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1 INTRODUCTION 
SIMULTANEOUS Localization and Mapping 

(SLAM) can be expressed as follows: Via gathering 
information from the sensors, a multi-mobile robot is 
capable of creating the feature map in the unknown 
environment, and modifying the position and 
orientation continuously (Ullah, et.al. 2017) (LIU, et.al. 
2011). It is a hot topic for mobile robots whether to 
motion autonomously in the field of SLAM. 

The mainstream algorithm applied in the field of 
SLAM is the classical Extended Kalman Filter (EKF), 
which is proposed by Smith and Cheeseman, and its 
essence is first-order Taylor series expansion about the 
nonlinear system model and observation model, which 
is linearized by means of the standard Kalman Filter 
(Smith, et.al. 1987) (Smith, et.al. 1990). On the basis of 
EKF-SLAM, many scholars have put forward a new 
improved algorithm. Iterative Extended Kalman Filter 

(IEKF) proposed relies on the combination of 
environment feature iteration and EKF algorithm, 
which corrects the nonlinear error of the robot and 
improves the accuracy of localization (Qiang, et.al. 
2013). An anti-interference EKF-SLAM algorithm, 
based on the detection of external interference by 
contrast and errors of expansion positioning, is put 
forward to improve the robustness of the algorithm 
(Tai, et.al. 2012). The higher-order term is ignored in 
the process of linearization, and so, it is not easy to 
achieve the desired results under circumstance of 
precisely positioning. The Jacobian matrix calculated in 
the linearization procedure increases the complexity of 
computation, which is not applicable to a broad 
environment as well. Multi-robot coordinated control is 
a hotspot of robot research in recent years, and there is a 
broad applying prospect in industrial, military, 
aerospace and so on (WANG, et.al. 2015) (ZHU, et.al. 
2015).  

 
ABSTRACT 
With the increasing number of feature points of a map, the dimension of 
systematic observation is added gradually, which leads to the deviation of the 
volume points from the desired trajectory and significant errors on the state 
estimation. An Iterative Squared-Root Cubature Kalman Filter (ISR-CKF) 
algorithm proposed is aimed at improving the SR-CKF algorithm on the 
simultaneous localization and mapping (SLAM). By introducing the method of 
iterative updating, the sample points are re-determined by the estimated value 
and the square root factor, which keeps the distortion small in the highly nonlinear 
environment and improves the precision further. A robust tracking Square Root 
Cubature Kalman Filter algorithm (STF-SRCKF-SLAM) is proposed to solve the 
problem of reduced accuracy in the condition of state change on the SLAM. The 
algorithm is predicted according to the kinematic model and observation model of 
the mobile robot at first, and then the algorithm updates itself by spreading the 
square root of the error covariance matrix directly, which greatly reduces the 
computational complexity. At the same time, the time-varying fading factor is 
introduced in the process of forecasting and updating, and the corresponding 
weight of the data is adjusted in real time to improve the accuracy of multi-robot 
localization. The results of simulation shows that the algorithm can improve the 
accuracy of multi-robot pose effectively. 
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Most of the robot systems require that robots can be 
aware of surroundings and capable of locating itself 
when exploring the environment. The multi-robots 
observe mutually and share information by exchanging 
messages, which reduces the dependency on the 
external environment and enhances the perception of a 
single robot, so it can obtain more accurate positioning 
information than a single robot does, which is named as 
an approach of cooperative localization for multiple 
robots. The co-localization study was originally 
focused on land-based robots, and later developed into 
underwater robots, parallel structures composed of 
homogeneous robots (Ling, et.al. 2007), and 
master-slave structures composed of heterogeneous 
robots (Bailey, et.al. 2011). In addition, transferring 
information from the superior quality sensor 
information to the inferior quality sensor information 
can obtain overall precision of the system to be best. 

In recent years, the popular algorithm Unscented 
Kalman Filter (UKF) was proposed (Ouyang, et.al. 
2014) (LIN, et.al. 2013). The sampling points with 
different weights (Sigma points) are chosen to be 
transferred with the non-linear function, and the 
statistical characteristics of the random variables are 
obtained by UT. 

