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1 INTRODUCTION  
PIEZOELECTRIC actuators (PEAs) provide 

micro-level fine tuning and precise positioning 
control. Therefore, PEAs were deployed within 
several mechatronic system applications that require 
such positioning accuracy over the last decade. For 
instance, PEAs were proposed to run hard disk drives 
and micro-manipulator mechanisms (Nambi, et. al. 
(2012); Lopez-Martinez and Campo (2003); Krishnan 
and Saggere (2007); Tan (2001); Liaw, et. al. (2008); 
Liaw and Shirinzadeh (2009); Lin and Lin (2012)).  
However, the proposed solutions consist mainly of 
multi bar mechanisms with coupled links. This in turn, 
created a challenge in obtaining a valid and optimum 
synthesis solution. 

Zhang, et. al. (1984) presented an atlas of curves 
that approximates the geometrical solution needed to 
follow a desired path by a geared five-bar mechanism; 
each of those curves is associated with a certain gear 

phase angle. However, the approximated solutions 
need an optimization process for accurate path 
following.  

Chanekar and Ghosal (2013) introduced a two-
stage sequential quadratic based optimization 
algorithm for synthesis of adjustable planar four-bar 
mechanisms to solve a continuous path generation 
problem. The first stage of the algorithm obtains 
possible driving dyads, which are then passed on to 
the second stage to obtain the remaining mechanism 
parameters using least-squares based circle-fitting 
procedure. The authors used an objective function that 
is based on the geometry of the four bar mechanism. 
Synthesis results presented by two numerical 
examples using the proposed method demonstrated 
more efficient optimization than literature work as it 
uses less number of design variables in the search 
process. 
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Gogate and Matekar (2012) presented two 
evolutionary new objective functions for optimum 
synthesis of mechanisms path generating. The authors 
used Differential Evolution optimization to assess the 
performance of the presented new objective functions 
through several simulations runs over a four-bar 
mechanism three different prescribed paths of motion. 
Obtained Results are compared with those generated 
using the regular tracking error function between 
followed path and desired path. The presented 
objective functions are concluded as better option for 
optimization in accordance to designer interest and 
problem nature. 

Recently, simplicity of implementation and fast 
convergence speed realized by powerful computers 
encouraged other researchers to use modern 
optimization and evolutionary techniques to solve 
complex mechanisms synthesis such as Diab and 
Smaili (2017); Yi and Liu (2017). For instance, 
Cabrera, et. al. (2002) used simulation techniques to 
achieve minimal error between the desired and actual 
paths of motion followed by planner mechanism using 
Genetic Algorithms (GA). Another study presented by 
Laribi, et. al. (2004) in which a fuzzy logic is 
proposed to adjust the initial bounding intervals used 
by GA for path generation of a four-bar mechanism 
synthesis, simulation results of the Fuzzy GA method 
against classical GA method show higher accuracy 
and faster convergence. Cabrera, et. al. (2007) applied 
an evolutionary GA based technique “POEMA” to 
optimize a multi-objective synthesis problem of a 
planar hand robot. The study extended “POEMA” 
using Pareto-based approach to classify the outcomes 
and choose the optimal solution. The fast convergence 
results were encouraging to be used for other 
mechanism synthesis. Affi, et. al. (2007) considered 
both mechanism synthesis and motor characteristics 
while controlling a motor-driven four-bar system 
using multi-objective optimization approach. 
Continual efforts in the field, were carried out such as; 
the work done by Acharyya and Mandal (2009), in 
which a synthesis of a four-bar mechanism for 
trajectory following was done using GA, Particle 
Swarm Optimization Technique (PSO), and 
Differential Evolution (DE). The latter outperformed 
GA and PSO. In 2009, Erkaya and Uzmay (2009) 
were able to minimize deviations of a four-bar 
mechanism from desired path of motion arising from 
clearance; where two GA were used to minimize 
trajectory errors after obtaining direction of joint 
clearance using minor search space knowledge. 
Khorshidi, et. al. (2011) presented a multi-objective 
optimization algorithm for path-generation of four-bar 
linkage mechanisms. The proposed algorithm used 
Pareto Genetic algorithm to enhance the performance 
of a Non-dominant strong Genetic algorithm by 
setting the radius of the local search neighbourhood at 
each search step.  The presented hybrid algorithm used 
triple-objective functions at once during optimization 

namely; minimum tracking error, deviation from 90 
degrees angle in addition to maximum angle velocity 
ratio. Optimization results using the proposed 
algorithm over four-bar mechanism’s path generation 
design outperformed other literature algorithms in 
terms of energy efficiency, computational power, and 
practical viability.  

