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1 INTRODUCTION 
DELAY-DEPENDENT stability criteria for neural 

networks with constant time or time-varying delays 
have received considerable attention in recent years 
(Zhang, et al. 2013; Li, et al. 2013; Kwon, et al. 2013; 
Chen & Zheng, 2013; Zhang, et al. 2014; Zhang, et al. 
2014; Ge, et al. 2014; Wang, et al. 2015). On the one 
hand, the reason is that neural networks have received 
considerable attention due to their extensive 
applications, such as optimization (Nissinen, et al. 
1999), automatic control (Benallegue & Meddah 
2001), and others. On the other hand, delay-dependent 
stability results, which consider the information of time 
delays, are less conservative than the 
delay-independent stability results, especially when the 
time delays are small. Since the time delays are 
frequently encountered in electronic implementations 
of neural networks due to the finite switching speed of 
amplifiers and the inherent communication time 
between neurons, which may cause hidden oscillations, 

divergence, chaos, instability, or other poor 
performance behaviors (Zhang, et al. 2014; Ge, et al. 
2014). Therefore, it is more effective to solve the 
delay-dependent stability problem of neural networks 
with time-varying delay from two perspectives of less 
conservatism and lower computational burden. 

Most of delay-dependent stability criteria are 
derived via the Lyapunov stability theory, so the 
appropriate choice of Lyapunov-Krasovskii functional 
(LKF) is crucial for deriving less conservative stability 
criteria. To reduce the conservatism, recently, several 
commonly used techniques have been applied in the 
estimation of the derivative of LKF, such as 
free-weighting matrix (Zhang, et al. 2014; Zuo, et al. 
2010; Hua, et al. 2011; Zhang, et al. 2013; Chen & 
Zhao, 2015), integral inequality (Li & Ye, 2010; Wu, et 
al. 2010; Stojanovic, 2016; Zeng, et al. 2011; Tian & 
Zhong, 2012; Zhang, et al. 2010; Wu, et al. 2012; 
Lakshmanan, et al. 2013; Zhang & Han, 2011; Wang, 
et al. 2011; Zheng, et al. 2010), Leibniz-Newton 
formula (Zhang, et al. 2014; Hua, et al. 2011; Shao & 
Han, 2011; Tian, & Zhong, 2012), reciprocally convex 
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combination (Liu, 2013; Yang & Zhang, 2014; 
Farnam, et al. 2016), and their combinations (Zhang, et 
al. 2014). For the derivative of LKF, it is necessary to 
estimate the derivative for deriving stability criteria in 
terms of linear matrix inequalities (LMIs). It is usually 
difficult to deal with the integral terms of the derivative 
of LKF such that the derivative is enlarged. Although 
numerous techniques have been developed for 
estimating the time derivative of LKF, there still exists 
room for further study. It can be summarized as 
follows: 1) For the augmented LKF introduced in 
Kwon, et al. (2013), Zheng, et al. (2010), Kwon, et al. 
(2013), Rakkiyappan, et al. (2016), and Yang, et al. 
(2017), the delayed state derivative terms 
including ))(( tty τ− and )( mty τ− are contained in 
the derivative of LKF. However, if these terms are 
replaced by the delayed neural networks, it can be 
found that the time-varying delay is doubled or the 
delay interval ] ,0[ mτ  imperceptibly becomes 

]2 ,0[ mτ . This means that the calculation results 
listed in Kwon, et al. (2013), Zheng, et al. (2010), 
Kwon, et al. (2013), Rakkiyappan, et al. (2016) and 
Yang, et al. (2017) are doubled. Simultaneously, 
derived activation function )))(2(( ttyg τ−  and 

)))((( mttyg ττ −−  are non-existent for the considered 
neural networks. 2) For the delay-decomposition LKF 
introduced in Ge, et al. (2014) and Zeng, et al. (2011), 
and the delay-partitioning LKF introduced in Wang, et 
al. (2015) and Lakshmanan, et al. (2013), the larger the 
number of subintervals is, there is less conservatism of 
stability results. However, the conservative reduction 
trends to be in-apparent as the increasing of the number 
of time delay subintervals, which lead to a large 
computational burden (Zhang, et al. 2014). 3) For 
Leibniz-Newton formula, many free weighting 
matrices are often needed to be introduced in the 
derived stability criteria and leads to significant 
increases in the computational burden. In Zhang, et al. 
(2014), the Leibniz-Newton formula was used to 
estimate the derivative of LKF, which caused a large 
number of matrix variables. Thus, how to further 
reduce the conservatism and computational burden of 
the stability results may be more attractive.  

