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1 INTRODUCTION 
OVER the last five decades, parallel manipulators 

have been extensively researched for their some 
advantages of high rigidity, high accuracy, and high 
load-carrying capacity, and their general applications 
in motion simulators, parallel robots, and parallel 
machine tools etc. (Yao, et.al. 2016) (Yang, et.al. 
2014) (Yang, et.al. 2012) (Sun, et.al. 2016) (Bernhard, 
et.al. 2001). Parallel manipulators can be used to 
simulate the relative motion between target spacecraft 
and tracking spacecraft in a semi-physical simulation 
system of a space docking mechanism by installing a 
space docking mechanism to the mobile platform. A 
semi-physical simulation system of a space docking 
mechanism has been constructed in the Aerospace 
System Engineering Shanghai in the 921 Manned 
Space project with Harbin Institute of Technology. 

One of the important issues in applying the semi-
physical simulation system of a space docking 
mechanism is pose accuracy of the parallel 
manipulator. The investigation of pose accuracy for 
parallel manipulators is mainly divided into two parts. 
One is accuracy analysis (Wang & Ehmann, 2002) 
(Ryu & Cha, 2003), and the other is kinematic 
calibration (Verner, et.al. 2003) (Li, et.al. 2017) (Bai 
& Teo, 2003). Accuracy analysis is defined as 
statistical analysis of the effects of manufacturing 
errors and installing errors on pose errors of parallel 

manipulators. Sensitivity analysis is used to modify 
the relevant error parameters to achieve the desired 
pose accuracy. In the aspect of accuracy analysis, an 
error model of a Stewart platform was built using D-H 
matrix theory, considering the manufacturing errors, 
installing errors and measuring errors. The error 
analysis results showed that the maximum errors for 
Stewart platforms occurred in the edge of the work 
space (Wang & Masory, 1993). A pose error formula 
of the moving platform was established by 
differentiating the inverse equation of Stewart 
platforms. The influence of the length errors of the 
drive rod and the position error of the hinge on the 
pose of the moving platform was analyzed (Ropponen 
& Arai, 1995). For the Stewart platform, an error 
model for pose accuracy synthesis analysis was 
established, and an analytic solution for the accuracy 
analysis of individual components has been given in 
this article. A pose error model of parallel 
manipulators was set up, and the pose error spatial 
distributions in a given work space were obtained by 
using a Sobol sequence based quasi-Monte Carlo 
method. This approach can significantly enhance 
evaluative precision of pose errors and reduce 
computational burden. According to the above 
information, the comparison of various design 
schemes in the stage can be carried on and the best 
scheme can be found through the accuracy analysis 
and accuracy synthesis (Li, et.al. 2015). It can also 
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calculate the influence of an original error on the pose 
accuracy. Thus, the key segments in parallel 
manipulators can be discovered, and the key points 
and directions to improve pose accuracy can be clearly 
defined. It can provide accurate and reliable 
information in order to improve design quality and 
design level of parallel manipulators. 

Compared with accuracy analysis, kinematic 
calibration is the effective technique to solve the pose 
accuracy problem in the case that manufacturing and 
installing accuracy cannot be guaranteed. Pose 
accuracy can be improved without changing the 
hardware mechanism. A large number of 
investigations show that kinematic calibration is the 
most economical and feasible technologies to improve 
pose accuracy. The basic principle of kinematic 
calibration is that an error function between measured 
poses and calculated poses by using the kinematic 
model is constructed based on constraint and pose 
error observability. The kinematic parameters are 
identified by linear or nonlinear least square technique, 
and the inverse model parameters in the controller are 
corrected by the identification results, so as to achieve 
the goal of accuracy compensation. In general, 
kinematic calibration includes error modeling, pose 
measurement, error parameter identification and error 
compensation (Daney, 2003) (Zhuang & Roth, 1995). 
According to the different pose measurement 
technologies, calibration methods can usually be 
divided into external calibration (Takeda, et.al. 2004) 
(Renaud, et.al. 2006) (Tian, et.al. 2016) and self-
calibration (Patel & Ehmann, 2000) (Ren, et.al. 2009). 
When the pose of parallel manipulators is completely 
measured, the inverse kinematic model can be used to 
solve the calibration problem. Since the pose 
information is partially measured, the calibration 
problem can only be solved by using the forward 
kinematic model. The calculation of external 
calibration based on complete pose measurement is 
more accurate, and the kinematic parameter 
identification performance is better because the 
inverse kinematics of parallel manipulators has 
analytic solutions. The forward kinematics of the 
parallel manipulators can usually obtain numerical 
solutions, so the calibration performance based on 
partial pose is relatively weak (Rauf, et.al. 2006). In 
order to ensure the calibration results, most of the 
external calibration based on the complete pose is 
used to identify all independent parameters of the 
model. Kinematic calibration of Stewart platforms was 
simulated and analyzed by using calibration 
technology of serial manipulators. The results show 
that the errors are reduced by an order of magnitude 
after kinematic calibration, but did not consider the 
influence of measurement error on calibration results 
(Masory, et.al. 1993). A simple calibration method 
was presented to identify a fixed leg length by 
changing other leg lengths. Kinematic parameters of 
each leg can be estimated separately, thereby the 