Recently, El-kribi, et. al. (2013) used Non-
dominant Strong Genetic Algorithm to select the 
optimal motor and optimal inertia distribution of a 
considered motor driven mechanical system. The 
proposed algorithm used minimum motor torque and 
minimum velocity fluctuation as objective functions. 
Obtained results of the optimal (driving 
motor/mechanical system properties) proved to be 
more efficient than electromechanical design 
strategies. In addition, the algorithm was able to 
minimize considered system power consumption and 
velocity fluctuation without the need of sophisticated 
controllers.  

However, the majority of the discussed solutions 
within the literature did not include the type of driving 
system for the proposed solution. Although PEAs 
were deployed within fine tuning applications for high 
precision mechanisms, they suffer from the nonlinear 
behaviour that affects motion accuracy and makes it 
more challenging to find their synthesis solution 
(Liaw, et. al. (2008); Liaw and Shirinzadeh (2009); 
Lin and Lin (2012)). 

In this paper, unlike the conventional four bar 
mechanism (Oetomo, et. al. (2006); Sitti (2003); Tari 
and Su (2011)), due to the lack of a closed form 
solution for the inverse kinematics of the piezo-driven 
four bar mechanism with 6 variables, a multi-objective 
optimization of the mechanical system using PEAs is 
presented, namely, the four-bar mechanism, as 
illustrated schematically by Figure 1. Optimal 
synthesis is achieved based on a genetic algorithm 
approach. The objective functions are used to 
minimize both the deviation of the end effector 
location from the desired position, and the change in 
the four-bar mechanism links lengths which guarantee 
reduced power consumption of the PEAs when it 
moves from one position to another. Figure 1 shows a 
flexure-based four-bar mechanism driven by three 
PEAs. Accordingly, the main contribution is to 
determine the optimal inverse kinematic solution for 
the piezoelectric actuated four-bar mechanism to 
move the end effector to a predefined position by 
using genetic algorithm. The dynamical model of the 
deployed PEA in the mechanism is assumed to be 
compensated as in Lin and Yang (2006); Badr and Ali 
(2010).  

The paper will be structured as follows: in Section 
2, formulates the analytical model of the four bar 
mechanism. Section 3 states the dynamic model of the 
PEA. Section 4 formulates the optimization problem 
of the considered four bar mechanism. Section 5 
illustrates the working principle of the genetic 
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algorithm and formulates the fitness function. Section 
6 shows discussion of the simulation results based on 
defined fitness function. Finally, Section 7 
summarizes the conclusions of this study. 

 

 

Figure 1: Piezo-driven flexure-based four-bar micro/nano 
manipulator. 

2 MECHANISM MODELING 
THE main objective is to provide an inverse 

kinematic solution for the piezoelectric actuated four-
bar mechanism using GA. The mechanism end 
effector follows a desired path within its reachable 
workspace while considering the geometrical 
constraints of the mechanism. For this purpose, the 
four-bar mechanism shown in Figure 1 can be 
simplified into four links pinned together as shown in 
Figure 2. The dimensional synthesis model, as shown 
in KHALAF (2012), can be summarized as follows: 
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When the mechanism’s end effector is following 
some desired path, the deformation of the first 
piezoelectric (PEA1) link (ΔL1) and its corresponding 
angular deflection (θ1) are determined geometrically 
using Eqs. (2-3): 
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 1
1 tan−  =  − 

Y
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where L is the original link length, (X, Y) are 
coordinates of the desired end effector location, and θ1 
is the orientation of the first link as shown in Figure 2. 

 

Figure 2: Simplified four-bar mechanism. 

Since the first link has a unique solution, then the 
synthesis problem is reduced into solving for the 
deformations of the second and third (PEA2 & PEA3) 
links which are referred to as (ΔL2, ΔL3) and their 
corresponding angular deformations (θ2 & θ3). Based 
on geometry and parameters shown in Figure 2, the 
following relations can be determined as: 
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The previous relations are coupled and hard to be 
solved individually for each parameter. However, they 
could be solved for an arbitrary numerical solution as 
introduced by Khalaf (2012), or by enumerative 
search methods, or by a soft computing methods such 
as GAs. In this paper, a multi-objective GA is used to 
solve for the optimal power unknown parameters ∆L2, 
∆L3, θ2, and θ3, as shown in Figure 3, Where ζd is the 
desired end effector location represented by (xd, yd) 
coordinates 
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Figure 3: General block diagram for the proposed approach. 