Under the framework of the Kalman Filter, UKF 
reduces the errors caused by the linearization of 
nonlinear equations and achieves the second-order 
positioning accuracy under the same conditions. In 
literature (Merwe, et.al. 2004), Merwe and Wan 
develop this theory effectively by deriving 
mathematically the square root of covariance matrix 
instead of transferring covariance matrix, which can be 
well applied to the SLAM (Zhao, et.al. 2011). In 
literature (WANG, et.al. 2014), based on the square root 
UKF, the sampling strategy of the Sigma point is 
changed and a single-row sampling algorithm is 
proposed, but UKF may lead to non-definite covariance 
matrices in the process of filtering, which affects filter 
performance. 

In 2009, Arasaratnam and Haykin proposed the 
Cubature Kalman Filter (CKF), which provides a new 
method for state estimation of the nonlinear system. 
Under the rules of volume in CKF, a set of the 
corresponding weight of the volume point was selected 
into the non-linear function (BIAN, et.al. 2017) 
(ZHAO, et.al. 2017) (Arasaratnam, et.al. 2009), and 
statistical properties can be obtained by processing the 
weighted distribution of random variables. Compared 
with UKF, CKF also reduces the errors caused by the 
linearization of nonlinear equations and this algorithm 
has been recognized by more and more scholars for its 
low computational complexity, high numerical 
precision and strong filter stability, which makes it 
effective to solve various valuation problems. Square 
Root Cubature Kalman Filter (SR-CKF) is put forward, 
which can enhance the stability of system state (KANG, 
et.al. 2013). However, if the system state changes 
suddenly, SR-CKF positioning has a poor performance. 

A Strong Tracking Filter (STF) is proposed, and 
time-varying fading factor is introduced when 
recursively updating, which achieves a dynamic 
adjustment of the gain matrix, and the improved SLAM 
is still capable of highly tracking even if the system 
changes the state abruptly, but at the same time it 
greatly increased the computational complexity 
(WANG, et.al. 2013).  

Therefore, Iterative Square Root Cubature Kalman 
Filter (ISR-CKF) is presented in this paper, which 
introduces Gauss-Newton iterative method on the basis 
of SR-CKF and draws the advantage of SR-CKF; 
transferring the matrix information with sampling the 
square root of the covariance to reduce the truncation 
error on SLAM, increasing the iterative process to 
facilitate the full use of measurement information and 
reducing the SR-CKF algorithm in a highly nonlinear 
environment of the system state estimation error. 
Compared with the previous UKF and SR-CKF, 
ISR-CKF on SLAM can improve the accuracy of the 
robot pose estimation effectively by simulation 
software MATLAB. In this paper, SR-CKF combined 
with the theory of strong tracking filter and Strong 
Tracking Filter Square Root Cubature Kalman Filter 
SLAM algorithm (STF-SRCKF-SLAM) is proposed, 
which is to ensure that the system is positive and a 
strong tracking filter can dynamically adjust the weight 
of the corresponding data to improve the accuracy of 
the system. Experiments show that the 
STF-SRCKF-SLAM algorithm has a good performance 
on estimation accuracy and it can keep strong tracking 
ability under the circumstance of the mutation state, 
which can be used for simultaneous localization and 
mapping in large areas. 

2 THE DESCRIPTION OF SIMULTANEOUS 
LOCALIZATION AND MAPPING (SLAM) 
BASED ON BAYESIAN ESTIMATION  

THE essence of SLAM is to estimate the pose of the 
robot and feature map by the movement information 
inside the mobile robot and the observation information 
collected from the sensors.  

Define the following variables at this time of K: 

,
Tr i

k k kS S M =    represents the robot system time 

vector, of which
r
kS represents the robot pose 

information. 
1 2[m ,m , ,m ]i i T

k k k kM = ⋅⋅ ⋅  signifies K-time 

map feature vector and sn denotes the system state 

vector dimension. [ ]1: 1 2, , , T
k kU u u u= ⋅⋅⋅  embodies the 

kinematic information of the robot at the time of k and 
un  symbolizes the vector control vector dimension of 

the robot. [ ]1: 1 2, , , T
k kZ z z z= ⋅⋅ ⋅ Represents the 
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observation vector of the robot k and
nz  represents the 

observation vector of the robot at the time of k. 
The motion model of the robot is 

( )1,r r
k k k kS f S u W−= +

. The robot observation model is 
( )r

k k kz h S V= +
, of Which kW obey the Gaussian 

distribution and kV obey the Gaussian distribution 
(YANG, et.al. 2014).  

