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1 INTRODUCTION  
PUBLIC Bike Sharing Systems (BSS) have been 

recently implemented in many big cities around the 
world. They are one of the solutions to face some 
public transportation problems, including traffic 
congestion, air pollution, oil prices and global 
warming. Obviously, the exploitation and 
management of BSS imply crucial operational 
challenges, where the balancing of stations is the most 
important issue for their operational efficiency and 
economic viability. Thus, the system requires constant 
control to balance the network. The monitoring system 
dispatches motorized redistribution vehicles to balance 
bicycles between empty and fully overloaded stations. 
Raviv, et.al. (2013) notice that the balancing problems 
have similarities with other known routing problems 
in the literature such as the Pick-up and Delivery 
Problem (PDP). Indeed, the basic operations 
performed during balancing are pickup and delivery of 
identical items (bicycles).  According to the literature,   
this operation can be performed in two different 
modes as noted in Callé, et.al.  (2009): 
• Static mode: In this mode, the balancing operation 

can be performed during the night when the 
utilization rate of the system is very low. The 

balancing operation is done according to the state 
of the stations just before starting the operation 
and taking into account the expected demand for 
the next day. 

• Dynamic mode: The operation is performed 
during the day when the usage rate of the system is 
substantial. In this case, the bicycle balancing 
operation is carried out according to real-time 
states of stations as well as aggregate statistics 
indicating the station’s usage patterns in order to 
forecast future demands. 
The static balancing problem is addressed in 

several works in literature. Some of studies apply 
Mixed Integer Programming (MIP) techniques. In 
Chemla, et.al. (2013), authors assume that each station 
can be visited several times during an operation with 
the aim of minimizing the total travelled distance by 
the vehicle. They propose a branch-and-cut algorithm 
combined with a relaxed mixed integer linear 
programming (R-MIP) model and a Tabu search 
technique in order to obtain upper bounds. Benchimol, 
et.al. (2011) study the single vehicle routing problem 
and assume hard constraints for the balancing 
operation. They present in their study several lower 
bounds, approximation algorithms as well as a 
polynomial algorithm for special cases. In Raviv, et.al. 
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(2013), the balancing problem is addressed by 
considering multiple vehicles. Authors use mixed 
integer programming approaches with a convex 
penalty objective function. The objective is to 
maximize the users’ satisfaction by neglecting the cost 
of the operation (i.e., the total distances travelled by 
vehicles as well as the number of loading operations). 
Similar problem settings are addressed in Di Gaspero, 
et.al. (2013), Rainer-Harbach, et.al. (2013) and 
Papazek, et.al. (2014). The main objectives are 
minimization of gaps between the target balancing 
levels and the states of stations after performing the 
balancing operation, as well as the total operational 
time and the number of operations. 

Kadri, et.al. (2016) study the single vehicle routing 
problem in BSS by considering the static case with the 
aim of minimizing the weighted time during which 
some stations remain unbalanced. Many lower and 
upper bounds are developed and incorporated in a 
branch-and-bound algorithm. As an extension of this 
work, Kadri, et.al. (2016) addressed the balancing 
problem by considering multiple vehicles. They 
propose different strategies to solve the assignment 
problem, and they develop a memetic algorithm to 
solve the vehicle routing problem. Di Gaspero, et.al. 
(2016) address the balancing problem by means of 
constraint programming techniques and a large 
neighborhood search approach. Kloimüllner, et.al. 
(2015) propose an exact algorithm based on Benders 
decomposition where they first solve the assignment 
problem as the master problem, and therefore the 
vehicle routing problem as sub-problems. Their 
algorithm is able to solve instances with up to 60 
stations.   

In practice, the balancing operations are performed 
by districts, especially, when the network size is large 
as the Velib' BSS in Paris. From this point of view, 
Kacem, et.al. (2016) propose a two-step procedure for 
solving the vehicle routing problem. The idea is to 
decompose a network into multiple zones by 
considering a fixed length and width of zones. Thus, 
the vehicle routing problem is solved by using a 
genetic algorithm and a nearest neighbour search 
algorithm. The addressed work in this paper extends 
our previous work in Kacem, et.al. (2016). In addition 
to the presented decomposition strategy, we propose 
another efficient decomposition strategy based on the 
K-Means clustering algorithm. Moreover, we propose 
other algorithms to solve the vehicle routing problem 
including the greedy search algorithm, the combined 
method and the branch-and-bound algorithm. 