amount of calculation is reduced greatly. But this 
method has decreased the measurable work space 
(Zhuang & Yan, 1998). A calibration of parallel 
robots was proposed by using a tilt sensor. The effect 
of the tilt sensor noise and pose measurement number 
on kinematic calibration was simulated, but this 
method can only identify some parameters (Besnard & 
Khalil, 1999). 

A kinematic calibration technique considering 
geometrical parameter errors of parallel manipulators, 
transformation errors between the docking coordinate 
frame and the mobile coordinate frame, and 
transformation errors between the fixed coordinate 
frame and the world coordinate frame is presented in 
order to solve simulation precision for a semi-physical 
simulation system of a spacecraft docking mechanism. 
In Section 1, the investigation on accuracy analysis 
and kinematic calibration is outlined, and its 
importance is pointed out. The article is organized as 
follows: The inverse kinematics and pose error model 
are given in Section 2. A kinematic calibration model 
containing the above errors is established by using the 
matrix differential theory, and an error parameter 
identification algorithm is developed based on 
iterative least squares in Section 3. In Section 4, the 
feasibility for the kinematic calibration technique is 
verified by computer simulation, and some 
experimental results are presented to further confirm 
the effectiveness of this technology. Section 5 
concludes this paper. 

2 KINEMATIC MODEL OF THE PARALLEL 
MANIPULATOR 

THE parallel manipulator with a docking 
mechanism installed to its mobile platform is 
composed of six identical electro-hydraulic actuators 
connecting a mobile platform to a base platform with 
Hooke joints in parallel shown in Figure 1. The 
parallel manipulator can be simplified as a model 
shown in Figure 2(a). Two coordinate frames are 
established for the parallel manipulator. The fixed 
coordinate frame {B} is located in the center of the 
base platform. The mobile coordinate frame {A} is 
located in the center of the mobile platform. li 
(i=1,…,6) is the ith actuator length, ai (i=1,…,6) 
represents upper joint coordinates in the mobile 
coordinate frame {A}, bi (i=1,…,6) is the lower joint 
coordinates in the fixed coordinate frame {B}. The 
docking coordinate frame {D} is attached to the 
docking mechanism, and the world coordinate frame 
{W} is a unified reference frame as shown in Figure 
2(b). 

The homogeneous transformation matrix is used to 
express the pose of the coordinate frame {D} with 
respect to the world coordinate frame {W}, namely 

 W W B A
D B A D=T T T T  (1) 
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 Inverse Kinematics 2.1
The inverse kinematics can deal with the actuator 

lengths corresponding to a set of given poses of 
parallel manipulators and the kinematic parameters. 
The actuator lengths are calculated in the form of 
closed form solutions through analytic method. 

The vector loop in Figure 2(a) can be expressed as 

 1,2, ,6i i i i= ⋅ + − =l R a t b   (2) 

The actuator length can be determined by 
calculating the norm of Eq. (2). 

 1,2, ,6i i i i= ⋅ + − =l R a t b   (3) 

 

 

Figure 1. The Parallel Manipulator Constructed for the Space 
Docking Motion Simulation. 