SLAM can be expressed by 

 ( )1: 1:, ,r i
k k k kp S M Z U

, (1) 

Namely the known controlled quantity 1:kU  and 

observations 1:kZ  estimate the feature map 
i
kM  and 

the state vector 
r
kS  of the joint probability distribution 

at the moment. (1) can be obtained at each moment to 

meet the normal distribution of the optimal solution
ˆ

kS  

and its covariance kP , which is the key to 
SLAM.ISR-CKF proposed in this paper can estimate 
the pose of the robot and the feature map through the 
known information and its core is to calculate the 
conditional probability density by volume 
transformation (2) and realize Bayesian filtering under 
Gaussian domain. 

 

( ) ( )

( )
; ,

1
2 i

y

I f y N y dy

f
n

µ

ξ µ

=

≈ +

∑∫
∑ ∑

 (2) 

iξ  is expressed as a set of perfectly ortho-symmetric 

volume points to each other, where iξ  is ( )2 s un n+  
columns. 

 

1 0 0 0 1 0 0 0
0 1 0 1

, , , , , , , , , ,
1 0 1 0

0 0 0 1 0 0 0 1

i s un nξ

 −                
               ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ ⋅ ⋅               = + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅                ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ −                −                              





  (3) 

Based on the principles of the Bayesian filtering, the 
ISR-CKF algorithm is divided into two steps, which are 
prediction and renewal to achieve prior probability 
distribution and posterior probability distribution at the 
time of k. 

First, a prior probability distribution is obtained by 
using the posterior probability distribution at time k-1 
and the quantity of motion control at time K: 

 ( ) ( ) ( )1: 1 1: 1 1: 1: 1 1: 1 1, , ,r r
k k k k k k k k k kp S Z U p S S U p S Z U dS− − − − −= ⋅∫  (4) 

Second, the posteriori probability distribution is 
updated with the k-time observation and the prior 
probability distribution: 

 ( ) ( ) ( )1: 1: 1: 1 1:, ,k k k k k k k kp S Z U p z S p S Z Uη −= ⋅  (5) 

η is a constant 

3 ITERATIVE SQUARE ROOT CUBATURE 
KALMAN FILTER ON SLAM (ISR-CKF-SLAM) 

THE SR-CKF algorithm is based on the third-order 
spherical-phase volume rule in the framework of the 
Kalman Filter and the mean value of the non-linear 
function and the square root of the covariance are 
obtained by weighting the set of points. The covariance 
matrix square root (based on QR decomposition) 
instead of covariance matrix is used to solve the filter 
divergence, which is caused by rounding error. The 
specific algorithm in prediction process is described as 
follows: 

(1) Forecast stage: 
① Calculate the volume points: 

 1 1 1
j A A

k k j kx L Sξ− − −= +  (6) 

where j is the volume point number and its value is 
( )1,2,3, 2 u sn n⋅ ⋅ ⋅ +  1

j
kx −  contains information about 

position, feature points and motion control at the time of 
k-1. Referring from the information about the state 

1kS − and the motion ku , which is expanded to 

Gaussian noise variation, 1
A
kL −  and 1

A
kS −  can be 

obtained from (7) 

 

11
1 1

0
,

0
kkA A

k k
k k

LS
S L

u Q
−−

− −

  
= =   

      (7) 

② Calculate the priori estimates of each volume 
point and take volume point j as an example: 

  (8) 

After each volume point has been propagated 
through the nonlinear motion equation, it can get the 
information about the position of the robot at K-1 time, 
the motion at K time, and predicts the position of the 
robot at K time. 

③ Estimation on position state of the robot and 
predictions for square root factor 

According to the volume transformation (2) 

 ( )
( )2

| 1 | 1
1

1
2

s un n
j

k k k k
js u

S x
n n

+

− −
=

=
+ ∑

 (9) 

The square root factor 𝐶𝐶𝑘𝑘|𝑘𝑘−1 , which is for the 
update phase, can be obtained after the QR 
decomposition of the error vector. 

 ( )
( )21 2

| 1 | 1 | 1 | 1 | 1 | 1 | 1
1

2
s un n

k k k k k k k k k k k k k k

s u

A x S x S x S
n n

+
− − − − − − −

 = − − ⋅ ⋅ ⋅ − + (10) 
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[ ] ( )| 1 | 1,T T

k k k kQ R qr A C R− −= =
 (11) 