3 MODELLING  
THE general model describing positioning 

mechanism using PEA is represented by mass spring 
damper system with an applied force from the PEA as 
presented in Lin and Yang (2006); Badr and Ali 
(2010). The general model developed by Bouc-Wen 
for the PEA describes the nonlinearity of the system 
by Lin and Yang (2006): 
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where m represents the effective mass of the PEA, b is 
the damping coefficient, k is the stiffness, f the 
generated force due to the applied voltage to the PEA,  
d represents the ratio between the output displacement 
and applied input voltage u  to the actuator, h 
represents the hysteretic nonlinear term for the PEA, 𝑙𝑙 
is the output displacement of the piezoelectric actuated 
mechanism in its respective dimension, ρ= 𝑘𝑘𝑙𝑙0 and 
𝑙𝑙0 is the initial displacement of the actuator as the 
applied voltage is u=0; α, β, γ  are the parameters 
which characterizes the  hysteretic loop’s magnitude 
and shape of the PEA actuator. Finally   𝑙𝑙,̇ 𝑙𝑙 ̈and ℎ̇ are 
the derivatives of 𝑙𝑙 and h with respect to time t, 
respectively. The modelling parameters using the 
Bouc-wen model were determined in Lin and Yang 
(2006).  

The modeled hysteresis of the PEA is compensated 
by a feedforward loop for fine tuning application 
which mainly focuses on the motion manipulation, 
based on this approach the system is represented by 
Lin and Yang (2006) as: 

 

Figure 4: PEA feedforward compensator loop (Lin and Yang 
(2006)). 

The controller command is the summation from the 
feedforward controller output u(t) and the hysteresis 
observer output oh(t) given as in equation (2) 

 ( ) ( ) ( )= +U t u t Oh t  (11) 

While the augmented closed loop model of the 
system is given as Lin and Yang (2006)  

 = +
dX AX Bl  (12) 

where x1=l, x2 = 𝑥𝑥1̇ and x3 = e(t) = ld - l(t). For position 
fine tuning application a proportional integral (PI) 
controller was proposed by Lin and Yang (2006) to 
handle the system hysteresis based on linear matrix 
inequality approach. Where the augmented closed 
loop model of the system matrices are given as 
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where Bc and Kc are the closed loop augmented 
damping coefficient, and stiffness, respectively.  

 p
c

d x k x k
u  

m
=  (14) 

where kp is the controller proportional term. 

4 OPTIMIZATION 
TWO scenarios will be considered. The first 

compromises optimization of the four bar mechanism 
geometrical synthesis, while the second compromises 
optimization of the four bar mechanism geometrical 
synthesis along with minimum change in the four-bar 
mechanism links length which guarantee reduced 
power consumption. The optimization problem can be 
formulated as follows (El-kribi, et. al. (2013)): 

 1=jmin : g ( Z ), j ,...,n  (15) 

 ∈ ∈
min maxi i i isubject to : z [ z ,z ]; z Z  (16) 

where gj is the objective function. Z is a design vector 
of the four-bar mechanism, which contains all the 
design variables. zi

min
 and zi

max
 define the limits of 

each design variable zi. 
Consider the mono-objective function 

 
1=

=∑
n

j j
j

g g ( Z )µ  (17) 

where μj‘s are arbitrary weighting factors, gj (j=1,…, 
n) are the objective functions to be optimize. The 
weighting factors can be chosen based on the 
importance of the objective to the system for a given 
the application.  

5 GENETIC ALGORITHM 
GA is a soft computing method that can efficiently 

determine global minima/maxima of linear or 
nonlinear problems. GA is highly recommended for 
problems involving large number of unknowns that 
are hard to be determined using conventional methods. 
It is mainly based on the natural selective principle in 
which the fittest candidates in a population are 
selected as parents from which a replacement 
population is generated by mutation and crossover 
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operations to create better fit candidates often called 
offsprings (Haupt and Haupt (2003); Holland (1992)). 

Figure 5 shows flow of the suggested GA until the 
stopping criteria is reached, i.e. maximum number of 
iterations (epochs) is reached or fitness values dropped 
below a predefined certain threshold. Generally the 
GA started with generating an initial population which 
consists of N random chromosomes. The algorithm 
optimizes a design variables vector Z (Chromosome) 
that contains the four unknown parameters (Genes): 

 2 3 2 3Z =[ΔL ΔL θ   θ ]   (18) 

Start with the 
desired path

1- Generate initial population of N chromosomes 
each chromosome has 4 genes (∆L2, ∆L3, θ2, and θ3) 

& start generation counter j=1

2- Evaluate values of fitness for 
each chromosome

4- Apply crossover operation to 
produce offsprings

5- Apply mutation to initial 
new population formulated 

from qualified offsprings and 
rejected parents

Crossover 
finished ?