In the remainder of the paper we use the 
abbreviation SZ-VRP to denote our problem. This 
paper is organized as follows. In Section 2, we 
describe the problem and the associated mathematical 
formulation. In Section 3, we present the proposed 
solving methods including the genetic algorithm, the 
nearest neighbour search algorithm, the greedy search 
method, the combined algorithm and the branch-and 

bound algorithm. In Section 4, we test and compare 
performances of the proposed algorithms as well as 
the decomposition strategies on a large set of 
instances. Finally, we conclude the paper with some 
perspectives for future research. 

2 PROBLEM DESCRIPTION AND 
MATHEMATICAL FORMULATION 

2.1 Problem description 
THE static balancing problem in a BSS consists in 

finding a schedule that the balancing vehicle must 
follow such that one or multiple objectives are 
minimized or maximized, and under some constraints. 
A vehicle starts always a tour at a deposit, and visits 
the unbalanced stations in a specific order. In this 
work, the aim is to minimize the weighted sum of the 
waiting times during which the stations remain 
imbalanced until the arrival of the balancing vehicle. 
As shown by Figure 1, the imbalance is measured as a 
gap between the current state (Ei) of station i and its 
fixed threshold Ri (can be Ri

- or Ri
+). 

This problem is strongly NP-hard (see Kadri, et.al. 
(2016)), and its complexity increases proportionally to 
the network size. In real situations, the balancing 
operations for large networks are performed by 
decomposing a network into multiple zones (clusters). 
Many works in literature deal with the travelling 
salesman problem (TSP) by using clustering 
techniques. Ding, et.al. (2007) address the large scale 
TSP, and propose a two-level genetic algorithm for the 
clustered TSP. In (Helsgaun, 2014), the author 
considers the Clustered Travelling Salesman Problem 
(CTSP) as an extension of the standard TSP, and 
solves the CTSP by using the Lin-Kernighan-
Helsgaun algorithm. Karapetyan, et.al. (2011) address 
the generalized TSP and propose an adaptation of the 
Lin-Kernighan algorithm. The adapted algorithm is 
able to solve instances with large size and provides 
suboptimal solutions in a reasonable amount of time. 
With this motivation, we propose an approach based 
on the decomposition of the solution process into two 
steps (see Figure 2). 
•  Step 1 (Zoning): We determine a set of zones, 

where each zone is represented by a single point 
in the routing step of the algorithm. We propose 
two strategies for partitioning the network into 
multiple zones as follows: 

– Strategy 1 (ST1): the network is decomposed 
into multiple zones by considering fixed length 
and width of zones. Each zone includes a 
virtual local deposit, where its coordinates 
represent the center of gravity calculated from 
the coordinates of stations present in that zone 
(see Figure 2.b and 2.c). 

– Strategy 2 (ST2): the decomposition of the 
network is done by using the K-Means 
algorithm. This algorithm is one of the 
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simplest algorithms that solve the well-known 
clustering problem. The procedure follows a 
simple and easy way to divide a given set of 
stations into a number of clusters (m) fixed a 
priori. The algorithm starts by generating m 
random centroids representing the local 
deposits of zones, then forms (m) clusters by 
assigning a subset of stations to each centroid 
according to their positions (closest to 
centroid). When all stations are assigned, the 
positions of centroids are recalculated based on 
the assigned stations. This process is repeated 
until the coordinates of centroid become stable 
or a maximal number of iterations is reached 
(See Figure 2.e).   

• Step 2 (Routing): This step determines the 
sequence of the balancing vehicle in each zone 
starting from its local deposit.  First, it calculates 
for each zone the sequence linking the stations 
belonging to (i.e., it constructs the intra-zones 
paths), then it calculates a sequence linking the 
zones (i.e., it constructs the inter-zones path). To 
solve the routing problem, we propose in Section 
3 many algorithms based on exact and heuristic 
methods.  