Although the SR-CKF-SLAM algorithm can 
improve the positional accuracy and the system stability 
of the mobile robot, the dimension of the system 
observation will be added with the feature points on the 
map increasing gradually, which leads to the deviation 
of volume points from the ideal trajectory and therefore 
results in a large error in the state estimation. In this 
paper, the iterative method is used to reconstruct the 
sampling points in the update stage with the usage of the 
estimated value and the square root factor. The statistic 
properties of the system are obtained by volume 
transformation, and then the system is combined with 
the new observations estimated in the prediction phase 
to improve the system. The specific update phase 
algorithm is described as follows: 

(2) Update phase 
Take the feature point of number i as an example and 

suppose the iterative initial values are | 1k kS −  and 
| 1k kC −  respectively. The lth iterative robot position and 

square root factor are 
( )
| 1
l

k kS − , 
( )
| 1
l

k kC − . The observed 

value of time k is 
i
kz  and its observation model is  

 ( )| 1
i r
k k k kz h S V− = +

, (12) 

Calculate the iteration volume point: 

 
( ) ( ) ( )

| 1 | 1

,
1 k k k k

j l l l
k jD C Sξ

− −− = +
, (13) 

② Calculate the lth iterative Kalman gain: 

 
( ) ( )( ), , , ,

| 1 1
i j l i j l
k k kz h D− −=

, (14) 

 

( ) ( )
2

, , ,
| 1 | 1

1

1ˆ
2

sn
i l i j l
k k k k

js

z z
n− −

=

= ∑
, (15) 

 
( ) ( ) ( ) ( ) ( ), , , 2 ,1 2
| 1 | 1 | 1 | 1 | 1 | 1 | 1

1 ˆ ˆ ˆ
2

s ui l i l i l n n i l
k k k k k k k k k k k k k k

s

B z z z z z z
n

+
− − − − − − −

 = − − ⋅ ⋅ ⋅ − 
,(16) 

 
[ ] ( ),

| 1

Ti l
k k kQ R qr B R−

  =      
( ),

| 1
zz l T

k kP R− = ,  (17) 

 
( ) ( ) ( )

| 1 | 1

,
| 1 k k k k

xz l l l T
k kP A B

− −− =
, (18) 

Kalman gain: 

 
( ) ( ) ( ) ( )( ) 1, , ,

| 1 | 1 | 1k

l xz l zz l zz lT
k k k k k kW P P P

−

− − −= ⋅ ⋅
, (19) 

③ The robot pose 
( )1
| 1
l

k kS +
−  and the square root factor 

( )1
| 1
l

k kC +
−  are calculated when iterating l+1 times. 

 
( ) ( ) ( )( ) ( ) ( ) ( )( )1 , , 1
| 1 | 1 | 1 | 1 | 1 | 1 | 1
l l l xz l i l lk T

k k k k k k k k k k k k k k kS S W z h S P B S S+ −
− − − − − − −

 = + − − ⋅ −  , (20) 

 
( ) ( ) ( ) ( )( )1 ,
| 1 | 1 | 1

Tl l zz l l
k k k k k k k kC C W P W+

− − −= − ⋅ ⋅
, (21) 

④ Set the condition of stopping iteration 

 maxl L= , (22) 

Lmax is the maximum number of iterations, which is a 
fixed constant set in advance (22) 

⑤ Stop iteration and update each data: 

 
( )max

| 1 | 1
L

k k k kS S− −= , (23) 

 
( )max

| 1 | 1
L

k k k kC C− −= , (24) 

Update the position 

  (25) 

Repeat equations (12) to (25) when multiple feature 
points are observed 

4 AN IMPROVED MULTI-ROBOT 
COOPERATIVE LOCATION BASED ON 
SQUARE ROOT CUBATURE KALMAN FILTER  

DURING the movement of the robot, the position of 

the robot jR is observed by the robot iR at time k, by 
means of obtaining the relative azimuth between them 

with the external sensors. As is shown in Fig. 1, iθ  and 
jθ  are the two robots' direction of movement 

respectively, and ijθ  is the relative azimuth angle of 

the robot aR  to the robot bR , equation can be 
expressed as: 

 arctan
j i

ik k
ij kj i

k k

y y
x x

φ θ
 −

= − − 
 (26) 

The general form of observation model can be 
obtained: 

 ( )ab a b
k k k kz h S S V= +，  (27) 

where 𝑧𝑧𝑘𝑘 ∈ 𝑅𝑅𝑛𝑛𝑧𝑧 is the observation matrix of the system 
with -dimensional vector at time k, and  is the 
observation matrix whose variance is and the matrix is 

subject to the Gaussian distribution of (0, )kN R . 
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Figure 1. The Relative Observation between Ri and Rj. 