Mutation 
finished ?

6- Replace old population with 
new population (offsprings)

Yes

No

Yes

No

Check 
termination 

criteria*
?

TerminateYes

No

j=j+1

3- (Reproduction) Select two chromosomes
Parent1 & Parent2

 

Figure 5: Genetic Algorithm block diagram (Hatamleh et al. 
2015). 

Next a fitness function is utilized to rank the 
proposed N random chromosomes. The best among 
the proposed is selected and passed to next generation; 
the size of the population is maintained by replacing 
the non-selected chromosomes by replacement process 
to create offsprings by mutation and crossover 
operations based on the selected chromosomes. Then 
the process is repeated until the best fit solution is 
achieved or the maximum number of generation is 
reached (‘*’ in Figure 5). In this paper two fitness 
functions are considered. 

5.1 Genetic Algorithm Synthesis (GAS) 
The fitness function considered in this section is 

the squared error between the desired end effector 
position and the obtained end effector position based 
on mechanism geometry shown in Figure 2. 
Mathematically, it can be defined as: 
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where the desired end effector location is represented 
by ( dx , dy ) coordinates, and the end effector position, 
obtained from the geometry, is represented by 
[(L+ΔL2) cos(θ2) +  (L+ΔL3) cos(θ2-θ3), (L+ΔL2) 
sin(θ2) + (L+ΔL3) sin(θ2-θ3)]. ΔL2j , ΔL3j are the next 
required PEA deformations of links 2 and 3. Finally, 
(θ2j , θ3j) are the next angular positions of links 2 and 
3, as shown in Figure 2. This objective function will 
be minimized to obtain the design variables defined in 
(14).  

5.2 Genetic Algorithm Minimum Power 
Synthesis (GAMPS) 

Here, the fitness function takes into consideration 
the fitness function defined in the previous section and 
the power consumption represented as the difference 
in PEA deformation when moving the end effector 
from the current to the following position, 
mathematically: 
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where, (ΔL2j-1 , ΔL3j-1) are the current PEA 
deformations of links 2 and 3, and  (θ2j-1 , θ3j-1) are the 
current angular positions of links 2 and 3. Similar to 
the previous section, the objective function will be 
minimized to obtain the design variables defined in 
(18) based on not only the geometry error but also the 
power consumption. Based on the optimization 
defined above, equal weighting factors are considered.  
Table 1 summaries the genetic algorithm options value 
used in the conducted simulations.  

Table 2 summaries the upper and lower bounds 
used to search for the optimal parameters. 

 
Table 1: GA options value. 

GA option Value 

Population size 50 

Crossover fraction 80 % 

Elite count  1 

Mutation Rate 1% 

Number of Generations 400 

 
Table 2: The lower and upper bounds of the unknown 
parameters. 
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2∆L

(μm) 
3∆L

(μm) 
2θ

(radian) 
3θ

(radian) 
Lower 
Bound -30 -30 0 0 

Upper 
Bound 30 30 π π 

6 RESULTS 
SINCE the proposed micro-manipulator is required 

to manipulate micro-objects or particles along any 
arbitrary path, two simulation runs were conducted to 
obtain the mechanism’s minimum power synthesis 
solution using developed GA. The runs used 
sinusoidal and kidney-shaped paths of motion. At each 
run the path was discretized into a series of 
consecutive points that starts from the mechanism’s 
unactuated position and ends at the considered path 
end. There are infinite synthesis solutions for Z = 
{∆L2, ∆L3, θ2, and θ3} when moving from a current 
point to the next point along the path of motion, the 
proposed GAS searches for an arbitrary synthesis 
solution using the objective function described by 
equation (19). On the other hand, GAMPS uses the 
objective function described by equation (20) to 
extract the synthesis solution that represents the 
minimized power consumption. 