This paper further investigates the stability 
condition for continuous recurrent neural networks 
with time-varying delay by constructing a newly 
augmented LKF and employing the LMI method. This 
paper aims to derive a new and less delay-dependent 
stability criterion for recurrent neural networks with 
time-varying delay, while reducing the computational 
burden via less useful matrix variables. The 
contributions and improvements are summarized as 
follows: 1) Unlike the augmented LKF in Kwon, et al. 
(2013), Zheng, et al. (2010), Kwon, et al. (2013), 
Rakkiyappan, et al. (2016), and Yang, et al. (2017), a 
newly augmented LKF is constructed to improve the 
results, where the delayed state derivative terms 

including ))(( tty τ−  and )( mty τ−  do not appear in 
the derived stability criterion. 2) The 
delay-decomposition or delay-partitioning ideas 
introduced in Ge, et al. (2014), Zeng, et al. (2011), 
Wang, et al. (2015) and Lakshmanan, et al. (2013) are 
not used. Instead, by considering more information of 
the neural states and neuron activation functions as 
augmented elements, a newly augmented LKF is 
developed. 3) The commonly used techniques, 
including integral inequality, reciprocally convex 
combination, and free-weighting matrix method, are 
applied in the estimation of the derivative of the 
constructed LKF. Those improvements lead to the 
obtained stability results having lower computational 
burden. Finally, two numerical examples are given to 
verify the effectiveness of the proposed stability 
criterion and its improvements over the recent existing 
ones. 

The rest of this paper is organized as follows: 
Section 2 gives the problem formulation. Section 3 
presents the new and less conservative delay-dependent 
stability criterion. In Section 4, two numerical 
examples are given to verify the effectiveness of the 
proposed stability criterion. Finally, the conclusion is 
made in Section 5. 

Throughout this paper, the superscript T  means 
the transpose of a matrix, nR denotes the 
n-dimensional Euclidean space, nmR × denotes the set 
of all nm× real matrices, )0(  0 ≥>P  means that P is 
a real symmetric and positive- definite 
(semipositive-definite) matrix,   ⋅ denotes the absolute 

value, ijY represents the element in row i and 

column j of matrix Y , }{diag   denotes a 
block-diagonal matrix, symmetric term in a symmetric 
matrix is denoted by *. 

2 PROBLEM FORMULATION 
CONSIDER the following recurrent neural network 

with time-varying delay: 

 JttxBftxAftCxtx +−++−= )))((())(()()( τ , (1) 

where nT
n Rtxtxtxtx ∈= )](,),(),([)( 21  is the state 

vector. T
nffff )](,),(),([)( 21 ⋅⋅⋅=⋅  denotes the 

activation functions. },,,{diag 21 ncccC =  is a 
diagonal matrix with 0>ic . A  and B  are the 

connection matrices. T
nJJJJ ],,,[ 21 =  is an external 

constant input vector. )(tτ is time-varying delay and 
satisfies 

 mt ττ ≤≤ )(0 , µτ ≤)(t , (2) 

where mτ  and µ   are constants. 
Assume that the activation function satisfies 
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≤ +− σσ , (3) 

where −
iσ  and +

iσ   are known real constants, which 
can be positive, zero, and negative. 

Suppose there exists an equilibrium point *x  for 
the neural network (1), one can shift the equilibrium 
point of (1) to the origin by changing variables 

 *)()( xtxty −= , 

 *)(*))(())(( xfxtyftyg −+= , (4) 

Then, (1) is rewritten as  

 )))((())(()()( ttyBgtyAgtCyty τ−++−= , (5) 

where T
n tytytyty )](,),(),([)( 21 = , 

T
nn tygtygtygtyg ))]((,)),(()),(([))(( 2211 = . 

In addition, it is easily obtained from (3) that 

 nibaRba
ba

bgag
i

ii
i ,,2 ,1 , ,, ,)()(

=≠∈∀≤
−
−

≤ +− σσ , (6) 

Let 0≠a  and 0=b , then 

 nia
a
ag

i
i

i ,,2 ,1  ,0  ,)(
=≠∀≤≤ +− σσ , (7) 

and  

 niaagaag iiii ,,2 ,1   ,0])(][)([ =≤−− +− σσ  (8) 

This paper aims to derive a new and less 
conservative delay-dependent stability criterion 
guaranteeing that the delayed neural network (5) is 
globally asymptotically stable, while reducing the 
computational burden. To obtain the main results, the 
following lemmas are introduced. 