 
Figure 1.  The min-max balancing levels in a station 

2.2 Mathematical formulation 
LET us consider a set N containing the network 

stations (0, ... , n). We consider the Euclidean case 
where all nodes including stations and deposits are 
characterized by their (x, y) coordinates. The vehicle 
starts a tour from the central depot at time t0 = 0 and 
moves between zones according to a planned 
sequence. Each station must be visited only one time 
in a tour. The aim is to define the order of visits of the 
network stations such that their remaining time in an 
imbalanced state is minimized. To model this 
problem, we introduce the following notations, 
variables, and parameters: 
N: A set of nodes including the stations indexed by i = 
1,...,n, and the central depot (i = 0) 
Ei: Current number of bicycles at station i before the 
repositioning operation starts 
Ri

-: Minimal level of the required number of bicycles 
at station i  
Ri

+: Maximal level of the required number of bicycles 
at station i 
di,j: Travelling time from station i to station j 
ti: Arrival time of the vehicle to station i 
wi: Gap between Ei and the confidence level of Ri, 
where its value is equal to: 

Ri
- − Ei   if  Ei  < Ri

-   
Ei − Ri

+  if  Ei > Ri
+   

0 otherwise 
The model can be described as follows: 
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The objective function in Equation 1 minimizes the 
sum of times, weighted with the values of imbalances 
wi. The value ti-t0 represents the time where a station i 
remains outside the confidence level until the arrival 
of the balancing vehicle. Constraint (3) forces the 
departure of the vehicle from the central depot. 
Constraint (2) represents the departure time of the 
vehicle from the central depot (initialized to 0), and 
the set of constraints (4) insure the necessary time 
required for the displacement of the vehicle from 
station i to station j. We associate to these constraints 
the Big M method. Constraints (5) and (6) are the 
vehicle conservation equations, i.e., a station can be 
visited only one time by a vehicle in a tour. Finally, 
the constraints (7) are the binary constraints, i.e.,  
xi,j=1 if the vehicle travels from station i to station j, 
and it equals 0 otherwise. 

3 SOLVING METHODS 
IN this section, we present the developed 

algorithms for solving the vehicle routing problem. 
These algorithms include heuristics and exact methods 
as detailed in the next subsections. The common factor 
between these algorithms is that they calculate first for 
each zone a sequence linking stations, then it links 
zones. 
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3.1 Genetic algorithm 
Genetic algorithms are promising techniques for 

many optimization problems. They have been widely 
used and are well-known for giving good 
approximations to complex NP-hard problems 
(Kacem, 2013) as the SZ-VRP. A solution for the SZ-

VRP must identify the order in which the zones and 
the stations of each of these zones must be visited. 
Hence, a suitable presentation is done by using two 
chromosomes. The first chromosome includes the 
solution linking zones, and the second one gives the 
order in which the stations must be visited in a given 
zone. Figure 3 illustrates the encoding of solutions. 

 

Figure 2. Solution process 

Figure 3. Solution representation 
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The Genetic Algorithm (GA) starts by computing 
the intra-zone sequence to link the stations in each 
zone. Then, it calculates the inter-zones sequence to 
link the zones. The representation of an inter-zones 
solution is done by means of chromosome, where each 
gene includes a zone number. Similarly, the 
representation of an intra-zone solution is done by 
means of another chromosome, where each gene 
includes a station number. Thus, the final inter-zones 
and intra-zone solutions are merged in one 
chromosome, such that each gene in the inter-zones 
chromosome is replaced by its corresponding intra-
zone chromosome. 

3.2 Nearest Neighbour Search algorithm 
The Nearest Neighbour Search (NNS) is an 

optimization algorithm, which starts by an initial 
solution calculated by choosing at each step the point 
that minimizes the partial objective function. Once 
calculated, the initial solution is improved by 
performing some moves within the solution until 
reaching a limited number of iterations. As in the GA, 
the final solution is calculated in two steps: we 
calculate first intra-zone sequences to link the stations 
in each zone, and then we link the zones. 