 Error Model 2.2
A pose error model of the parallel manipulator will 

relate the geometrical errors resulting from the 
manufacturing and assembly of the mobile platform 
and the base platform to the pose error of its mobile 
platform. To derive the pose error model, Eq. (2) is 
performed. The following differentiation is given 
below 

 i i i i i i iL Lδ δ δ δ δ δ+ = ⋅ + + −u u R a R a t b   (4) 

Where iL  is the actuator length and iu  is the unit 
vector of the actuator. Because the rotation matrix 
R  is orthogonal, it can be expressed as 

 δ =R ΩR  (5) 

Where Ω  is a 3 3×  skew symmetric matrix whose 
nonzero element represents the orientation error 
δω  of the mobile coordinate frame {A}. 

Substituting Eq. (5) into Eq. (4) produces 

 i i i i i i iL Lδ δ δ δ δ δ+ = × + + −u u ω Ra R a t b   (6) 

 

 

(a) Coordinate Frames 

 

(b) The Relationships among all Transformation Matrices 

Figure 2. Schematic Diagram of a Semi-physical Simulation 
System. 

By multiplying T
iu on both sides of Eq. (6), it can 

be represented as 

 

( ) [ ]

[ ]

TTT
i i i

TT T
i i i i

Lδ δ δ

δ δ

 = × + 

 − 

u Ra u t ω

u R u a b
 (7) 

Therefore, the pose error model of the parallel 
manipulator can be expressed as 

 p s g=E J J e  (8) 

Where E  is the pose error vector, [ ]Tδ δ=E t ω , 

ge  is geometric parameter errors of the parallel 

manipulator, [ ]1 1 1 6 6 6
T

g L Lδ δ δ δ δ δ=e a b a b . 

 
( )

( )

1

1 1 1

6 6 6

TT

p
TT

−
 ×
 

=  
 

×  

u Ra u
J

u Ra u

   (9) 
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1 0

0 1

T T

s
T T

 −
 =  
 − 

u R u
J

u R u



  



 (10) 

Eq. (8) shows the actuator length errors, the upper 
joint position errors and the lower joint position errors 
play an important role in pose accuracy decreasing. 

3 KINEMATIC CALIBRATION OF THE 
PARALLEL MANIPULATOR 

AS described in section 2, B
AT  in Eq. (1) is 

imprecise, because of manufacturing and assembly 
errors of the parallel manipulator. For transformation 
matrices W

BT  and A
DT , the actual values are not 

provided due to the immeasurability of origins of the 
mobile coordinate frame {A} and the fixed coordinate 
frame {B}. In order to achieve their precise values, a 
kinematic calibration technology is established 
considering not only geometric parameter errors of the 
parallel manipulator but also the transformation errors 
for W

BT  and A
DT . By using the differential 

transformation relationship, Eq. (1) can be rewritten as 

 ( )( )( )W W W W B B A A
D D B B A A D Dd d d d+ = + + +T T T T T T T T  (11) 

Removing the parentheses on the right side of Eq. 
(11) and neglecting the high order terms, it can be 
represented as 

 
W W B A W B A W B A
D B A D B A D B A Dd d d d= + +T T T T T T T T T T  (12) 

Basing on matrix differential theory, a matrix 
transformation error can be expressed as 

 d d=T T T   (13) 

where δT  is written as 

 

0
0

0
0 0 0 0

z y dx
z x dy
y x dz

dd
dd

d
dd

− 
 − =
 −
 
 

T  (14) 

where dx , dy , and dz  are position errors, xδ , yδ
,  and zδ  are the orientation errors. 

Substituting Eq. (13) into Eq. (12), the formula can 
be obtained as 

 

( )
( )

1

1

B A W B A
A D B A DW W W

D D D
A B A A

D A D D

δ
δ

δ δ

−

−

 + =   + 

T T T T T
T T T

T T T T
 (15) 

By letting B A
A D=U T T  and A

D=V T , Eq. (15) can 
be simplified as 

 
1 1W W B A

D B A Dδ δ δ δ− −= + +T U T U V T V T  (16) 

It is noted that U  and V  can be in the form of 

 
0 0 0 1

u u u u 
=  
 

n o a r
U  (17) 

 
0 0 0 1

v v v v 
=  
 

n o a r
V  (18) 

where un , uo , and ua  are orthogonal unit vectors 
of U , ur  is translation vector of U , vn , vo , and 

va  are orthogonal unit vectors of V , vr  is 
translation vector of V . 