Obtained changes in length of PEA link 1 along all 
path points are obtained using equation (2). Links 2 
and 3 on the other hand, has many possible solutions. 
Therefore, GAS and GAMPS will differ unless they 
coincide by chance. Figure 9 and 10 show obtained 
changes in lengths of PEA links 2 and 3, namely (ΔL2 , 
ΔL3)  along all points of defined path. As expected, the 
figures show how GAS solution has higher values of 
(ΔL2 , ΔL3) than those obtained by the GAMPS 
solution. Figures also show the expected fluctuation in 
obtained changes of PEA lengths while moving from 
one point to another using the GAS solution. The 
GAMPS solution resulted in a smooth mechanism 
motion along the defined path, unlike the GAS 
solution which requires higher power rates with rough 
mechanism motion. 

The difference vector between current and next 
PEA links length is calculated and recorded for all 
points of motion path as described by the following 
equation: 

 ( )
1

, 1,2,3
−

∇ ∆ = ∆ − ∆ =
j jm m mL L L m  (21) 

This equation is considered twice, once using the 
GAS solution, and another using the GAMPS solution. 
The net change in length of PEA link 1 [∇ (ΔL1)], is 
the actual change required in PEA link 1 when the 
mechanism moves from one point to another. 
Differences of change in links 2 and 3 are shown in 
Figure 11 and 12, respectively. It can be clearly 
noticed that there is a great enhancement over the 
required difference in links lengths. ∇ (ΔL2) and ∇
(ΔL3) when GAMPS is used. Summations of all 

difference values along the defined path of motion for 
PEA links 2 and 3 are illustrated in Table 3. The table 
shows how the total amount of absolute values of 
differences, closely related to the required power, are 
dramatically smaller for both kidney-shape and 
sinusoidal paths. 

 

Table 3: Total sum of change in length of PEA links for 
GAS and GAMPS along kidney-shaped and sinusoidal 
paths. 

Sum of 
absolute  
changes in 
(μm) 

Kidney-Shape 
Path Sinusoidal path 

GAS GAMPS GAS GAMPS 

( )2
1=
∇ ∆∑

r

q
L  296 0 358 0 

( )3
1=
∇ ∆∑

r

q
L  256 0 460 0 

 
Figure 8 shows that the fitness value and the 

average distance between individuals (chromosomes) 
decrease with the number of iterations represented by 
the number of generations (50 generations is shown) 
which indicates the conversion to a solution of the 
optimal mechanism synthesis. Figure 6 shows four 
positions of the proposed mechanism along the 
kidney-shaped path of motion; at each position GAS 
and GAMPS solutions are indicated, if GAS solution 
is traced from position 1 to 4, it is clear how the 
mechanism behaves in a fluctuating type of motion. 
On the other hand, tracing GAMPS solution over the 
same figure reveals the smooth type of motion 
obtained. Path tracking animations are provided for 
kidney-shaped and sinusoidal paths. The previous 
discussion for kidney-shaped path is also verified by 
sinusoidal path as shown by Figure 7. 

 

Figure 6: GAMPS vs. GAS solution snapshots along the kidney-
shape path of motion. 
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Figure 7: GAMPS vs. GAS solution snapshots along the 
sinusoidal path of motion. 

  

  
(a) (b) 

Figure 8: Fitness value and average distance vs. number of 
generations using (a) GAMPS, (b) GAS. 

 

Figure 9: Deformation of PEA2 for kidney-shaped path. 

 

 

Figure 10: Deformation of PEA3 for kidney-shaped path. 

 
Figure 11: Required gradient in the second link deformation 
along the kidney-shape path. 

 

 

Figure 12: Required gradient in the third link deformation 
along the kidney-shape path. 

7 CONCLUSION 
AN optimal synthesis of a four-bar mechanism 

with three PEAs is proposed. The proposed 
mechanism synthesis for each point along the 
discretized path is a complex and computationally 
expensive process if conventional numerical and 
enumerative methods are used. In addition, these 
methods will result in multiple solutions that need 
optimization. Hence, Genetic Algorithm was proposed 
to obtain a synthesis solution at lower cost and faster 
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convergence. In order to achieve that, GAS and 
GAMPS were proposed to obtain a general synthesis 
solution and a minimum power synthesis solution, 
respectively. Simulation results tested over two 
different paths showed that GAMPS was able to 
obtain a solution that has less power consumption than 
GAS. Furthermore, it was noticed that the transition of 
mechanism links along the path were much smoother 
and had fewer fluctuations than GAS.  The proposed 
GA can replace conventional numerical methods to 
synthesize other forms of multi bar mechanisms as it 
is easy to implement and has a faster convergence. 
Such advantages will make this approach more 
attractive to be deployed within feedback system to 
provide the required synthesis for the predefined path 
or set point. 
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