Lemma 1 (He, et al. 2016). For any constant 
positive-definite matrix nnRQ ×∈ and αβ ≤≤ s , the 
following inequalities hold: 
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Lemma 2 (Wang, et al. 2015). For any 
vectors 21,hh with appropriate dimensions, scalars 

0>a , 0>b and 1=+ ba , if there exist 

matrix 0>∈ ×nnRM and any matrix S with appropriate 
dimensions, and the following inequalities hold : 
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3 STABLILITY CRITERION 
THIS section discusses the stability of (5) and 

derives a delay-dependent stability criterion by 
employing newly augmented LKF and above 
mentioned lemmas. 

Theorem 1. For given 0>mτ and µ , and diagonal 

matrices },,,{diag 211
−−−= nL σσσ  , 

},,,{diag 212
+++= nL σσσ  , the neural network (5) with 

(6) and a time-varying delay satisfying condition (2) is 
globally asymptotically stable if there exist real 
matrices 
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and positive diagonal matrices  
iT )3 ,2 ,1( =i , },,,{diag 112111 nhhhH = , 

},,,{diag 222212 nhhhH = , 

and any matrice )11,,2 ,1( =∈ × iRN nn
i ,with 

appropriate dimensions, then the following LMIs hold: 

 0<Σ , (12) 

 0≥







∗ G

SG , (13) 

Calculating the time derivatives of )(tVi , 
5 ,,2 ,1 =i a  along the state trajectories of (5) yields 
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According to (6)-(8), it implies that, for any 
diagonal matrices 0},,,{ 21 >= iniii tttdiagT  , 

5,,2 ,1 =i , the following inequality holds: 

 )]())(([)]())(([20 211 tyLtygTtyLtyg T −−−≤  

 TttyLttyg ))](()))((([2 1 ττ −−−−  
 ))](()))((([ 22 ttyLttygT ττ −−−×  

 T
mm tyLtyg )]())(([2 1 ττ −−−−  

 )]())(([ 23 mm tyLtygT ττ −−−×  
 )))((())(([2 ttygtyg τ−−−  

 TttytyL )))](()((1 τ−−−  
 )))((())(([4 ttygtygT τ−−×  
 )))](()((2 ttytyL τ−−−  
 ))(()))((([2 mtygttyg ττ −−−−  

 T
mtyttyL ))]())(((1 ττ −−−−  

 ))(()))((([5 mtygttygT ττ −−−×  

 ))]())(((2 mtyttyL ττ −−−− . (21) 

By combination of the concerned neural network (5) 
and free-weighting matrix method, the following 
equation is true for any matrices iN )11,2 ,1( =i  
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  (22) 

Finally, by combining (15)-(22), one can derive that  

 )()()( tttV T ξξ Σ≤ . (23) 

If 0<Σ , then 0)( <tV for 0)( ≠∀ tξ , the 
concerned system (5) is globally asymptotically stable. 
This completes the proof.  

Remark 1: Recently, the extended reciprocally 
convex combination approach to reduce the 
conservatism of the stability criteria for recurrent 
neural networks with time-varying delays is used in 
Wang, et al. (2015). Motivated by this idea, the 

approach is applied in this paper, which is shown in 
(19) and has potential to yield less conservative 
condition.  

Remark 2: From the perspective of a 
computational burden, the stability criterion obtained 
in this paper has lower computational burden than the 
criteria obtained by the delay-decomposition LKF in 
Ge, et al. (2014) and Zeng, et al. (2011) and 
delay-partitioning LKF in Wang, et al. (2015) and 
Lakshmanan, et al. (2013), for the reason that the 
number of decision matrix variables is greatly reduced. 
Similarly, compared with the recent constructions of 
augmented LKF in Kwon, et al. (2013), Zheng, et al. 
(2010), Kwon, et al. (2013), Rakkiyappan, et al. (2016), 
and Yang, et al. (2017), the main difference is that the 
delayed state derivative terms are not considered in the 
constructed LKF in this paper, which greatly reduces 
the dimensions and computational burden of the 
stability criterion. Moreover, in Kwon, et al. (2013), 
Zheng, et al. (2010), Kwon, et al. (2013), and 
Rakkiyappan, et al. (2016), the free-weighting matrix 
method was not employed when they established the 
delay-dependent stability criteria. Therefore, the 
computational burden of the delay-dependent stability 
criterion obtained in this paper is lower. 