According to Eq. (14), 
W
DδT , 

W
BδT , 

B
AδT , and 

A
DδT  can be represented as 

 

0
0

0
0 0 0 0

W
D

z y dx
z x dy
y x dz

dd
dd

d
dd

− 
 − =
 −
 
 

T  (19) 

 

0
0

0
0 0 0 0

b b b

b b bW
B

b b b

z y dx
z x dy
y x dz

dd
dd

d
dd

− 
 − =
 −
 
 

T  (20) 

 

0
0

0
0 0 0 0

a a a

a a aB
A

a a a

z y dx
z x dy
y x dz

dd
dd

d
dd

− 
 − =
 −
 
 

T  (21) 

 

0
0

0
0 0 0 0

d d d

d d dA
D

d d d

z y dx
z x dy
y x dz

dd
dd

d
dd

− 
 − =
 −
 
 

T  (22) 

Letting [ ]Tb b b bdx dy dz=d  and 

[ ]Tb b b bx y zδ δ δ=δ , the triple product of matrix 
1 W

Bδ−U T U  is expressed as 
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1

0
0

0 0

b u

b uW
B

b u b u

δ−

− ⋅
 ⋅=
− ⋅ ⋅



δ a
δ a

U T U
δ o δ n

 

 

( )
( )
( )0

0 0

b u b u u b u

b u b u u b u

b u u b u

⋅ ⋅ × + ⋅ 
− ⋅ ⋅ × + ⋅ 
⋅ × + ⋅



δ o δ r n d n
δ n δ r o d o

δ r a d a

 (23) 

Similarly, letting [ ]Ta a a adx dy dz=d  and 

[ ]Ta a a ax y zδ δ δ=δ , the triple product of matrix 
1 B

Aδ−V T V is written as 

 

1

0
0

0 0

a v

a vB
A

a v a v

δ−

− ⋅
 ⋅=
− ⋅ ⋅



δ a
δ a

V T V
δ o δ n

 

 

( )
( )
( )0

0 0

a v a v v a v

a v a v v a v

a v v a v

⋅ ⋅ × + ⋅ 
− ⋅ ⋅ × + ⋅ 
⋅ × + ⋅



δ o δ r n d n
δ n δ r o d o

δ r a d a

 (24) 

By using Eq. (16), (19), (22), (23) and (24), the 
following equations are established 

 

( ) ( )
( ) ( )
( ) ( )

b u u b u a v v a v d

b u u b u a v v a v d

b u u b u a v v a v d

b u a v d

b u a v d

b u a v d

dx dx

dy dy

dz dz
x x
y y
z z

dd
dd
dd

= ⋅ × + ⋅ + ⋅ × + ⋅ +

= ⋅ × + ⋅ + ⋅ × + ⋅ +

= ⋅ × + ⋅ + ⋅ × + ⋅ +

= ⋅ + ⋅ +
= ⋅ + ⋅ +
= ⋅ + ⋅ +

δ r n d n δ r n d n

δ r o d o δ r o d o

δ r a d a δ r a d a
δ n δ n
δ o δ o
δ a δ a   

  (25) 

Letting [ ]Tu u u u=R n o a , [ ]Tv v v v=R n o a  
[ ]Tu u u u u u u= × × ×C r n r o r a  
[ ]Tv v v v v v v= × × ×C r n r o r a , [ ]Tdx dy dz=d  

[ ]Tx y zδ δ δ=δ , [ ]Td d d ddx dy dz=d  
[ ]Td d d dx y zddd  =δ ,  Eq. (25) is written in 

matrix form as 

 

3 3 3 3

3 3 3 3 3 3 3 3

b

b

u u v v a

u v a

d

d

× ×

× × × ×

 
 
 
   

=    
     

 
 
  

d
δ

R C R C I O dd
O R O R O I δδ

d
δ   

  (26) 

Where I  is the unit matrix and O  is the zero 
matrix. 