The environment map is represented by a set of 
feature points and when the robot obtains the motion 
data, the relative observation obtained by the motion 
model is combined with the sensor to update the 
position of the robot and the square root factors on the 
entire queue. The multi-robot cooperative localization 

algorithm is described in detail with the robot iR  as an 
example due to the same process for updating the state 
of each robot at the time of k. 

When a plurality of feature points is observed at the 
same time, it is necessary to calculate equations (28) 
and (29) and repeat the steps of Fig 2. 

 | 1k k ks s− = , (28) 

 | 1k k kC C− = , (29) 

ku
i
kz

1
1

0

0
ka

k
k

L
L

Q
−

−

 
=  
  

 

1
1

kA
k

k

s
S

u
−

−

 
=  
 

1 1 1
j A A

k k j kx L Sξ− − −= +

( )| 1 1 1, 2, , 2( )j j
k k k u sx f x j n n− −= = +

2( )

| 1 | 1
1

1
2( )

s un n
j

k k k k
js u

s x
n n

+

− −
=

=
+ ∑

* 1 2 2
| 1 | 1 | 1 | 1 | 1 | 1 | 1

1 , , ,
2

N
k k k k k k k k k k k k k kC x s x s x s

N− − − − − − − = − − − 

[ ] ( )| 1, T
k kQ R qr A −=| 1
T

k kC R− =

| 1 ( )i r
k k k kz h s V− = +

( )

, ,( ) ( ) ( )
1 | 1 | 1

, , ( ) , ( )
| 1 1 1,

i j l l l
k k k j k k

i j i j l i l l
k k k k

D C S

Z h D D

ξ− − −

− − −

= +

=

2
,( ) , ,( )
| 1 | 1

1

1ˆ
2

sn
i l i j l
k k k k

js

z z
n− −

=

= ∑ ,( ) ( ) ( ),
| 1 | 1 | 1
xz l l l T

k k k k k kP A B− − −=

( ) 1( ) ,( ) ,( ) ,( )
| 1 | 1 | 1

l xz l zz l T zz l
k k k k k k kW P P P

−

− − −=  

( ),
| 1 | 1ˆmeasure i i

k k k k k k kS S W z z− −= + −

2( ),( ) 1 ,( ) 2 ,( ) ,( )
| 1 | 1 | 1 | 1 | 1 | 1 | 1

1 ˆ ˆ ˆ, , ,
2

s un ni l i l i l i l
k k k k k k k k k k k k k k

s

B z z z z z z
n

+
− − − − − − − = − − − 

forcast

update

[ ] ( ),( )
| 1 ,

Ti l
k k kQ R qr B R−

 =  

movement information
observational information

 

Figure 2. Block Diagram of the Multi-robot Cooperative 
Localization.  

Although the SR-CKF-SLAM algorithm can 
improve the positional accuracy and the system stability 
of the mobile robot, the dimension of the system 
observation will be added with the feature points on the 
map increasing gradually, which leads to the deviation 
of volume points from the ideal trajectory and therefore 
results in a large error in the state estimation. In this 
paper, a Strong Tracking Square Root Cubature Kalman 
Filter SLAM (STF-SRCKF-SLAM) algorithm is 
proposed to solve the divergence of the numerical 
calculation when the state is abruptly changed. The 
algorithm proposed can also correct the corresponding 
estimation bias, guarantee the tracking performance and 
improve the pose accuracy. 

5 STRONG TRACKING FILTER SQUARE ROOT 
CUBATURE KALMAN FILTER SLAM 
(STF-SRCKF-SLAM) 

5.1 Strong Tracking Filtering Algorithm 
AIMING at the problem of filter divergence and 

numerical instability caused by model uncertainty or 
system mutation, the strong tracking filter algorithm 
improves the stability and accuracy of the system 
in map building by real-time online adjustment, 
increases the weight of new data, and weakens the 
influence of old data precision. 

The time-varying fading factor  in the strong 
tracking filter can be calculated as follows: 

 

1 1

1

, 1

, 2
1

T

T
k k k k

e e k
V V e e

k
ρ

ρ
−

 =
=  +

≥ + , (30) 

where kV  is the residual covariance matrix, ρ  is the 

forgetting factor, which is range from 0.95 to 0.98 ke  
is the output residual sequence, which can be calculated 
by (5) 

 | 1ˆk k k ke z z −= − , (31) 

 1
T

k k k k k kN V H Q H Rβ−= − − , (32) 

 | 1 1| 1 | 1
T T

k k k k k k k k kM H F P F H− − − −= , (33) 

where | 1k kF −  and kH  are the first-order partial 
derivative matrix of the state equation and the 

measurement equation to the state variable. β is a 
weakening factor whose value can be determined 
according to system change. 