3.3 Greedy Search algorithm 
Greedy programming techniques use some general 

principles or common sense knowledge to generate a 
sequence of sub-optimum that hopefully converges to 
an optimum value. Greedy algorithms look for simple, 
easy-to-implement solutions to complex, multi-step 
problems by deciding which next step will provide the 
most obvious benefit (Bendall and Margot, 2006). The 
developed Greedy Search algorithm (GS) is based on 
an efficient Depth-First Strategy and a Branch-and-
Bound algorithm. In this case, the Branch-and-bound 
does not require the initialization of the initial upper 
bound. At each level of the tree, the node giving the 
best lower bound is explored, and the remaining nodes 
are ignored and removed immediately. The search is 
done in depth until obtaining a leaf (feasible solution). 
The used branch-and-bound algorithm is described in 
the next sub-section. More details about the used 
lower bounds can be found in Kadri, et.al. (2016). 

3.4 Branch-and-bound algorithm 
The developed Branch-and-Bound algorithm (BB) 

uses a search tree. It consists initially of only the root 
node, which is developed in a dynamical way during 
the process. The value of the upper bound is initialized 
with the value of the best feasible solution from GA, 
NNS, GS and CS (here, CS denotes the Combined 
Strategy described in §3.5). The selection consists in 
choosing a node for exploration from the group of live 
nodes corresponding to unexplored feasible sub-
problems by using a selection strategy. The selection 
is basically based on the value of the lower bound of 
the node, which represents a partial schedule of the 

vehicle. The branching scheme consists in assigning a 
new task after a partial schedule. The selected node is 
then explored, and the children of the node 
(unscheduled stations (resp. zones) in the sequence of 
stations (resp. zones)) are constructed. In this way the 
subspace is divided into other sub-spaces. Then, for 
each sub-space a lower bound is calculated. If the 
value of such a lower bound is equal or greater than 
the upper bound, then the sub-problem is eliminated, 
as any feasible solution of the sub-problem cannot be 
better than the best known solution. The search tree is 
explored by using Depth-First Search strategy (DFS), 
which allows us a fast update of the upper bound 
when possible, and therefore an elimination of nodes 
when the value of their lower bounds are equal or 
greater than the value of the best upper bound. More 
details about the used branch-and-bound algorithm 
and its associated lower bounds can be found in Kadri, 
et.al. (2016). 

3.5 Combined strategy 
We developed a combined method (CS), which 

uses the greedy search and the branch-and-bound 
algorithms. The choice of the optimization method 
depends on the size of problem (respectively sub-
problems) i.e., the number of zones (respectively the 
number of stations in each zone). Indeed, the branch-
and-bound is able to solve problems with up to 15 
nodes in a short computation time. Therefore, in order 
to avoid long computation times, we limit the use of 
the branch-and-bound method only for problems with 
size up to 15 nodes. Otherwise, we use GS algorithm, 
which is able to solve problems with larger size in a 
very short computation time. 

4 RESULTS 

4.1 Test environment 
IN this section, we outline the numerical 

experiments performed in order to evaluate our 
algorithms. All developed algorithms are implemented 
in the C++ Language and tested on an Intel Core i7 
2.7 GHz processor with 8 GB of RAM, and under 
Windows 10 environment. Due to the unavailability of 
real BSS data, and in order to test our algorithms on a 
large set of instances by taking into account different 
combinations of parameters, we generate randomly 
our instances as follows. The network size n was 
chosen in 20, 40, 60 and 80, the grid coordinates (x,y) 
(resp. (x',y')) denoting the grid limits were fixed to (0, 
0) (resp. (200, 200)). As we consider the symmetric 
Euclidean case, the coordinates (x, y) of stations and 
deposits were generated in the grid limits, and the 
distances between stations were calculated by using 
the Euclidean distance formula. The weights 
representing the imbalances of stations were chosen in 
the interval [1, 10]. For the decomposition strategy 1, 
we consider five combinations of parameters as 
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reported in Table 1. In order to compare the results 
provided by the decomposition strategies, we consider 
the same number of zones for ST1 and ST2.  In order to 
obtain a reliable statistical average, we consider 8 
groups for each combination of parameters n and m, 
where each group measures the average result of 10 
instances. 
 