Remark 3: In Theorem 1, the free-weighting matrix 
method used in (22) plays an important role in reducing 
the conservatism of stability criterion via incorporating 
the system model (5), in which many free weighting 
matrices are involved. Therefore, the obtained criterion 
will have better results than the existing ones. 

Remark 4: The stability criteria derived in this 
paper give the matrix variables to be determined and 
the LMI-based constraint conditions for ensuring the 
stability of delayed neural networks; one can use the 
feasp function in MATLAB/LMI toolbox to solve 
those variables from the corresponding criterion. 

4 NUMERICAL EXAMPLES 
IN this section, two numerical examples are 

considered to verify the effectiveness of the obtained 
stability criterion. The main objective is to derive an 
acceptable maximum upper bound (AMUB) on time 
delays such that delayed neural networks are globally 
asymptotically stable. Meanwhile, the larger the 
AMUB is, there is less conservatism of the 
corresponding stability criterion.  

Example 1: Consider the following 4-neuron 
delayed neural network (5) with the parameters (Zhang, 
et al. 2014) 
 

 0.4480} 0.9230, 0.6231, 9,diag{1.276=C  
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 1137.01 =+σ , 1279.02 =+σ , 7994.03 =+σ , 

2368.04 =+σ . 

First case: 4,,2 ,1  ,0 ==− iiσ . The comparison 
results on the AMUB of time-varying delay via the 
different methods presented in recent works (Zhang & 
Han, 2011; Ge, et al. 2014; Wang, et al. 2015; Kwon, et 
al. 2013; Kwon, et al. 2013; Zeng, et al. 2015; Liu, et al. 
2015; Zhang, et al. 2014; Zhang, et al. 2016; Zhang, et 
al. 2017; Yang, et al. 2017) are listed in Table 1. From 
Table 1, it can be seen that Theorem 1 provides larger 
AMUBs of time-varying delay than the existing results 
in the literatures, especially when 5.0≥µ , which 
sufficiently shows the advantage of the developed 
method in this paper. 

 
Table 1. AMUBs mτ for Various µ for Example 1 (First Case). 

Methods\ µ

 

0.1 0.5 0.9 
Zhang & Han 2011 3.5204 2.7167 2.2141 
Ge, et al. 2014 3.8428 2.7081 2.2485 
Zhang, et al. 2014 3.8739 2.7821 2.3279 
Wang, et al. 2015 3.4886 2.6056 2.2522 
Kwon, et al. 2013 3.7857 3.0546 2.6703 
Zeng, et al. 2015 4.1903 3.0779 2.8268 
Liu, et al. 2015 4.2143 3.1059 2.7494 
Kwon, et al. 2013 3.8102 3.1518 2.8402 
Zhang, et al. 2016 4.2993 3.1577 2.8371 
Zhang, et al. 2017 4.2778 3.2152 2.9361 
Yang, et al. 2017 4.4530 3.4929 3.0726 
Theorem 1 4.6962 3.6220 2.7335 

 
Table 2. AMUBs mτ  for Various µ for Example 1 (Second 

Case). 

Methods\ µ

 

0.1 0.5 0.9 
Zhang, et al. 2014  2.1321 1.3752 0.3602 
Zhang, et al. 2014 2.1326 1.3759 0.3654 
Zhang, et al. 2014 2.2019 1.4307 0.3767 
Zhang, et al. 2014 2.2013 1.4307 0.3767 
Liu, et al. 2015 3.0064 2.1112 1.6383 
Theorem 1 3.1248 2.3432 1.6203 

 

Second case:, 4.01 −=−σ , 1.02 =−σ , 03 =−σ , 
3.04 −=−σ ,. The AMUBs of time-varying delay for 

various µ obtained by Theorem 1 and the methods 
presented in Zhang, et al. (2014) and Liu, et al. (2015) 
are listed in Table 2. From Table 2, it can be found that 
the proposed method in Theorem 1 significantly 
enhances the feasible region of stability criterion 
compared to those results in Zhang, et al. (2014) and 
Liu, et al. (2015), especially when 5.0≥µ . 
When 9.0=µ , the AMUBs are 0.3602, 0.3654 and 
0.3767 in Zhang, et al. (2014). Applying Theorem 1, 
the AMUB is 1.6203, which is much better than those 
results in Zhang, He, Jiang, Wu, and Wu (2014). 