Time-varying fading factor can be obtained from 
(34): 

,

Y

X
 

jθ

,( , )j j j jR x y θ

ijφ

iθ

,( , )i i i iR x y θ
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[ ]
[ ]

0 0
0

0

, 1,
1, 1,

k
k

k

tr N
tr M

λ λ
λ λ

λ
>

= = ≤  (34) 

Where 𝑡𝑡𝑡𝑡(∙) indicates the trace of matrix. 

5.2 Tracking Iterative Square Root Cubature 
Kalman Filtering Algorithm 

According to the prediction stage and the update 

stage, the state prediction covariance matrix | 1k kP∗
− , the 

output prediction covariance matrix , | 1zz k kP∗
− , and the 

cross-covariance matrix , | 1xz k kP∗
−  without introducing 

the fading factor. Equation can be obtained as follows: 
[ ]
[ ]

0, 0
0

0

1 1,
, | 1 | 1 1 | 1 , | 1

, | 1

1,
1, 1,

9

k
k

k

T T
k K xz k k k k k k k xz k k k

k zz k k k k

tr N
tr M

N V P P Q P P R

M P V N

λ λ
λ λ

λ

β
− −∗ ∗ ∗ ∗

− − − − −

∗
−

 >= = ≤

     = − −     
= − +     （ ）

 

From Fig.1, equations can be expressed as follows: 

 ( )| 1 | 1 | 1

T

k k k k k kP C C∗ ∗ ∗
− − −=

, (35) 

 ( ), | 1 | 1 | 1

T

xz k k k k k kP C Z∗ ∗ ∗
− − −=

, (36) 

 ( ), | 1 | 1 | 1

T

zz k k k k k kP Z Z∗ ∗ ∗
− − −=

, (37) 

Plug (10) - (12) into (9), equations can be obtained: 

 ( ) ( ) ( )1

| 1 | 1 1 | 1 | 1

T T

k K k k k k k k k k k kN V Z C Q C Z Rβ
− −∗ ∗ ∗ ∗

− − − − −= − − ,(38) 

 ( )| 1 | 1

T

k k k k k k kM Z Z V N∗ ∗
− −= − +

, (39) 

 

0 0

0

, 1,
1, 1,k

λ λ
λ

λ
>

=  ≤ , (40) 

 

( ) ( ) ( )
( )

1

| 1 | 1 1 | 1 | 1

0

| 1 | 1

T T

K k k k k k k k k k k

T

k k k k k k

tr V Z C Q C Z R

tr Z Z V N

β
λ

− −∗ ∗ ∗ ∗
− − − − −

∗ ∗
− −

 − −  =
 − +   ,(41) 

When the time-varying fading factor kλ  is 
introduced, the square root factor of the new state 
covariance prediction can be obtained as follows:  

 
( )| 1 | 1 , 1,k k k k k Q kC Tria x Cλ− − −
 = ⋅   (42) 

Where ( )Tria ⋅  denotes the triangular matrix obtained 

by QR decomposition, and , 1Q kC −  is the square root 

factor of the variance kQ  of the motion noise. 

After introducing the fading factor, the square root 
| 1k kC −  of the prediction error variance matrix is 

calculated when updating Fig 1. 

6 SIMULATION AND ANALYSIS OF THE 
ALGORITHM 

The experiment to the accuracy of SLAM is applied 
in the Matlab7.0 software environment on the computer 
with the frequency of 3.4GHz, Core-i3 dual-core 
processor and 4G memory. On the open-source 
simulation platform provided by Australian scholar Tim 
Bailey, UKF-SLAM, SR-CKF-SLAM and 
ISR-CKF-SLAM are simulated respectively and they 
are also analyzed on the precision difference. 

In the simulation experiment, the motion equation of 
the robot is: 
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(43) 

where km  represents the robot position, T represents 

internal sampling interval of the system, kv  represents 

the speed of the robot, kα  represents the rotation 
angle, and L  represents the wheelbase. 