Table 1. Combinations used for decomposition 

Number of zones 
(m) 

Grid cutting 

LGrid HGrid LZone HZone 

1 200 200 200 200 
2 200 200 200 100 
4 200 200 100 100 
8 200 200 100 50 

16 200 200 50 50 

 
For an easy analysis, we denote by NnMm the 

average result of the 8 groups, where each group 
measures the average results obtained from 10 
instances when using n stations and m zones. The 
developed algorithms are tested on each instance by 
considering the two proposed decomposition 
strategies. We denote by AST1 (resp. AST2) the algorithm 
A using the decomposition strategy ST1 (resp. ST2). 
We set the following parameters for our algorithms: 

– GA: we perform one-point crossover and we 
fix the rates of crossovers (resp. mutations) 
to 0.9 (resp. 0.2). The number of iterations is 
limited to 200.  

– NNS: We limit the number of iterations to 
200, otherwise, the algorithm stops if no 
improvement is recorded during 20 
iterations. 

– GS: there is no specific requirement for this 
algorithm. We simply perform a DFS search 
until reaching a leaf node.  

– BB: the algorithm starts from the root node 
and explores all developed nodes by using 
the DFS strategy, until an optimal solution is 
found.  

– CS: this method combines the GS and BB 
algorithms. Due to the uncertainty of the 
computation time of the branch-and-bound 
algorithm, we limit the use of the BB 
algorithm for problems with n or m up to 15 
stations. Otherwise, we use the GS 
algorithm. 

4.2 Results analysis 
WE analyze the obtained results according to two 

criteria: i) we test the impact of zoning on the quality 
of solutions including the number of zones and the 
chosen decomposition strategy, and ii) we compare 
the performances of the developed algorithms. Tables 
2-5 provide the average results obtained, where the 

best solutions and their associated CPU times are 
highlighted in bold black, and the second solutions 
and their associated CPU times are reported in bold 
green. 

4.3 Impact of decomposition 
Figures 5 and 6 summarize the results reported in 

Table 2 and Table 4, and show that performing the 
balancing operations by splitting the network into 
multiple zones provides better results than when 
considering only a single area. However, from a given 
number of decompositions (m = 2 for n = 20, and m 
=16 for n = 40, 60 and 80), the solutions quality 
deteriorate. Indeed, the number of decompositions 
depends on the total number of stations and their 
locations. Moreover, Table 2 and Table 4 show that 
the zoning strategy has an impact on the quality of 
solutions. From Figure 6 (left side), we observe that 
BB and CS algorithms using the zoning strategies ST1 
and ST2 provide very close results. In addition, the 
other algorithms using the zoning strategy 2, which is 
based on the K-Means algorithm, provide at the most 
of cases better results compared to algorithms that use 
ST1. This is due to the assignment strategy used in ST2, 
which assigns stations to the nearest local deposit. In 
contrast, the zoning strategy 1 forces stations to 
belong to a given zone even if some of these stations 
are close to a local deposit of an adjacent zone as 
illustrated by Figure 4. 

 

 

Figure 4. An example of assignment of stations with strategies 
ST1 and ST2 

 

Figure 5. Impact of network decomposition (Average results 
from 8 groups of 10 instances) 
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4.4 Performances of algorithms 
Figure 6 and Tables 2-3 show that GA is not able to 

provide good results for large size problems and   sub-
problems, and requires longer CPU times compared to 
GS and CS algorithms in particular when m = 1. 
Otherwise, GA provides close results compared to 
NNS, GS or CS algorithms when the problems' and 
sub-problems' sizes are small (i.e., when the size of m 
increases, the number of stations decreases per zone). 
This is due to the small size of the search space and to 
the efficiency of the genetic operators (crossovers, 
mutations). 

Kadri, et.al. (2016) solved the Lagrangian 
relaxation of the presented mathematical formulation 
in order to obtain a valid lower bound. In the new 
model, the vehicle flow constraints are relaxed and 
included in the objective function. Despite that the 
relaxed problem is easier than the original one, 
CPLEX (version 12.6) was not able to solve it in 1 
hour for problems with size of n equal to 20 nodes.  

Tables 2 and 3 show that the branch-and-bound 
algorithm is able to find optimal solutions for 
problems with n = 20 stations in short computation 
time (166 sec in average), while considering the strong 

NP-hardness of the studied problem. Moreover, the 
gap between the optimal solution and the best 
heuristic method (GAPH*-OPT) gives an average of 8%. 