Substituting Eq. (8) into Eq. (26), it can be 
rewritten as 

 
3 3 3 3

3 3 3 3 3 3 3 3

u u v v

u v

× ×

× × × ×

  
=   

   

R C R C I Od
O R O R O Iδ



 
6 66 6 6 42

6 6 6 6

6 6 6 42 6 6

b

b

p s g

d

d

×× ×

× ×

× × ×

 
              
  

d
I O O δ
O J J O e
O O I d

δ

  (27) 

The calibration model given in Eq. (27) is further 
simplified as 

 =x Jy  (28) 

where [ ]T=x d δ  is a pose error vector and 
T

b b g a a =  y d δ e d δ  is a parameter error vector. 
The calibration model can be used to identify the 
geometrical parameter errors of the parallel 
manipulator and the transformation errors of B

WT  
and A

DT . 
There are 54 parameter errors to be estimated as 

shown in Eq. (28), while the equations are 6. 
Therefore, at least 9 sets of pose measurement are 
required to identify 54 parameter errors.  Given n sets 
of pose error vector, 6×n calibration equations can be 
obtained and written in matrix form 

 =x Jy  (29) 

where 1 2

TT T T
n =  x x x x  is pose error matrix, 

1 2

TT T T
n =  J J J J  is parameter error identification 

matrix.  The least squares solution for y  is 

 ( ) 1T T−
=y J J J x  (30) 

In order to ensure that the least square solution is 
closer to its truth value, successive iteration algorithm 
can be used to identify the parameter error. The 
parameter errors are substituted as the correction of 
geometrical parameters of the parallel manipulator and 
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transformation matrix of the coordinate. The above 
calculation procedure is repeated until the parameter 
errors are satisfied the following formula 

 ( ) ( )1k kyε ε−− ≤ − ≤y  (31) 

where ε  is error tolerance. 

4 COMPUTER SIMULATIONS AND 
EXPERIMENTAL RESULTS 

THE feasibility for kinematic calibration method 
presented in the paper was verified by computer 
simulations. The following hypothesis was made: 

(1) The transformation matrix, A
DT , between the 

docking coordinate frame {D} and the mobile 
coordinate frame {A} is considered as an identity 
matrix before kinematic calibration. Similarly, the 
transformation matrix, B

WT , between the fixed 
coordinate frame {B} and the world coordinate frame 
{W} is also an identity matrix before kinematic 
calibration. 

(2) A set of predefined transformation errors was 
listed in Table 1. These errors were appended the three 
transformation matrices, namely, A

DT , B
AT , and B

WT . 
The computation results were used as pose actual 
value. The transformation matrices generated by 
computer simulation were taken as pose nominal value 
and a set of actuator length was given in Table 2. 

The computer simulation results of the kinematic 
calibration are shown in Table 3 and Figure 3. Since 
the kinematic calibration is an iterative computation 

process, the relationship between the pose error of the 
parallel manipulator and the number of iterations in 
the computer simulation and shown in Figure 3. In 
order to evaluate the effect of the kinematic 
calibration, the following two error parameters are 
defined: RMSPE and RMSOE, which are the root 
mean square position and orientation errors. From the 
computer simulation results above, it can be seen that 
the pose error of the parallel manipulator decreases 
gradually while the number of iteration increases, and 
the expected effect of kinematic calibration is obtained. 
The set of geometrical parameter errors and 
transformation errors can be identified through least 
squares algorithm. 

 

 

Figure 3. The Relationship between Pose Errors and Number of 
Iteration in a Simulation. 

 
Table 1.  Predefined Transformation Errors (m or rad). 

Error matrix dx dy dz δx δy δz 

B
WT  0.0120 0.0170 -0.0090 0.0300 0.0200 0.0080 

B
AT  

-0.0087 -0.0008 -0.0068 -0.0028 -0.0115 -0.0059 

-0.0056 -0.0010 -0.0009 0.0077 -0.0092 -0.0153 

0.0016 -0.0026 0.0039 -0.0073 0.0034 -0.0036 

-0.0080 -0.0062 0.0071 -0.0019 0.0041 0.0058 

-0.0024 0.0032 -0.0041 0.0136 -0.0041 -0.0128 

0.0028 0.0036 -0.0044 0.0058 0.0024 -0.0146 

0.0039 0.0041 0.0066 -0.0090 -0.0015 0.0035 

0.0035 -0.0004 -0.0048 0.0107 -0.0143 0.0034 

-0.0075 0.0010 0.0055 0.0040 -0.0149 -0.0152 
A

DT  0.0180 0.0150 -0.0050 0.0400 0.0500 0.0020 
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Table 2. Parallel Manipulator Actuator Lengths of Simulation (m or rad). 

