaxed problem is easier than the original one,
CPLEX (version 12.6) was not able to solve it in 1
hour for problems with size of n equal to 20 nodes.

Tables 2 and 3 show that the branch-and-bound
algorithm is able to find optimal solutions for
problems with n = 20 stations in short computation
time (166 sec in average), while considering the strong

NP-hardness of the studied problem. Moreover, the
gap between the optimal solution and the best
heuristic method (GAPH*-OPT) gives an average of 8%.

For problems with larger values of n (n > 20), and
in order to avoid long computation times, we perform
experiments by using our developed approximate
algorithms GA, GS, NNS and CS. The results of these
experiments are given in the tables 4 and 5, and
illustrated by Figure 6. As the CS algorithm uses the
Branch-and-Bound method, we limit the use of BB
algorithm within the CS algorithm in order to
optimally solve only the problems and sub-problems
with sizes up to 15 nodes, otherwise the greedy search
is performed. From Table 2, Table 4 and Figure 6, we
observe that the proposed algorithms give close
values. However, the CS algorithm provides better
results for most of cases (except for the case when m =
1). In this case, the CS algorithm performs only a
greedy search without using the BB method as m = 1
and n>15. Beside to this, the NNS algorithm computes
an initial greedy solution and then it improves it
during a limited number of iterations, which gives
better results compared to CS algorithm with a very
small gap (1% in average).

Table 2. Performances of algorithms for n = 20 (Average results from 8 groups)

Groups n m GAST1 GAST2 NNS

NNS

GSST1 GSST2 CSST1 CSST2 BBST1 BBST2
N20M1 2

0
1 29843 30043 30392 30424 31594 31594 31594 31594 27724 27724

N20M2 2

2 25352 25273 25886 25789 25278 25865 23819 23812 23769 23805
N20M4 2

4 24193 23987 25072 25007 24779 25094 24057 23885 24051 23877

Table 3. Computation times of algorithms for n = 20 (Average results from 8 groups)

CPU
ti

n m GAST1 GAST2 NNS

NNS

GSST1 GSST2 CSST1 CSST2 BBST1 BBST2
N2

0

20 1 3,4 3,4 0,6 0,6 0,1 0,1 0,1 0,1 159,4 165,9
N2

20 2 0,6 0,6 0,3 0,3 0,2 0,2 0,7 0,7 0,6 0,8
N2

20 4 0,8 0,8 0,4 0,4 0,2 0,2 0,5 0,6 0,4 0,6

Table 4. Performances of algorithms for n = 40, 60 and 80 (Average results from 8 groups)

Groups n m GAST1 GAST2 NNSST1 NNSST2 GSST1 GSST2 CSST1 CSST2
N40M1 40 1 106348 106552 89242 89242 89529 89529 89529 89529
N40M2 40 2 66361 63233 65393 64988 62896 63843 62841 62979
N40M4 40 4 55856 55335 60765 59753 58105 58017 55560 54941
N40M8 40 8 57775 56350 58739 57293 56380 56086 53293 53281
N40M16 40 16 74287 79263 69006 68799 64017 64074 63892 63907
N60M1 60 1 248321 239519 167069 167069 169554 169554 169554 169554
N60M2 60 2 143952 137538 114451 113815 110904 113622 110904 112260
N60M4 60 4 104311 102405 100214 97566 96178 96326 94846 93027
N60M8 60 8 94317 92958 97389 96582 93217 93131 87494 87215
N60M16 60 16 111595 114181 111368 110866 106885 106394 106366 105747
N80M1 80 1 377208 381911 254713 254713 256768 256768 256768 256768
N80M2 80 2 273303 276568 165078 164885 160488 164171 160488 161895
N80M4 80 4 151931 147757 141979 140577 136846 136959 136592 136108
N80M8 80 8 130775 128916 132060 130489 128732 127544 121727 120383
N80M16 80 16 161829 164549 155718 153559 147528 146833 146516 145455

428 IMED KACEM, AHMED KADRI AND PIERRE LAROCHE

Table 5. Average CPU times of algorithms for n = 40, 60 and 80 (Average results from 8 groups)

CPU time n m GAST1 GAST2 NNSST1 NNSST2 GSST1 GSST2 CSST1 CSST2
N40M1 40 1 1,5 1,6 6,4 6,2 0,3 0,4 0,4 0,4
N40M2 40 2 0,3 0,3 0,6 0,6 0,4 0,4 0,6 0,5
N40M4 40 4 0,2 0,2 0,9 0,9 0,4 0,4 1,3 1,4
N40M8 40 8 0,2 0,2 1,0 1,0 0,5 0,5 1,0 1,2