When 9.0=µ , the AMUB of time-varying delay is 
obtained by Theorem 1, 7335.2=mτ , and the initial 

values are randomly chosen as T]2 ,5 ,5 ,2[ − , the 
simulation result is shown in Figure 1. Obviously, the 
concerned neural network is globally asymptotically 
stable. 

When 5.0=µ , the AMUB of time-varying delay is 
obtained by Theorem 1, 6220.3=mτ , and the initial 

values are randomly chosen as T]20. ,5.0 ,50. ,2.0[ − , 
the simulation result is shown in Figure 2. Obviously, 
the concerned neural network is globally 
asymptotically stable. 
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Figure 1. State Trajectories of )(),(),(),( 4321 tytytyty for 

Example 1 when 9.0=µ , 7335.2=mτ . 
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Figure 2. State Trajectories of )(),(),(),( 4321 tytytyty for 

Example 1 when 5.0=µ , 6220.3=mτ . 
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Figure 3. State Trajectories of )(),(),(),( 4321 tytytyty for 

Example 1 when 1.0=µ , .69624=mτ . 
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Figure 4. State Trajectories of )(),(),(),( 4321 tytytyty for 

Example 1 when 8324.0=µ , 8853.2=mτ . 

Similarly, when 1.0=µ , the AMUB of 
time-varying delay is obtained by Theorem 1, 

.69624=mτ , and the initial values are randomly taken 

as T]20. ,4.0 ,60. ,3.0[ , the simulation result is shown 
in Figure 3. Obviously, the concerned neural network is 
globally asymptotically stable. 

Inspired by the application given in Wang, Liu, 
Shan and Zhang (2015), the application is utilized to 
further verify the effectiveness of the stability criteria 
obtained in this paper. When the time delay is 

)4260.0sin(3536.07637.1)( tt +=τ    

)35.0cos(7725.0 t+ , 8853.2=mτ , 8324.0=µ , and 

the initial values are T]30. ,1.0 ,20. ,5.0[ −− , the 
simulation result is shown in Figure 4. Obviously, the 
concerned neural network is globally asymptotically 
stable. Furthermore, compared with the result reported 
in Wang, Liu, Shan and Zhang (2015) ( 2477.2=mτ , 

8324.0=µ ), the acceptable upper bound of 
time-varying delay in this paper is better. 

Example 2. Consider the following 2-neuron 
delayed neural network (5) with the parameters (Zhang, 
et al. 2014) 
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When 9.0=µ , the AUMBs mτ of )(tτ obtained by 
Theorem 1 and different methods presented in Zhang, 
et al. (2013), Zhang, et al. (2014), Ge, et al. (2014), He, 
et al. (2016), Wang, et al. (2017), Kwon, et al. (2013) 
and Rakkiyappan, et al. (2016) are listed in Table 3. 
Seen from Table 3, it is obviously found that the result 
calculated based on the criterion in this paper is less 
conservative than the existing ones. 

When 9.0=µ , 9158.2=mτ , and the initial values 

are randomly chosen as T]1.0  ,1.0[− , the simulation 
result is shown in Figure 5. Obviously, the concerned 
neural network is globally asymptotically stable. 

All above, the obtained stability criterion in this 
paper is much effective and less conservative than most 
of the existing results in the literatures. 

 
Table 3. AMUBs mτ  for Example 2. 

Methods 9.0=µ  
Zhang, et al. 2013 1.6375 
Ge, et al. 2014 1.9562 
Zhang, et al. 2014 1.9603 
He, et al. 2016 2.2201 
Wang, et al. 2017 2.3582 
Kwon, et al. 2013 2.8339 
Rakkiyappan, et al. 2016 2.8881 
Theorem 1 2.9158 
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Figure 5. State Trajectories of )(),( 21 tyty for Example 2 

when 9.0=µ , 9158.2=mτ . 

5 CONCLUSION 
THIS paper has studied the delay-dependent 

stability for continuous recurrent neural networks with 
time-varying delay and lower computational burden. A 
new and less conservative delay-dependent stability 
criterion has been established by constructing a newly 
augmented LKF and employing LMI method. It has 
been proven that the obtained stability criterion has a 
lower computational burden. The new LKF that 
considers more information of the slope of the 
activation functions has been further developed. 
Finally, two numerical examples have been considered 
to demonstrate the effectiveness of the proposed 
stability criterion. 
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