No. l1 l2 l3 l4 l5 l6 
1 0.8102 -0.0995 -0.1615 0.1087 0.3626 0.0029 
2 -0.4840 0.2078 0.7086 -0.2386 0.0263 0.2194 
3 0.1923 0.5255 -0.7958 -0.3154 -0.3114 -0.0745 
4 -0.0252 0.7593 -0.2648 -0.5076 0.1803 -0.2046 
5 0.7043 0.4288 0.5637 0.2584 0.3541 -0.3250 
6 0.4718 -0.5827 -0.8822 -0.0575 -0.5030 -0.3210 
7 -0.0784 -0.1697 -0.6500 0.4522 0.1898 0.1908 
8 -0.8667 0.7838 -0.5350 -0.0356 -0.1262 -0.2065 
9 0.5785 0.7504 -0.5423 -0.0852 0.3474 0.0436 

 
Table 3.  Iterative Error Variation in Simulation (m or rad). 

No. 1 2 3 4 5 6 7 8 
RMSPE 0.0087 0.0052 0.0021 0.0015 0.0011 0.0008 0.0005 0.0004 
RMSOE 0.0151 0.0104 0.0036 0.0018 0.0016 0.0013 0.0007 0.0006 

 
The kinematic calibration results of transformation 

matrices B
WT , B

AT  and A
DT are given in Table 4. From 

the simulation results above, the position errors of 
transformation matrices B

WT , B
AT  and A

DT can be 
calibrated accurately. It is shown that the orientation 
errors can be calibrated by the calculation of rotation 
matrices for transformation matrices B

WT , B
AT  and A

DT . 
The goal of the experiments is to explore the 

feasibility of the kinematic calibration technique 
proposed in Section 3 and verified through 
experimental studies. Two sets of pose measurement 
data of the 6-DOF electro-hydraulic parallel 
manipulator constructed in the Aerospace System 
Engineering Shanghai were collected by using a laser 
tracking measurement system. This data is fed into the 
kinematic calibration algorithm to provide the 
experimental verification. The experimental results are 
shown in Table 5. The first set of pose measurement 
data is used in the kinematic calibration. It is obvious 
that the position errors are less 1 mm, and the 
orientation errors are not more than 0.1 degree. 

Since pose measurement data are inevitably 
contaminated by noise, more pose measurements are 
needed in order to improve the identification of 
parameter errors in the view of least squares. The 
relationship between the pose accuracy and the 
number of pose measurement is illustrated in Figure 4. 
As expected better pose accuracy is achieved as the 
number of pose measurement increases. However, 
very little pose accuracy can be obtained once the 
number of pose measurement exceeds 30 pose 
measurements. It should be emphasized that the 
parameter errors cannot be completely eliminated due 
to the presence of pose measurement errors. 

 

 

Figure 4. The Relationship between Pose Accuracy and the 
Number of Pose Measurements. 

5 CONCLUSIONS 
THE kinematic calibration strategy based on the 

laser tracking measurement method and a more 
complete pose error model including geometrical 
parameter errors of the parallel manipulator and 
transformation errors of the coordinate frame of the 
semi-physical simulation system have been proposed. 
The numerical values of the above errors are identified 
using iterative least squares algorithm. The kinematic 
calibration results presented in the article showed to 
improve the 6-DOF parallel manipulator for a semi-
physical simulation system of a space docking 
mechanism pose accuracy to well below 1 mm and 0.1 
degree.  
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Table 4. Simulated Calibration Results. 

Error matrix dx dy dz δx δy δz 

B
WT  0.0199 0.0171 -0.0089 0.0301 0.0198 0.0081 

B
AT  

-0.0089 -0.0009 -0.0067 -0.0029 -0.0114 -0.0060 
-0.0054 -0.0011 -0.0009 0.0079 -0.0091 -0.0152 
0.0017 -0.0027 0.0041 -0.0071 0.0036 -0.0034 
-0.0087 -0.0061 0.0072 -0.0020 0.0043 0.0059 
-0.0023 0.0035 -0.0039 0.0139 -0.0042 -0.0129 
0.0029 0.0038 -0.0045 0.0060 0.0027 -0.0147 
0.0040 0.0042 0.0069 -0.0089 -0.0016 0.0036 
0.0036 -0.0004 -0.0047 0.0108 -0.0141 0.0033 
-0.0073 0.0012 0.0051 0.0039 -0.0150 -0.0151 

A
DT  0.0179 0.0151 -0.0049 0.0398 0.0509 0.0019 

 
Table 5. Experimental Calibration Results. 