For problems with larger values of n (n > 20), and 
in order to avoid long computation times, we perform 
experiments by using our developed approximate 
algorithms GA, GS, NNS and CS. The results of these 
experiments are given in the tables 4 and 5, and 
illustrated by Figure 6. As the CS algorithm uses the 
Branch-and-Bound method, we limit the use of BB 
algorithm within the CS algorithm in order to 
optimally solve only the problems and sub-problems 
with sizes up to 15 nodes, otherwise the greedy search 
is performed. From Table 2, Table 4 and Figure 6, we 
observe that the proposed algorithms give close 
values. However, the CS algorithm provides better 
results for most of cases (except for the case when m = 
1). In this case, the CS algorithm performs only a 
greedy search without using the BB method as m = 1 
and n>15. Beside to this, the NNS algorithm computes 
an initial greedy solution and then it improves it 
during a limited number of iterations, which gives 
better results compared to CS algorithm with a very 
small gap (1% in average).  

 
Table 2.  Performances of algorithms for n = 20 (Average results from 8 groups) 

Groups n m GAST1 GAST2 NNS
 

NNS
 

GSST1 GSST2 CSST1 CSST2 BBST1 BBST2 
N20M1 2

0 
1 29843 30043 30392 30424 31594 31594 31594 31594 27724 27724 

N20M2 2
 

2 25352 25273 25886 25789 25278 25865 23819 23812 23769 23805 
N20M4 2

 
4 24193 23987 25072 25007 24779 25094 24057 23885 24051 23877 

 
 

Table 3.  Computation times of algorithms for n = 20 (Average results from 8 groups) 

CPU 
ti  

n m GAST1 GAST2 NNS
 

NNS
 

GSST1 GSST2 CSST1 CSST2 BBST1 BBST2 
N2

0

 

20 1 3,4 3,4 0,6 0,6 0,1 0,1 0,1 0,1 159,4 165,9 
N2

 

20 2 0,6 0,6 0,3 0,3 0,2 0,2 0,7 0,7 0,6 0,8 
N2

 

20 4 0,8 0,8 0,4 0,4 0,2 0,2 0,5 0,6 0,4 0,6 

 
 

Table 4.  Performances of algorithms for n = 40, 60 and 80 (Average results from 8 groups) 

Groups n m GAST1 GAST2 NNSST1 NNSST2 GSST1 GSST2 CSST1 CSST2 
N40M1 40 1 106348 106552 89242 89242 89529 89529 89529 89529 
N40M2 40 2 66361 63233 65393 64988 62896 63843 62841 62979 
N40M4 40 4 55856 55335 60765 59753 58105 58017 55560 54941 
N40M8 40 8 57775 56350 58739 57293 56380 56086 53293 53281 
N40M16 40 16 74287 79263 69006 68799 64017 64074 63892 63907 
N60M1 60 1 248321 239519 167069 167069 169554 169554 169554 169554 
N60M2 60 2 143952 137538 114451 113815 110904 113622 110904 112260 
N60M4 60 4 104311 102405 100214 97566 96178 96326 94846 93027 
N60M8 60 8 94317 92958 97389 96582 93217 93131 87494 87215 
N60M16 60 16 111595 114181 111368 110866 106885 106394 106366 105747 
N80M1 80 1 377208 381911 254713 254713 256768 256768 256768 256768 
N80M2 80 2 273303 276568 165078 164885 160488 164171 160488 161895 
N80M4 80 4 151931 147757 141979 140577 136846 136959 136592 136108 
N80M8 80 8 130775 128916 132060 130489 128732 127544 121727 120383 
N80M16 80 16 161829 164549 155718 153559 147528 146833 146516 145455 
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Table 5.  Average CPU times of algorithms for n = 40, 60 and 80 (Average results from 8 groups) 