 N40M16 40 16 0,3 0,3 1,4 1,5 0,7 0,7 1,4 1,9
N60M1 60 1 21,5 20,2 10,7 10,1 0,9 0,9 0,9 0,9
N60M2 60 2 0,9 0,9 0,9 0,9 0,5 0,5 0,5 0,5
N60M4 60 4 1,0 1,1 1,1 1,2 0,5 0,5 1,6 1,3
N60M8 60 8 1,4 1,4 1,2 1,2 0,5 0,5 1,4 1,5

 N60M16 60 16 2,5 2,7 1,8 1,9 0,7 0,7 1,5 2,0
N80M1 80 1 39,9 40,3 18,1 17,8 2,1 2,1 2,1 2,1
N80M2 80 2 1,4 1,5 1,1 1 0,7 0,7 0,8 0,8
N80M4 80 4 1,2 1,2 1,1 1,2 0,6 0,6 0,7 0,9
N80M8 80 8 1,5 1,5 1,2 1,3 0,6 0,6 2,3 2,4

 N80M16 80

16 2,6 2,8 1,9 1,9 0,8 0,8 1,8 2,2

Figure 6. Performances of algorithms for n = 40, 60, 80 (Average results from 8 groups)

INTELLIGENT AUTOMATION AND SOFT COMPUTING 429

Indeed, the gap between the results provided by
algorithms GS and CS increases by the increasing of
the number of zones m as shown by the results
reported in the tables 2 and 4. This is due to the
decreasing of the number of stations per zone, and
therefore the use of the BB method within the CS
algorithm, which improves at the most of cases the
results obtained by GS algorithm. Otherwise, the CS
algorithm is able to solve problems with up to 80
stations in small computation time (2 seconds in
average). Such a time is neglected in real life
situations.

Finally, the proposed decomposition strategies and
their associated algorithms provide a decision tool
able to solve problems with different sizes in short
computation time. Moreover, the use of the K-Means
decomposition strategy and the combined algorithm
seems to be a very interesting method to solve
problems up to 80 stations, and provides solutions of
good quality in short computation time.

5 CONCLUSION
THIS paper studied the balancing of bicycle-

sharing systems considering the static case. The
problem is similar to other known problems in the
literature (e.g., the pick-up and delivery problem). The
investigated problem is strongly NP-hard and requires
the design of specific methods able to provide
solutions of good quality in short computation time.

In this context, we proposed a 2-step approach for
solving the balancing problem. First, the network is
split into multiple zones by using two different
clustering strategies including the K-Means algorithm.
Once the network is split, two sub-problems are
solved: the intra-zone vehicle routing problem aiming
to find a sequence within each zone is solved. Thus,
the inter-zones' vehicle routing problem linking the
zones is solved.

Different resolution methods were developed and
tested on a large set of instances. These methods
integrate different kinds of algorithms as the genetic
algorithm, the greedy search algorithm, the nearest
neighbour search algorithm, the combined method and
the branch-and-bound algorithms. The experiments
were conducted on a large set of instances in order to
evaluate and compare the developed algorithms as
well as to show the impact of splitting the network on
the quality of solutions. The obtained results showed
the interest of balancing a network by considering
multiple zones. It is emphasized that the number of
zones and the choice of the decomposition strategy of
network affect the quality of solutions.

As a conclusion, the proposed decomposition
methods and their associated heuristic algorithms
seem to be a very interesting method to solve the SZ-
VRP, and to provide solutions of good quality in short
computation time (at most 2 seconds when using the
CS algorithm) despite the strong NP-hardness of the
investigated problem. As a perspective, we aim to

develop an approximation algorithm (with an
approximation ratio) for the addressed problem.

6 DISCLOSURE STATEMENT
NO potential conflict of interest was reported by

the authors.

7 REFERENCES
G. Bendall and F. Margot. (2006). Greedy Type

Resistance of Combinatorial Problems. Discrete
Optimization 3, 288-298.

M. Benchimol, P. Benchimol, B. Chappert, A.D.L.
Taille, F. Laroche, F. Meunier, and L. Robinet.
Balancing the stations of a self-service “Bike
Hire” system. RAIRO Operations Research, 45,
37-61.

E. Call. (2009). Director of Operation in Vlib. April
2009, Personal communication.

D. Chemla, F. Meunier, and R. Wolfer-Calvo. (2013).
Bike sharing systems: solving the static
rebalancing problem. Discrete Optimization.
10(2), 120-146.

L. Di Gaspero, A. Rendl, and T. Urli. (2016).
Balancing bike sharing systems with constraint
programming. Constraints, 21(2), 318-348.

L. Di Gasperro, A. Rendl, and T. Urli. (2013). A
hybrid ACO+CP for balancing bicycle sharing
systems. In: Blesa, M.J., Blum, C., Festa, P., Roli,
A., Sampels, M. (eds.) HM 2013. LNCS, vol.
7919, pp. 198-212. Springer, Heidelberg.