Error 
Matrix 

dx dy dz δx δy δz 

before after before after before after before after before after before after 

B
WT  0.0162 0.0008 0.0090 0.0004 -0.0137 0.0007 -0.0257 -0.0014 0.0201 0.0012 -0.0112 -0.0015 

B
AT  

0.0020 -0.0009 0.0049 -0.0001 0.0041 -0.0009 -0.0043 -0.0010 -0.0139 0.0013 -0.0073 -0.0007 

0.0030 -0.0004 0.0039 -0.0008 0.0018 0.0006 -0.0091 0.0012 0.0073 -0.0002 -0.0003 -0.0001 

0.0002 0.0009 -0.0010 0.0001 0.0012 0.0009 -0.0121 0.0008 -0.0054 0.0007 -0.0021 0.0011 

0.0000 -0.0008 0.0013 -0.0001 0.0001 -0.0004 -0.0053 -0.0003 0.0060 -0.0015 0.0083 -0.0007 

0.0025 0.0002 -0.0011 -0.0006 -0.0050 -0.0002 -0.0046 -0.0007 -0.0117 -0.0016 0.0074 0.0007 

-0.0026 -0.0001 0.0035 -0.0007 -0.0027 0.0005 -0.0035 -0.0001 0.0097 0.0000 -0.0073 -0.0014 

0.0044 0.0004 0.0003 0.0008 0.0048 -0.0001 0.0127 -0.0012 0.0061 0.0013 0.0038 0.0009 

-0.0041 0.0007 0.0031 -0.0007 0.0036 -0.0008 0.0061 -0.0000 0.0104 0.0010 -0.0075 -0.0001 

0.0004 -0.0006 -0.0011 0.0009 -0.0049 0.0009 0.0078 0.0001 0.0104 0.0010 0.0032 0.0015 

0.0040 -0.0001 0.0046 0.0004 -0.0001 0.0001 0.0033 0.0000 0.0073 -0.0010 -0.0065 -0.0017 

0.0036 0.0008 -0.0047 0.0009 -0.0008 -0.0007 0.0042 -0.0009 0.0047 0.0007 0.0138 -0.0015 

0.0013 -0.0009 0.0045 0.0006 0.0027 -0.0007 0.0072 0.0015 0.0113 -0.0010 0.0073 0.0008 

-0.0024 0.0005 0.0021 -0.0009 -0.0001 0.0007 -0.0099 0.0001 0.0090 0.0010 -0.0005 0.0005 

-0.0012 0.0006 0.0015 -0.0003 0.0002 0.0004 0.0028 -0.0001 0.0093 -0.0011 0.0125 0.0015 

-0.0016 -0.0004 -0.0005 0.0001 0.0028 0.0009 0.0112 0.0009 0.0039 -0.0010 -0.0039 -0.0001 

-0.0019 -0.0005 -0.0033 -0.0004 0.0009 0.0006 -0.0092 0.0008 -0.0096 -0.0001 -0.0116 0.0000 

0.0045 -0.0001 0.0034 0.0003 -0.0037 0.0006 0.0089 0.0003 0.0079 -0.0014 0.0126 -0.0003 

0.0004 0.0004 0.0047 -0.0003 -0.0039 0.0005 -0.0121 -0.0015 0.0065 0.0003 0.0053 -0.0003 

0.0020 0.0008 -0.0037 0.0009 0.0016 0.0008 0.0128 -0.0015 0.0018 -0.0011 0.0032 -0.0004 

0.0038 -0.0001 -0.0025 -0.0003 0.0050 -0.0008 -0.0051 0.0005 0.0063 0.0015 0.0111 0.0012 

A
DT  0.007 0.0008 0.003 0.0002 0.0128 0.0009 -0.0273 0.0013 -0.0328 -0.0016 0.0104 0.0016 
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