The robot observation equation can be obtained in 
the simulation experiment: 

 

( ) ( )22
, , , y,

, y,
,

, ,

arctan

x i x k y i k
k

k
y i kk

k
x i x k

m m m m
l

z m m
m

m m θ
β

 − + −    = =   −   −   −    (44) 

kl  represents the distance between the robot and the 

observed feature points of the map, kβ  represents the 
angle between the robot and the observed feature points 

of the map, and ( ), ,,x i y im m
 is the position of the map's 

feature point observed by the robot. 
The experimental hypothesis of the map 

environment is 250 × 200 outdoor environment with 17 
identified path points and 35 map feature points. 
ISR-CKF-SLAM sets the number of iterations to five. 
The simulation results of the robot's trajectory are 
shown in Fig. 3, Fig. 4 and Fig. 5. The dotted line 
represents the ideal trajectory of the robot, the solid line 
represents the actual trajectory of the robot and the 
asterisk represents the map feature points. The 
simulation parameters can be seen in Table 1. 
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Table 1. Simulation Parameters. 

Simulation 
parameters Value Simulation 

parameters Value 

Speed of the 
robot 3m/s wheel gauge 4m 

Maximum 
steering angle ±30º Control noise 

from speed 0.3m/s 
Maximum 
steering 

angular speed 
±20º 

Observation 
noise from 
distance 

0.1m 

6.1 Simulation Algorithm of the Iterative 
Square Root Cubature Kalman Filter 
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Figure 3. UKF-SLAM. 
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Figure 4. SR-CKF-SLAM. 
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Figure 5. ISR-CKF-SLAM. 

It is estimated that the whole path of the robot will 
take 240 seconds, and the average value will be selected 
after several experiments. In this paper, the first 180s of 
the simulation results are chosen to analyze. 

In the initial stage of travel, the running trajectories 
deviate little from the ideal trajectories of the three 
algorithms. However, with the increasing number of the 
feature points, the trajectories of the three algorithms 

have different degrees of deviation from the ideal 
trajectories, but the ISRs of the three algorithms are 
different from the ideal trajectories. Compared with 
UKF-SLAM and SR-CKF-SLAM, ISR-CKF-SLAM is 
more suitable for the ideal trajectory, which means the 
pose estimation is more accurate. 
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(a) Contrast in the X Direction's Error 
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(b) Contrast in the Y Direction's Error 
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(c) Contrast in the Angle Error 

Figure 6. Comparison of Three Algorithms for Estimation 
Errors. 

From Fig 6, it is shown that the evaluated error of 
ISR-CKF-SLAM in X direction, Y direction and angle 
is always within a stable range. Compared with 
UKF-SLAM and SR-CKF-SLAM, ISR-CKF-SLAM 
maintains a high accuracy. 

Performance differences of these three kinds of 
algorithms can be expressed by statistical data.  

Compared with SR-CKF-SLAM, the error in X 
direction of ISR-CKF-SLAM is reduced by 46.8%, the 
error in Y direction of ISR-CKF-SLAM is reduced by 
13.2% and the error in angle is reduced by 46.6% from 
the data in Table 2.  
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Table 2. Comparison in the Statistical Error of the Algorithm. 

SLAM 
algorithm 

The 
average of 

the 
absolute 

value in the 
X 

direction’s 
evaluated 
error /m 

The 
average of 

the 
absolute 

value in the 
Y 

direction’s 
evaluated 
error /m 

The 
average of 

the 
absolute 

value in the 
angle error 

/rad 

UKF 0.5773 0.5621 0.0348 
SR-CKF-S

LAM 0.4372 0.2436 0.0234 
ISR-CKF-S

LAM 0.2323 0.2113 0.0125 

6.2 Simulation of Multi-robot Cooperative 
Localization on the Strong Tracking Filter 
Square Root Cubature Kalman Filter 
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Figure 7. STF-SRCKF-SLAM on a Single-robot. 
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Figure 8. STF-SRCKF-SLAM on a Multi-robot. 

The proposed STF-SRCKF-SLAM algorithm is 
simulated in a single-robot and a multi-robot 
cooperative environment and is compared with the 
average of 30 experimental results of UKF-SLAM and 
SR-CKF-SLAM, the simulation results of the robot's 
trajectory are shown in Fig. 7 and Fig. 8, in which 
"dotted line" represents the ideal trajectory of the robot, 
"solid line" represents the actual trajectory of the robot, 
"*" indicates the map feature point and "+"indicates the 
position of the feature points. 