CPU time n m GAST1 GAST2 NNSST1 NNSST2 GSST1 GSST2 CSST1 CSST2 
N40M1 40 1 1,5 1,6 6,4 6,2 0,3 0,4 0,4 0,4 
N40M2 40 2 0,3 0,3 0,6 0,6 0,4 0,4 0,6 0,5 
N40M4 40 4 0,2 0,2 0,9 0,9 0,4 0,4 1,3 1,4 
N40M8 40 8 0,2 0,2 1,0 1,0 0,5 0,5 1,0 1,2 

  N40M16 40 16 0,3 0,3 1,4 1,5 0,7 0,7 1,4 1,9 
N60M1 60 1 21,5 20,2 10,7 10,1 0,9 0,9 0,9 0,9 
N60M2 60 2 0,9 0,9 0,9 0,9 0,5 0,5 0,5 0,5 
N60M4 60 4 1,0 1,1 1,1 1,2 0,5 0,5 1,6 1,3 
N60M8 60 8 1,4 1,4 1,2 1,2 0,5 0,5 1,4 1,5 

  N60M16 60 16 2,5 2,7 1,8 1,9 0,7 0,7 1,5 2,0 
N80M1 80 1 39,9 40,3 18,1 17,8 2,1 2,1 2,1 2,1 
N80M2 80 2 1,4 1,5 1,1 1 0,7 0,7 0,8 0,8 
N80M4 80 4 1,2 1,2 1,1 1,2 0,6 0,6 0,7 0,9 
N80M8 80 8 1,5 1,5 1,2 1,3 0,6 0,6 2,3 2,4 

  N80M16 80
 

 

 

 

 

 

 

 

 
 

16 2,6 2,8 1,9 1,9 0,8 0,8 1,8 2,2 
 

 
Figure 6. Performances of algorithms for n = 40, 60, 80 (Average results from 8 groups) 
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Indeed, the gap between the results provided by 
algorithms GS and CS increases by the increasing of 
the number of zones m as shown by the results 
reported in the tables 2 and 4. This is due to the 
decreasing of the number of stations per zone, and 
therefore the use of the BB method within the CS 
algorithm, which improves at the most of cases the 
results obtained by GS algorithm. Otherwise, the CS 
algorithm is able to solve problems with up to 80 
stations in small computation time (2 seconds in 
average). Such a time is neglected in real life 
situations.   

Finally, the proposed decomposition strategies and 
their associated algorithms provide a decision tool 
able to solve problems with different sizes in short 
computation time. Moreover, the use of the K-Means 
decomposition strategy and the combined algorithm 
seems to be a very interesting method to solve 
problems up to 80 stations, and provides solutions of 
good quality in short computation time.  

5 CONCLUSION 
THIS paper studied the balancing of bicycle-

sharing systems considering the static case. The 
problem is similar to other known problems in the 
literature (e.g., the pick-up and delivery problem). The 
investigated problem is strongly NP-hard and requires 
the design of specific methods able to provide 
solutions of good quality in short computation time.  

In this context, we proposed a 2-step approach for 
solving the balancing problem. First, the network is 
split into multiple zones by using two different 
clustering strategies including the K-Means algorithm. 
Once the network is split, two sub-problems are 
solved: the intra-zone vehicle routing problem aiming 
to find a sequence within each zone is solved. Thus, 
the inter-zones' vehicle routing problem linking the 
zones is solved.  

Different resolution methods were developed and 
tested on a large set of instances. These methods 
integrate different kinds of algorithms as the genetic 
algorithm, the greedy search algorithm, the nearest 
neighbour search algorithm, the combined method and 
the branch-and-bound algorithms. The experiments 
were conducted on a large set of instances in order to 
evaluate and compare the developed algorithms as 
well as to show the impact of splitting the network on 
the quality of solutions. The obtained results showed 
the interest of balancing a network by considering 
multiple zones. It is emphasized that the number of 
zones and the choice of the decomposition strategy of 
network affect the quality of solutions.  

As a conclusion, the proposed decomposition 
methods and their associated heuristic algorithms 
seem to be a very interesting method to solve the SZ-
VRP, and to provide solutions of good quality in short 
computation time (at most 2 seconds when using the 
CS algorithm) despite the strong NP-hardness of the 
investigated problem. As a perspective, we aim to 

develop an approximation algorithm (with an 
approximation ratio) for the addressed problem. 
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