C. Ding, Ye Cheng, and M. He. (2007). Two-Level
Genetic Algorithm for Clustered Travelling
Salesman Problem with Application in Large-
Scale TSPs. Tsinghua Science and Technology,
12(4), 459-465.

K. Helsgaun. (2014). Solving the Clisteres Traveling
Salesman Problem Using the Lin-Kernighan-
Helsgaun Algorithm. in Copmut. Sci. Rep,
Roskilde University. ISSN 01099779.

I. Kacem. (2013). Genetic Algorithms for Solving
Flexible Job Shop Scheduling Problems. In book:
Metaheuristics for Production Scheduling, pp. 19-
44.

I. Kacem, A.A. Kadri, and P. Laroche. (2016). A 2-
Steps Procedure for Solving the Inventory
Balancing Problem with Time Constraints. 46rd
International Conference on Computer and
Industrial Engineering (CIE46). October 29-31
2016, Tianjin (China). ISSN 2164-8689.

A.A. Kadri, I. Kacem, and K. Labadi. (2016). A
branch-and-bound algorithm for solving the static
rebalancing problem in bicycle sharing systems.
Computers & Industrial Engineering journal
(Elsevier). 95, 41-52.

A.A. Kadri, I. Kacem, and K. Labadi. (2016). A
Memetic Algorithm for Solving the Multiple
Vehicles Routing Problem in Bicycle-Sharing
Systems. The 12th FLINS International

430 IMED KACEM, AHMED KADRI AND PIERRE LAROCHE

Conference. August 24-26 2016, Roubaix
(France). ISBN 978-981-3146-96-9.

D. Karapetyan and G. Gutin. (2011). Lin-Kernighan
Heuristic Adaptations for the Generalized
Traveling Salesman Problem. European Journal of
Operational Re- search. 208(3), pp. 221-232.

C. Kloimllner, P. Papazek, B. Hu, and G.R. Raidl. A
Cluster-First Route-Second Approach for
Balancing Bicycle Sharing Systems. In
International Conference on Computer Aided
Systems Theory, pp. 439-446. Springer
International Publishing.

P. Papazek, G.R. Raidl, M. Rainer-Harbach, and B.
Hu. (2013). A PILOT/VND/GRASP hybrid for the
static balancing of public bicycle sharing sys-
tems. In: Moreno-Diaz, R., Pichler, F., Quesada-
Arencibia, A. (eds.) EUROCAST. LNCS, vol.
8111, pp. 372-379. Springer, Heidelberg.

M. Rainer-Harbach, P. Papazek, B. Hu, and G. R.,
Raidl. (2013). Balancing bicycle sharing systems:
A variable neighborhood search approach. In:
Middendorf, M., Blum, C. (eds.) EvoCOP 2013.
LNCS, vol. 7832, pp. 121-132. Springer,
Heidelberg.

T. Raviv, M. Tzur, and I. Forma. (2013).
Repositioning in a Bike-Sharing System: Models
and Solution Approaches. EURO Journal of
Transport and Logistic, 2:187-229.

8 NOTES ON CONTRIBUTORS

Imed KACEM is Full
Professor since 2009 at the
Université de Lorraine,
France, in Computer
Science. He is the Founder
and the Head of LCOMS
Laboratory.

His scientific activity is mainly in the
Operational Research (design of exact and
approximate algorithms with a guaranteed
performance for the NP-hard combinatorial
problems).

Ahmed KADRI
obtained his MSc
degree and PhD
degree in Computer
Science from
Université de
Lorraine.

He is currently with the LCOMS laboratory and
the Institut Universitaire de Technologie de
Metz (Université de Lorraine). His research
interests include operational research,
combinatorial optimization, modeling,
performance evaluation and optimization of
stochastic systems.

Pierre LAROCHE is
currently Assistant Professor
in Computer Science, at the
Université de Lorraine,
France. His first research
experiences were in artificial
intelligence, and he is now a

member of the « Decision and Optimisation »
team of the LCOMS Laboratory, working in the
field of operations research.

	1 INTRODUCTION
	2 PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATION
	2.1 Problem description
	2.2 Mathematical formulation

	3 SOLVING METHODS
	3.1 Genetic algorithm
	3.2 Nearest Neighbour Search algorithm
	3.3 Greedy Search algorithm
	3.4 Branch-and-bound algorithm
	3.5 Combined strategy

	4 RESULTS
	4.1 Test environment
	4.2 Results analysis
	4.3 Impact of decomposition
	4.4 Performances of algorithms

	5 CONCLUSION
	6 DISCLOSURE STATEMENT
	7 REFERENCES
	8 NOTES ON CONTRIBUTORS
	Word Bookmarks
	Notes_on_Contributors