Fig. 7 and Fig. 8 correspond to the experimental 
results of STF-SRCKF-SLAM on single-robot and 
multi-robot respectively. Compared with 
STF-SRCKF-SLAM on a multi-robot, 
STF-SRCKF-SLAM on a single-robot has a better 

performance on the actual route than the ideal route, 
which means that the accuracy of location estimation is 
higher and the map created is more accurate. 

6.2.1 Error Analysis 
The comparison curves of X-axis, Y-axis and angle 

estimation errors are shown in the same environment 
when a multi-robot is mapping on the CKF-SLAM, 
SRCKF-SLAM and STF-SRCKF- SLAM, where t 
represents the experimental time.  

As is shown in Fig. 9, the best stability of the three 
algorithms is the STC-SRCKF-SLAM algorithm, then 
the SRCKF-SLAM algorithm, and the CKF-SLAM 
algorithm has the worst performance of them. The error 
of the three algorithms in the X-axis, Y-axis and angular 
direction of the specific values can be viewed in Table 2 
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(b) Error Comparison in the Y Direction  
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(c) Error Comparison on the Angle 

Figure 9. Comparison of the Three Algorithms for Estimation 
Errors. 
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Table 3. Algorithm error  

SLAM 
algorithm 

The 
X-direction 
error varies 

most 
value /m 

The 
X-direction 
error varies 

most 
value /m 

Angle 
direction 

error 
maximum 

/° 
STF-SRCKF 0.13 0.01 0.013 

SRCKF 0.18 0.015 0.017 
CKF 0.43 0.04 0.038 

 
From Table 3, the error of the CKF-SLAM is the 

biggest, and the error of SRCKF-SLAM is smaller than 
that of the CKF-SLAM, because the square root factor 
is introduced to guarantee the semi-positive definite of 
the covariance matrix, which can restrain the truncation 
error of the computer. The fading factor is introduced to 
adjust the gain online on the STF-SRCKF-SLAM and 
the effect of the algorithm can be seen in Fig.9 that the 
accuracy of the algorithm is high and the error is small, 
and it is not easy to generate divergence of numerical 
filtering, which verifies validity and accuracy of the 
STF-SRCKF- SLAM algorithm. 

6.2.2 Root Mean Square Error and Run Time 
Analysis. 

Root mean square error of the formula is; 

 
( ) ( )2 2

1

1 ˆ ˆ
T

k k k k
k

RMSE x x y y
T =

 = − + − ∑
, (45) 

where T is the running time, and ( ),k kx y  and 
( )ˆ ˆ,k kx y  are the actual position and the estimated 
position of the robot respectively at time k. 

The RMSE and run-time of the three SLAM 
algorithms are showed in Table 4, and it can be seen 
from this table that the RMSE value of the 
STC-SRCKF-SLAM algorithm is the smallest, the 
estimation accuracy is the highest, and meanwhile the 
running time of STC-SRCKF-SLAM is the shortest. 

 
Table 4. Experimental Statistics of the Three SLAM Algorithms. 

SLAM algorithm Root mean 
square error /m 

operation hours 
/s 

STC-SRCKF-SL
AM 5.5880 159.5438 

SR-CKF-SLAM 6.5906 161.6320 
CKF-SLAM 7.7630 163.7232 

7 CONCLUSION 
IN this paper, an Iterative Squared Root Cubature 

Kalman Filter SLAM (ISR-CKF-SLAM) is proposed. 
The SR-CKF algorithm is improved by the 
Gauss-Newton iterative method. In this method, the 
latest updated information is efficiently used, which 
reduces the influence of initial error and linearization 
error on state estimation, and makes the posterior 

probability distribution closer to the true value. 
Compared with the UKF-SLAM and SR-CKF-SLAM, 
the ISR-CKF-SLAM is more accurate and more stable 
with the MATLAB simulation, which verifies the 
validity of the ISR-CKF-SLAM algorithm. A 
cooperative localization approach for multiple robots 
on the Strong Tracking Filter Square Root Cubature 
Kalman Filter SLAM proposed combines the 
advantages of the SRCKF and STF. On one hand, the 
integration of square root strategy can ensure the 
symmetry of the covariance matrix and effectively 
reduce the divergence caused by the system mutation 
filter. On the other hand, the weight of the 
corresponding data can be adjusted adaptively, and the 
accuracy of the system state estimation can be improved 
effectively by introducing the fading factor that can 
adjust the filter gain matrix in real time. It is the key 
problem to improve the real-time performance of the 
algorithm and reduce the influence of sensor 
observation error on the accuracy of the SLAM 
algorithm in large environment. 
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